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Spatial Information Based OSort for Real-Time
Spike Sorting Using FPGA

Laszlo Schaffer @, Zoltan Nagy

Abstract— Objective: Spiking activity of individual neu-
rons can be separated from the acquired multi-unit activity
with spike sorting methods. Processing the recorded high-
dimensional neural data can take a large amount of time

when performed on general-purpose computers. Methods:

In this paper, an FPGA-based real-time spike sorting sys-
tem is presented which takes into account the spatial corre-
lation between the electrical signals recorded with closely-
packed recording sites to cluster multi-channel neural data.
The system uses a spatial window-based version of the On-
line Sorting algorithm, which uses unsupervised template-
matching for clustering. Results: The test results show that
the proposed system can reach an average accuracy of 86%
using simulated data (16-32 neurons, 4-10 dB Signal-to-
Noise Ratio), while the single-channel clustering version
achieves only 74% average accuracy in the same cases
on a 128-channel electrode array. The developed system
was also tested on in vivo cortical recordings obtained
from an anesthetized rat. Conclusion: The proposed FPGA-
based spike sorting system can process more than 11000
spikes/second, so it can be used during in vivo experiments
providing real-time feedback on the location and elec-
trophysiological properties of well-separable single units.
Significance: The proposed spike sorting system could be
used to reduce the positioning error of the closely-packed
recording site during a neural measurement.

Index Terms—FPGA, multi-channel, online spike sorting,
real-time, spatial information.
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[. INTRODUCTION

HE brain is one of the most complex biological systems
T containing quadrillions of synapses and billions of neu-
rons. To study this organ in humans or in animal models, and to
examine elementary neuronal mechanisms or high-order brain
functions, such as learning, sleeping, perception and memory, a
widely used method can be applied: the extracellular measure-
ment of the electrical activity in the brain [1]. During a typical in
vivo electrophysiological experiment a single or multiple neural
implants comprising dozens of small electrodes are inserted into
the brain tissue for recording short, electrical impulses (usually
referred to as action potentials or spikes) generated by neurons
located close to the implanted devices [1]-[3]. The obtained
signals contain the trains of action potentials fired by neurons
located around the electrodes of the neural probe.

Spike trains of individual neurons (called single-unit activity)
can be separated from the recorded multi-unit activity with a
technique called spike sorting [4], [5]. In basic neuroscience
research spike sorting is used during the offline analysis of the
recorded neural data (e.g. investigating neural network dynam-
ics [6]) as well as in real-time clinical applications (e.g. in brain-
machine interfaces to control neuroprosthetic devices [7], [8]).
However, a typical spike sorting algorithm may contain several
computationally demanding steps (e.g. spike detection, feature
extraction or clustering), which makes real-time processing of
multi-channel neural data challenging and thus can greatly re-
duce the efficiency of clinical applications designed to provide
rapid feedback.

High-channel-count neural probes [9]-[11] comprising over
hundred electrodes are able to record the activity of hundreds
of neurons from numerous individual brain positions simultane-
ously. Neural data acquired by such probes pose a great challenge
for spike sorting algorithms applied on general-purpose comput-
ers. Therefore, future real-time clinical applications as well as
electrophysiological experiments performed using high-density
neural probes could get advantage of hardware-accelerated pro-
cessing of neural recordings. Dedicated systems based on Field-
Programmable Gate Arrays (FPGAs) or Application-Specific
Integrated Circuits (ASICs) are especially suited for this task
because they are small, wearable and use insignificant amount
of energy compared to traditional Central Processing Units
(CPUs) or Graphics Processing Unit (GPUs). Using a dedicated
system the computation time to process the vast amount of
data from a multi-channel (high-dimensional) neural recording
can be significantly reduced [12]-[19]. Although ASIC chips
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might be smaller and consume less power compared to FPGAs,
which is advantageous in electrophysiological experiments with
freely behaving animals where wireless technology is used to
transfer neural data from the brain to the recording system [20],
they usually lack flexibility for changes. In contrast, design
flexibility provided by FPGAs might be in many cases a more
important factor than small chip area or low power consumption.
For example, electrophysiological recording systems as well
as algorithms used for spike sorting are subject to extensive
research and development, therefore tend to change rapidly.
Thus, FPGAs may be better suited for use in these fields than
ASICs. In the literature several FPGA-based solutions can be
found, which were developed for spike sorting not suited to pro-
cess data recorded with high-channel-count neural probes [12]—
[18], while [19], [21]-[23] capable of sorting action potentials
recorded with high spatial resolution probes [24], [25].

High-density neural probes with closely-packed recording
sites can detect the spikes of the same neuron simultaneously
on multiple, adjacent sites [26], [27]. This high spatial sampling
of spikes might allow a more reliable and accurate identification
of neurons in case of template matching-based spike sorters. The
reason behind this is that neurons located in different positions
relative to the electrode array will have at least a slightly dif-
ferent multi-channel spike waveform (investigated for example
in a spatial window incorporating 3 x 3 electrodes). Thus, the
additional spatial information provided by high-density probes
might be exploited to increase the accuracy of the spike sorting
process [28], [29].

Using a high electrode density (<20 pm electrode-pitch) is
also advantageous in multiple other ways. For instance, there is
a higher chance that recording sites are physically located near
individual neurons [30]. Furthermore, several studies showed
that a higher single unit yield can be achieved with a higher
electrode density [28], [29], and that a considerable number
of pyramidal cells fire spikes with a larger spatial spread than
interneurons [28]. Thus, the spikes of several small interneurons
located in the vicinity of neural probes having a low electrode
density might not be recorded, resulting in a biased pyramidal
cell — interneuron ratio. High electrode coverage and increased
electrode density might also provide other benefits, including,
for instance, the compensation for electrode drift or a more
accurate separation of overlapping spike waveforms [9]. How-
ever, using an electrode pitch below 4 pm will not lead to any
further improvement in terms of being close to neuronal signal
sources [30].

In this paper, a window-based spike sorting hardware ar-
chitecture using System-on-Chip (SoC) FPGA is presented for
real-time processing of high-channel-count neural data recorded
with a dense electrode array. The incoming spikes are observed
on each channel in parallel for detection, therefore the spike
detection is multi-channel. The sorting part of the proposed
system is window-based, because it takes into consideration
the spatial information in a window of the electrode array.
To perform spike sorting in this window-based manner, the
Online Sorting (OSort) algorithm [31] was modified. OSort is an
unsupervised template matching algorithm, originally designed
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to process single-channel recordings. The functionality of the
system was verified using a modified version of a hybrid ground
truth signal generator [32] and in vivo measurement data [33].

A preliminary version of this work has been reported in [34],
which is extended in the presented paper with the algorithm and
architecture of the spike detection, as well as the implementation
details and validation results of the proposed spike sorting
system.

[Il. PROPOSED SYSTEM

The proposed system can be split into three main blocks, the
Recording, the Processing and the Host PC, which can be seen
in Fig. 1. The Recording block contains an Intan RHD2000
electrophysiological recording system. The Processing block
can be further divided into the Ethernet interface, SPI inter-
face, Pre-processing /IR Filter module and the Spike Sorting
module, which contains the Multi-channel Spike Detect and
the Window-based Online Sorting cores. The Host PC block
includes the Ethernet interface, the Visualization module, the
Spike Generation module, and the Validation module.

The proposed system is able to process in vivo neural mea-
surement acquired by the Intan RHD2000 (Intan Technologies,
Los Angeles, CA, USA) board, as well as simulated neural
recordings generated by the Spike Generation module on the
Host PC. To switch between these two input modes only the bit
file has to be changed on the FPGA board.

A. Electrophysiological Recording

The proposed system was designed to process neural
data recorded with a 128-channel high-density silicon-based
probe (50 pm x 100 pm) comprising closely-packed electrodes
(20 pm x 20 pm) arranged in a 32 x 4 array with a center-
to-center electrode distance of 22.5 pym [33]. Measurements of
wideband brain signals (0.1-7500 Hz) with this type of probe
were obtained with the Intan RHD2000 electrophysiological
recording system at 20 kHz sampling frequency/channel and
with 16 bit resolution. These 128-channel recordings usually
contain hundreds of thousands of spikes fired by dozens of
neurons during a time period of one hour. The Intan RHD2000
uses the SPI protocol for communication purposes.
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B. Pre-Processing IIR Filter

The high-density bioelectrical activity recorded from the brain
tissue can be separated into local field potentials (below 500 Hz)
and spiking activity (500-5000 Hz). Therefore the recorded
wideband data should be filtered before spike sorting. In the
proposed system a Butterworth Infinite Impulse Response (IIR)
third-order zero-phase band-pass filter is used to extract the
spiking activity.

C. Processing - SoC FPGA

The proposed system was implemented on a special Xil-
inx architecture called Zynq, which contains a traditional Pro-
grammable Logic (PL) and a Processing System (PS). The latter
is an ARM-Cortex processor with various I/O interfaces to
connect the system to the outside world. The Gigabit Ethernet
interface is used to communicate with the Host PC and the
SPI interface is used to receive data from the Intan RHD2000
device. The ARM PS communicates with the PL. on AXI4 buses
(AXI4-Lite, AXI4-Stream, AXI4).

D. Multi-Channel Spike Detection

The Multi-channel Spike Detect core is responsible for the
real-time multi-channel spike detection. In the proposed system
the Non-Linear Energy Operator (NEO) is used for spike de-
tection, because it is the most efficient among the commonly
used spike detection methods and it is easily implementable on
FPGA devices [5], [12], [35]. The NEO signal can be calculated
as follows.

Ulaz(n)] = 2(n)* —2(n+1) z(n—1), ey

where z(n) is the nth sample in the input signal, and U]z (n)] is
the nth sample in the resulting NEO signal. The NEO signal is
very high in amplitude, when both the frequency and the power
of the input signal is both high. The threshold of the detection
Ty can be calculated as follows:

N
Ty = cn - % > Wla(n)], )
n=1

where ¢y is the correction factor and N is the number of sam-
ples used. These parameters can be determined experimentally
according to the actual signal processing task.

The flow diagram of the spike detection algorithm can be seen
in Fig. 2. In our case one sample from each of the 128 channels
is fed into the NEO and the standard deviation (STD) calculation
block. The STD value is used later in the spatial window-based
OSort module to calculate the automatic clustering and merging
thresholds. When the ¥[z(n)] NEO value is larger than the
automatically calculated Ty threshold, then the peak of a spike
is detected. Afterwards, a temporal window around the detected
peak on the actual channel is checked by the realign method,
that the peak of the spike is certainly in the center of this
temporal window. The correct alignment is crucial, because the
comparison can not be done correctly with unaligned spikes,
resulting in compromised classification.
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Fig. 2. Flow diagram of the NEO based spike detection algorithm.
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Fig. 3. Possible boundary conditions for the 32 x 4 electrode array
configuration, which is stored in the LUT. The recording sites of the
electrode array are within the blue rectangle.

In an electrode array with closely-spaced recording sites the
spike waveform of a neuron spreads through adjacent sites,
which also has to be considered for detection. After the realign-
ment of the temporal spike window, a spatial window of 3 x 3
electrodes is examined around the firing channel at the aligned
spike position to determine the source of the activity. The chan-
nel with a higher absolute amplitude in the neighbourhood will
be the new center of origin, assuming that electrode is possibly
located the closest to the soma of the neuron. Using this method
the source channel of the unit activity can be found, eliminating
the effect of the multiple detection of the same spike. In case
of two or more neurons firing in the spatial vicinity of each
other (8-connected or 8-neighbour) the detected spike matrix
will be an overlapping spike waveform and will be removed in
the merge phase of the classification process. Recording sites
on the edges of the electrode array will also detect spikes. In
this case an incomplete electrode window is selected, because
there is no measurement beyond the edges of the electrode array.
There are three possible solutions to deal with this issue, which
can be seen in Fig. 3:

1) Modified Neumann: The boundary is filled with data
of the neighbouring channels, considering a Gaussian distribu-
tional cross-talk between the channels.

2) Dirichlet: The boundary is filled with fixed constants, in
this case zeros.
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3) Inner Electrodes: Only the inner electrodes are used for
detection, therefore spike sorting is limited in this case.

The realign method specifies the origin of the activity and
the precise alignment, so a spike matrix containing the data
of 9 channels is selected from the electrode array and sent to
classification. In the proposed system the Modified Neumann
boundary condition is used.

E. Spatial Window-Based Online Sorting

The clustering and cluster merging thresholds (7 and
T'ys respectively) are automatically determined and adaptively
changed during the classification based on the STD value cal-
culated in the spike detection part. The threshold value of one
channel is calculated based on the standard deviation of a five
seconds long moving window (determined experimentally) from
the neural recording (signal) as follows.

Te = Ty = std(signal)? - cc - Ng, 3)

where c¢ is the clustering correction factor [31], and Ng is the
number of sample points in a spike.

The flow diagram of the proposed algorithm can be seen
in Fig. 4. This algorithm extends the original OSort algorithm
with a cluster memory, which is required for the optimal FPGA
implementation (Section III-C) and works as follows.

When the Multi-Channel Spike Detect core sends the first
spike matrix containing 9 spikes from the 3 x 3 electrode win-
dow, it is stored as the first cluster in the cluster memory. The
next spike matrix will be compared to the saved cluster mean
using squared difference as the distance metric. If this spike
matrix is similar to the already saved one, then the calculated
distance is below T, so it is assigned to this cluster. If it is
not similar, and the distance is above T, then the creation
of a new cluster is required. This process is applied to the
subsequent incoming spike matrices. After the assignment the
mean of this cluster will be updated, because the composition
of the cluster is changed. Furthermore, the cluster mean update
changes the distance between cluster means, therefore a distance

check between clusters is needed. If a distance is below T/,
then the updated and the closest cluster will be merged together
forming a new, larger cluster. In this case the smaller cluster will
be removed from the memory, and the spike matrices from the
smaller are assigned to the larger cluster.

F. Host PC

The task of the Host PC (Intel Core i17-4770 CPU at 3.4 GHz,
8 GB DDR3 RAM) is to visualize the results of the spike
sorting, when in vivo neural recordings are used, and to validate
the sorting algorithm using hybrid ground truth neural data
generation, when the signal generator is operating.

G. Spike Generation

The algorithm and the implementation of the Spike Gen-
eration module is fully discussed in [32]. Using ground truth
data, the time corresponding to spikes of individual neurons is
known and thereby it allows the quantitative assessment of the
performance of the spatial window-based OSort spike sorting
algorithm. Since we combined in vivo neural data (obtained
by direct measurement) and synthetic data (background noise,
position and firing time of neurons) to generate our dataset
for validation, this is referred to as hybrid ground truth. Spike
templates were created from in vivo electrophysiological data
recorded with the previously mentioned, 128-channel silicon
probes from the neocortex of anesthetized rats [33]. The spikes
of well-separated units (n = 72) were averaged and the average
spike waveforms were used for the construction of templates.
Since the high-density probe could record the spikes of a
particular unit on multiple, adjacent recording sites, only the
recording channel on which the spike appeared with the largest
peak-to-peak amplitude was used for template construction. A
spike template was represented with 64 sample points/channel
(3.2 ms). For a higher variability of spike templates, we selected
spike waveforms corresponding to both putative neocortical
principal cells (wide spikes, n = 58) and putative neocortical
interneurons (narrow spikes, n = 13) [36].

High-density neural probes provide high spatial resolution,
that is, the spikes of neurons can be recorded on multiple
electrodes simultaneously. The extent of spatial spreading of
the spike waveform of a neuron depends on several factors (e.g.
neuron-electrode distance, type of the neuron) but is usually a
few tens of microns. Therefore, the maximal radius of spatial
spreading of our template spike waveforms was six electrodes
(132.5 pm) in each direction with the mean spike waveform
located in the center.

To generate a more realistic neural dataset the spatial spread
of the spike waveforms of 160 in vivo recorded cortical neu-
rons were examined (obtained with the 128-channel silicon
probe used in this study) to extract the spreading patterns.
The Spike Generation module [32] was modified based on the
found spatial patterns, so in the modified version each simulated
neuron has an individual and asymmetrical spike waveform
spreading.
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[ll. IMPLEMENTATION

The schematic diagram of the Processing block can be seen
in Fig. 5. The system consists of the ARM Processing System
(PS), the Off-chip DDR4 Memory, the Memory Controller core,
the DMA Controller cores and the Spike Sorting Module. The
Spike Sorting part is responsible for the spike detection and
classification and consists of the Multi-channel Spike Detect core
and the Window-based Online Sorting core [34].

The role of the ARM PS is to initialize the system with
a pre-calculation of the required matrices, and to start and
control the sorting process. The ARM PS and the cores in
the FPGA are connected to each other through AXI4-Lite and
AXI4-Interconnect buses, while the ARM PS communicates with
a host PC through an Ethernet port.

The Spike Sorting Module consists of the Window-based
Online Sorting core and the Multi-channel Spike Detection
core. The original version of the OSort algorithm [31] works
with a single-channel. To process data from a window of the
electrode array, the algorithm was modified. The data flow and
the structure of the original algorithm are completely redesigned.
The neural data are processed in 3 x 3 spatial windows, so the
clustering algorithm works on 9 selected channels at a time.

A. Pre-Processing IIR Filter

A Butterworth IIR third-order zero-phase pre-processing
band-pass filter with 500-5000 Hz cut-off frequency is applied to
the incoming signal from the Intan RHD2000 recording system
for noise reduction and to eliminate low frequency content of the
signal. The filter is implemented as two Finite Impulse Response
(FIR) filters combined together based on Direct Form I structure
with seven 18 bit coefficients in each filter. The FPGA resource
requirement of the pre-processing IIR filter on 128-channels is
only one 36 k BRAM and one DSP slice.

B. Multi-Channel Spike Detect

The Multi-channel Spike Detect architecture can be split into
the STD, the NEO and the Realign computation parts, which
can be seen in Fig. 6. The signal is sampled at 20 kHz with 128
channels in the proposed system.

The STD computational part is responsible for computing
the standard deviation value of the incoming signal using a
five seconds window, which contains 100000 x 128 samples.
There is not enough memory for this on the FPGA, therefore the

b - Too;ort'

3
AXI- light |

N+1 NEO BRAM1 N

B o T L "L

]
S
s

[
a

Detection I
Threshold |

Threshold \
Module |

|

Detected Spike Realign
Neighbourhood Spike
»  Window AXI- |

<Et N X i Boundary
& s - Lt
®
c
@
@

Detection ‘
on Channel

[

To Osort |

I
I
I
Realign I § I
I
I
I
I

Fig. 6. The architecture diagram of the detection.

off-chip DDR4 memory is used to store the samples. The average
computation can be done continuously in the AVG block, while
the subtraction and power operations are done in the STD block.
In the NEO computation part the spike detection with Eq. 1 and
the threshold calculation using Eq. 2 is done. The NEO signal can
be calculated parallel for each channel using the NEO BRAMI,
BRAM2 and the Serializer as N-1, N and N+1 inputs.

In this implementation the value of ¢y and N are both 2
(determined experimentally), so the Ty NEO threshold value
calculation can be reduced to a simple accumulation. At the first
2 samples the system is not operating, this can be considered as
an initialization phase.

The Realign part of the Multi-channel Spike Detect is respon-
sible for the following:

e Alignment of the detected spikes in the spike window;

e Determination of the channel containing the maximal am-
plitude spike in the neighbourhood around the detection;

e The appropriate selection of the 3 x 3 channels on the
electrode array.

The Realign part uses the Signal BRAM, which can store 80
samples for each (128) channel. A spike is 64 samples wide,
but the detection is not precise, so 16 more samples are stored,
altogether 80. The Threshold Module compares the actual NEO
value on each channel with this detection threshold value and
when it is lower than the actual NEO value, then a spike is
detected. Detection events for the channels are stored in a 128
wide vector. If a detection occurs, then the detection event
flag for the actual channel is switched, which indicates that
40 samples later the Signal BRAM will contain the full spike
for that channel and can be used for realignment. The Realign
Spike Window block uses the absolute value of the spike in the
temporal window from the Signal BRAM to find the maximal
point for the alignment.

Afterwards, the neighbourhood of the detected spike at the
alignment point is extracted from the Signal BRAM, and
searched for the maximal value in that 3 x 3 electrode window.
Using this method the channel with the maximal amplitude will
be in the center of the electrode window, which is crucial for the
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effectiveness of the comparison performed in the Window-based
Online Sorting core later. If the channel is at the border of the
electrode array, and the spatial window is out of this border, then
with the help of the Boundary Look Up Table (BLUT), the 3 x 3
spatial window can be prepared and sent to classification using
AXI-Streams, 9 streams parallel for each channel.

For different electrode array configurations different pre-
calculated Boundary LUTs could be used, which needs different
bit files on the FPGA. The appropriate one must be chosen for the
corresponding electrode array and programmed it to the FPGA.

C. Window-Based Online Sorting

In the Window-based Online Sorting core a cluster mean
consists of 3 x 3 x 64 data points, which are represented as
16 bit integers. The clusters are represented as fixed point type
numbers, all of them are 18 bit with 2 bit fractional part. The
single-channel OSort processes spikes with 64 samples using
double precision. The memory required for cluster mean storage
are less if integer values are used. The T- classification threshold
values are in the range of 10, therefore rounding the values does
not change the result of the comparison.

In this implementation for the calculation of the T~ classifica-
tion threshold the c¢ clustering correction factor was determined
experimentally and set to 0.4 for all simulated data and 0.1 for
the in vivo recording, while the number of sample points Ng
were 64 for both cases.

In our case a 18 bit wide and 2048 element deep configuration
of Xilinx 7 series BRAMs are used, therefore, 32 clusters
can be stored in 9 BRAMs. The number of clusters in the
proposed system (32 x 4 electrode array) are expected to be
around 100. Therefore the maximal number of clusters is 128
using 36 BRAMs. The computation of the Window-based Online
Sorting core uses an array of processing elements with 9 (3 x 3)
Arithmetic Units.

The architecture of Window-Based Online Sorting core is
shown in Fig. 7. Spike data is received from the Multi-channel
Spike Detect core via AXI-Stream buses and go through a
deserializer and a 14 spike matrices deep buffer to handle

TABLE |
AREA REQUIREMENTS AND DEVICE UTILIZATION OF THE SYNTHESIZED
OVERALL SYSTEM

Device Utilization
FF LUT DSP BRAM
M. Spike Detect Core | 10915 42692 6 7
W. OSort Core 6569 8982 54 91
Summarized 17484 51674 60 98
Utilization(%) 379% | 22.42% | 3.47% | 15.74%

multiple detections. During a 0.1 ms period (the processing
and classification time for one spike matrix is 85.17 us, see
Section IV) only one neuron will fire on average in the vicinity
of a recording site (or near a 3 x 3 window of sites). Therefore,
on 128 channels 14 neurons can fire in average in a 0.1 ms period,
so a system capable of storing 14 spike matrices will cover most
of the cases, even when multiple neurons fire in a short time
frame [37].

There are 4 stages, which function is to load the (3 x 3 x 64
samples) spike matrix and compare it to the cluster means in the
Cluster Memory (1), update the chosen cluster mean or create a
new cluster (2), compare the cluster means to each other (3) and
finally merge clusters (4). The details can be seen in [34].

V. RESULTS

The proposed Spike Sorting and Processing blocks were de-
veloped using Vivado HLS 2018.3. The prototype MATLAB
algorithms are translated to a High Level Synthesis (HLS)
based C/C++ solution taken into consideration the architecture
described in Section III. The Processing block was implemented
on a Xilinx ZCU106 SoC FPGA board, which contains a Zynq
UltraScale+ XCZU7EV FPGA as PL and a quad-core ARM
Cortex-AS53 processor as PS.

During the overall validation process, the system was tested
with varying number of neurons and noise levels using the hybrid
ground truth generator and in vivo cortical measurements. The
results were evaluated and visualized on the host computer in
MATLAB.

A. Implementation Results

In case of the Window-based Online Sorting core, the spike
matrix input is loaded trough 9 AXI-Stream buses, the output for
the clustering result are mapped to an AXI-Stream bus, while the
standard deviation value used in the calculation of the clustering
threshold can be updated using an AXI-Light connection.

The available resources on the XCZU7EV FPGA and the
resource requirements of the cores can be seen in Table I,
which shows that the main resource consumption is the memory
requirements (LUT, BRAM). The LUT resource utilization can
be reduced if more BRAMs are used instead of LUTRAMs or
URAMs can be utilized.

The results of the test measurements on the XCZU7EV FPGA
showed that spike matrices can be clustered in 18,005 clock
cycles. The latencies of the synthesized cores, which are capable
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TABLE Il
DETAILED LATENCY OF THE SPIKE SORTING ARCHITECTURE

Latency Trip Count

(clock cycles) | (clock cycles)

Spike Sorting Module

Load Spike 193 192

Stages 1-4 16712 16704

Read Merge Table 129 128
Total 17034 17024

Spike Detection Module

Load Channel 129 128
NEO 131 128
Realign 163 154
Total 423 410
STD 128 M 128 M

of operating on 200 MHz clock frequency can be seen in Table II.
The latency is given in clock cycles, while trip count is the mini-
mum number of times a loop executes. The latencies are grouped
by the Multi-channel Spike Detect and Window-based Online
Sorting cores. The STD block is shown separately, because it
can run independently of the detection or the classification.

Due to the relatively low operand bit width, the system can
operate on 200 MHz clock frequency, so a spike can be detected,
realigned and selected in 423 clock cycles, which is 2.12 us. One
spike matrix (3 X 3 x 64 data points) can be clustered in 17034
clock cycles in the worst case, resulting in 85.17 us clustering
time. Altogether the detection and classification can be done
in 87.29 us, therefore the proposed system can process up to
11456 spike/s.

The spike sorting was also tested offline with the same dataset
on the Host PC in MATLAB and the results showed that the
average computation time is 7202 ps. Therefore the XCZU7EV
FPGA-based system is around 80 times faster.

B. Validation Results

The verification of the classification performance of the pro-
posed system contains multiple datasets with different average
Signal-to-Noise Ratios (SNR with 3—10 dB) and different num-
bers of neurons (4-32), since using the 128-channel neural probe
an average of 30 neurons can be separated from a single cortical
recording location [37]. The average SNR is calculated using the
same method as in [31]. The duration of a dataset was 300 sec-
onds with 20,000 samples/second/channel on a 32 x 4 electrode
array (128 channels). Spike templates corresponding to different
neurons were added to arbitrarily chosen channels at random
time points. Spike templates were selected randomly from the
template database [32] with 80-20 ratio between pyramidal cells
and interneurons.

To measure the accuracy of the clustering, spike times of the
template neurons and the spike times of the created clusters are
matched. Only the spikes placed in the appropriate (best match)
cluster are taken into account.

TABLE 1l
CLASSIFICATION ACCURACY (%) OF THE PROPOSED SYSTEM

Neurons Average SNR (dB)
10 8 6 4 3
4 88 +9 | 87 £10 | 59 £26 | 27 +43 | 16 £23
94 +3 93 +3 84 + 13 | 57 +38 | 28 £ 28
12 92+2 | 92+1 87+2 | 59+17 | 21 £ 18
16 92 £3 91 £2 88 £ 2 69+9 | 21414
20 89 +3 90 £+ 3 87 £3 81 £5 39 £ 27
24 90 £ 1 90 £+ 1 88 £ 2 80 £ 3 55 £ 12
28 89+ 3 89 +2 87 £ 2 82 +7 62 £ 16
32 8 +3 8+ 3 85+ 2 81 £ 6 64 + 8
Cluster ID
1 2 3 4 5 6 7 | 8 |Undet.
] 0 o 0 o
1 1 0 o0
=) 0 0 o0
§ 0 0 o0
i

Fig. 8.
system.

Matching matrix for 8 simulated neurons using the proposed

The average and standard deviation of the classification effi-
ciency can be seen in Table III, in case of 128 channels using
300 seconds neural dataset with varying SNR and neuron num-
bers. In most cases the accuracy is between 80%—-90%, except for
low neuron numbers and low SNR, where the proposed method
has low accuracy. Increasing the number of neurons the accuracy
is also increasing for all SNRs.

In case of low neuron numbers on a high-channel count
electrode array (128 channels) only a small part of the channels
contain spikes and these channels are also used in the STD
calculation making the clustering threshold lower, so in case
of multi-channel clustering the spike matrices do not meet the
clustering condition and falsely new clusters are created.

To visualize the performance of the proposed system a specific
table layoutis used in which each row represents a spike template
of a neuron, while each column represents a sorted cluster and
the fields of the matrix contain the number of spikes. A matching
matrix for 8 simulated neurons can be seen in Fig. 8, where, for
example, the cluster identified with / has 442 spikes from spike
template 7 . The column named undetermined includes those
(usually noisy) spikes, which were in clusters discarded due to
low number of spikes (< 10).

The accuracy of the proposed system using multi-channel
spike detect with only single-channel clustering was evaluated.
In Table IV the results can be seen, where gray cells denote
lower accuracy compared to the proposed system. The results
show that the proposed system achieves better performance in
most cases, except some low neuron and SNR configurations.
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TABLE IV
CLASSIFICATION ACCURACY (%) USING MULTI-CHANNEL SPIKE DETECT
AND SINGLE-CHANNEL CLUSTERING

Neurons Average SNR (dB)
10 8 6 4 3
4 64+4 | 64+4 | 665|646 | 62LE5
8 79+4 | 79+£3 | 782 | 75+£2 | 70+4
12 T8£S | 775 | 774 | 711 £4 | 69+£6
16 T8+6 | 18E6 | 776 | 74£6 | 67£5
20 76 £7 | 18+4 | 157 | 69£7 | 60£9
24 T5+4 | 753 | 71 £4 | 65£7 | 54+£8
28 80+6 | 80£5 | 77£6 | 703 | 61 &£5
32 75+3 | 73£3 | 721 | 652 | 57T+4
A 200
100
0
2
=-100
g-zoo
>
-300
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Time [ms]
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Fig. 9. Partial results of the proposed system on the 5-minute-long in
vivo cortical dataset from an anesthetized rat [33]. (A) shows 2 clusters
on channel 12. (B) shows a cluster on channel 109.

Recordings with the 128-channel probe typically contains neural
activity from 30-40 neurons in average [37], therefore using the
proposed system with higher neuron numbers (e.g. 32), a better
performance can be achieved than single-channel clustering. In
cases above 3 dB SNR the difference between the proposed
method and the single-channel version is significant (Student’s
t-test, p = 0.002).

A 5-minute-long in vivo cortical dataset obtained with a
128-channel silicon probe from an anesthetized rat was used for
validation. After using the kiloSort [38] spike sorting algorithm
offline the resulting clusters were manually curated defining 26
well-separated single unit clusters [33]. Running the proposed
system on this cortical recording, 32 clusters were created,
which showed 80% similarity using cross-correlation between
the results obtained with the method described above and with
the proposed system.

The results of the spike sorting can be seen in Fig. 9, which
contains some example clusters from two distinct channels.

V. DISCUSSION

Besides the spatial information based online spike sorting, the
proposed FPGA-assisted system can support in vivo experiments
by determining the position of electrodes containing spiking
activity in real-time, even shortly after the implantation or the re-
location of high-density neural probes. Furthermore, by obtain-
ing various firing properties (autocorrelogram, firing rate, spike
width, spike shape, location on the electrode, etc.) and the wave-
form of the single units extracted in real-time, neural activity in
brain areas under examination could be surveyed in a short time,
which presumably would be a useful aid for neuroscientists.

The proposed system is capable of clustering more than
11,000 spikes in a second, therefore real-time spike sorting is
possible. Based on this and on the resource utilization (Table I),
even 1024 clusters and channels (8 times more) could be used.

A. Comparison to Other Systems

The original OSort algorithm [31] was compared to our
system using the hybrid ground truth signal generator [32]. Alto-
gether six neurons were simulated on channels (two neurons on
each) 33, 42, and 43. The original OSort algorithm was running
in parallel on 128 channels to be comparable to our system. The
proposed system created only 2 clusters on each appropriate
channel (F-Score 100% [39]), while the original OSort (with
the default parameters) also found the same 6 clusters on the
appropriate channels, but made another 735 false clusters too
(F-Score 0.8%) from noisy, overlapping spikes and due to the
crosstalk between channels.

In addition to the original software solution described
above many FPGA-based spike sorting algorithms can be
found in the literature [12]-[19], [21]-[23] but only three of
them [12], [21], [22] are using a version of the original OSort,
and only one OSort-based solution is capable of multi-channel
classification [22].

In [12] the original OSort algorithm was implemented on
FPGA, but it cannot be used for multi-channel spike sorting, and
the system can only process single-channel neural recordings
containing only 3 neurons with the accuracy of 89%.

A real-time unsupervised FPGA-based spike sorting system
is presented in [21], which applies NEO for spike detection
and a parallel architecture based on the OSort algorithm for
classification. The presented system works only on single-
channel measurements and was tested on the Easyl_noiseOl,
Easy2_noise005, and the Difficultl_noise005 data containing
only 3 neurons from the WaveClus dataset [40] achieving F-
Score accuracy of 94.93%, 96.94%, and 91.50% respectively.

In [22] a real-time template matching multi-channel spike
sorting system is presented. In this system also a NEO-based
spike detection is applied, but the OSort algorithm is used only
to define the most commonly occurring waveforms offline.
These predetermined waveforms (only three different types)
are stored in a template memory. During the classification
the detected spikes are compared to these templates, so this
solution is not fully unsupervised. Furthermore in this spike
sorting system the multi-channel operation means only that each
channel processed individually and does not take into account
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the spatial correlation between the channels. The Easyl_Noise
and Difficult]_Noise005 data containing only 3 neurons
were used from the WaveClus dataset [40] for single-channel
simulations to test this system achieving F-Score accuracy of
93.3% and 93.9% respectively. Our system is processing only
multi-channel recordings, therefore applying single-channel
simulations from the WaveClus dataset is pointless.

B. Scalability and Limitations

The scalability of the system depends on the number of
channels in the electrode array (in this case 128) and on the
spatial window size used in the classification. In our system the
spatial window size is fixed (3 x 3), therefore only the number of
channels can be changed, which impacts the maximum number
of clusters. The processable number of clusters can be further
increased using more BRAMs or URAMs. Creating more clus-
ters increases the processing time, therefore more window-based
OSort Cores can be utilized in parallel to maintain the same
classification speed. Based on the resource requirement of the
system even 4 window-based OSort Core can be implemented
on the XCZU7EV FPGA (Table I).

In the actual state of the proposed system every 3 x 3 spike
matrix is compared with every cluster mean, even if it comes
from a completely different electrode channel. To address this
issue in the future the electrode coordinates can be checked dur-
ing the classification, which requires only an additional 1-byte
information (channel number) per cluster.

VI. CONCLUSION

In this paper an FPGA-based implementation of the OSort
algorithm for unsupervised online window-based spike sorting
system is presented. The results show that our architecture can
be implemented on a mid-range SoC FPGA device running on
200 MHz, which is capable of the detection and classification
of the incoming spikes on 3 x 3 spatial windows in 87.29 us, or
more than 11000 spikes/s above 80% classification accuracy for
32 simulated neurons with 4-10 dB SNR. Furthermore it can be
concluded that the neural spike sorting on the FPGA is 80 times
faster than the identical algorithm running offline with the same
dataset on the Host PC in MATLAB.

The proposed architecture is currently capable of sorting 128
channels of neural data in 3 X 3 spatial windows in real-time
using the SoC FPGA. Based on the validation results it can be
concluded that the clustering efficiency of the system can reach
an average accuracy of 86% for high neuron numbers (16-32)
above 3 dB SNR, while the single-channel clustering version
achieves 74% average accuracy in the same cases.

The proposed system was tested with generated neural data,
and real data recorded with the Intan measurement system. In
the future our plan is to test the system in vivo.
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