
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 11, NOVEMBER 2020 3073
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Abstract—Objective: Recently, electroencephalography
(EEG)- based brain-computer interfaces (BCIs) have made
tremendous progress in increasing communication speed.
However, current BCI systems could only implement a
small number of command codes, which hampers their
applicability. Methods: This study developed a high-speed
hybrid BCI system containing as many as 108 instruc-
tions, which were encoded by concurrent P300 and steady-
state visual evoked potential (SSVEP) features and de-
coded by an ensemble task-related component analysis
method. Notably, besides the frequency-phase-modulated
SSVEP and time-modulated P300 features as contained in
the traditional hybrid P300 and SSVEP features, this study
found two new distinct EEG features for the concurrent
P300 and SSVEP features, i.e., time-modulated SSVEP and
frequency-phase- modulated P300. Ten subjects spelled in
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both offline and online cued-guided spelling experiments.
Other ten subjects took part in online copy-spelling ex-
periments. Results: Offline analyses demonstrate that the
concurrent P300 and SSVEP features can provide adequate
classification information to correctly select the target from
108 characters in 1.7 seconds. Online cued-guided spelling
and copy-spelling tests further show that the proposed BCI
system can reach an average information transfer rate (ITR)
of 172.46 ± 32.91 bits/min and 164.69 ± 33.32 bits/min
respectively, with a peak value of 238.41 bits/min (The
demo video of online copy-spelling can be found at https://
www.youtube.com/watch?v=EW2Q08oHSBo). Conclusion:
We expand a BCI instruction set to over 100 command
codes with high-speed in an efficient manner, which sig-
nificantly improves the degree of freedom of BCIs. Signifi-
cance: This study hold promise for broadening the applica-
tions of BCI systems.

Index Terms—P300, steady-state visual evoked potential
(SSVEP), high-speed, hybrid BCI, concurrent EEG features,
large instruction set.

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) provide a special
pathway for the brain to directly communicate with the

environment, which does not depend on the peripheral neuro-
muscular system [1], [2]. Recently, vision-based BCI systems,
which have higher bit rates over other BCI systems, have made
tremendous progress and gained increasing attention from re-
searchers [3]–[8]. Specifically, P300-based speller [8]–[12], the
steady-state visual evoked potential (SSVEP)-based BCI [13]–
[15] and their hybrids [16]–[19] are the most popular paradigms.
A new visual BCI paradigm has been recently developed to sig-
nificantly reduce visual fatigue by sharply reducing the stimulus
size [20].

The performance of a BCI is normally evaluated by the total
number of commands, the time needed to output a command and
command-selection accuracy. Information transfer rate (ITR)
[1], [21] quantitatively formulates the relation between these
three factors and system performance. Previous BCI studies
mainly focused on how to increase accuracy and decrease the
time needed to output a command to improve the system perfor-
mance but show less interest in the expansion of the instruction
set. Since the first P300-speller, which was developed in 1988
[22], there have always been only up to tens of instructions for
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BCI systems. Specifically, Hwang introduced an SSVEP-based
BCI keyboard with 30 LEDs flicking at different frequencies
[23]. Chen et al. proposed a joint frequency-phase modulation
method (JFPM) that encoded 40 instructions for SSVEP-BCI
[21], [24]. Townsend et al. developed a P300-based BCI with 72
alphanumeric characters and keyboard commands [25]. Jin et al.
designed an adaptive method for P300 speller to encode 84 in-
structions [26]. It is worth noting that there exists a compromise
between the number of instructions and the other two factors,
i.e., a larger number of instructions would often increase the time
needed to output a command and reduce accuracy to complete a
mental selection, which would in return hurt the ITR. Therefore,
increasing the number of instructions might reduce the overall
performance of the BCI system. However, if this attempt proves
successful, it will considerably improve the practicality of BCIs
in real-world applications. To our best knowledge, no study has
yet implemented over 100 commands for BCIs, which requires
a delicate design to balance the aforementioned factors.

The encoding strategy is an eternal topic of BCIs. From the
view of telecommunication systems, the information stream
of visual BCIs is analogous to the signal in multiple access
channels [5]. Specifically, a P300 speller has the same idea
of time division multiple access (TDMA), which assigns each
character to an independent time interval. The SSVEP-based
BCI uses the frequency division multiple access (FDMA), which
tags each character with a specific flickering square whose
frequency is different from each other. Theoretically, the P300
speller could encode an infinite number of instructions, but the
overall performance will sharply degrade when the consuming
time increases [27]. In contrast, the time used for encoding
SSVEP-BCI instructions is very short, but the narrow EEG band
limits the number of SSVEP frequencies [28], [29]. Therefore,
a combination of the two BCI paradigms may overcome their
shortcomings and expand the instruction set in an efficient
manner. Previous studies on the hybrid P300-SSVEP BCIs have
demonstrated the advantages of such combination [17]–[19],
[30], [31].

This study aimed to explore a new hybrid P300-SSVEP BCI
system that can effectively communicate a large number of
instructions. By incorporating the steady-state visual stimulus
(SSVS) into the P300 speller, we developed a 108-instruction
BCI system containing twelve parallel 3 × 3 P300 sub-spellers.
Notably, different from the traditional P300 paradigm, char-
acters in each sub-speller were individually highlighted by a
200 ms-long SSVS rather than a transient visual stimulus. There-
fore, the target stimulus could elicit both a larger P300 and
a larger time-modulated SSVEP than the non-target stimulus.
As the SSVS were different for each sub-speller, they would
elicit different SSVEPs. According to our previous studies [30],
[32], [33], the transient event-related potentials (ERP) would
be modulated into different shapes by the different background
SSVEPs, as phase resetting may explain the generation of ERP,
which is a non-linear process. Thus, both P300 and SSVEP
should contribute to the recognition of the target character and
the sub-speller, resulting in efficient target identification. The
time needed to output a command is 1 second in this design,
which is sufficient for all participants to perform a correct

selection together with an additional cue time of 0.7 seconds.
It’s worth noting that the proposed hybrid system had two
advantages. One advantage was that it successfully expanded
the instruction set to 108 while ensuring the speed of BCI. The
other advantage was that the SSVS duration of each character
was only 200 ms in this study, which was considerably shorter
than the previous lowest limit of 300 ms [34]. The decrease
of the SSVS duration can effectively reduce the risk of visual
fatigue.

II. MATERIALS AND METHODS

A. Subjects

Ten healthy volunteers (3 females and 7 males, 21-26 years
of age, all right handed) with normal or corrected to normal
vision participated in both offline and online cue-guided spelling
experiments. Another group of ten subjects participated in an
online copy-spelling experiment. Three of them (i.e., S3, S5,
S9) also took part in the offline and online cued-guided spelling
experiments (corresponding to S1, S2, S7, respectively). The
Institutional Review Board at Tianjin University approved the
experimental procedures. All subjects were fully informed of
all procedures and signed an informed consent agreement, in
accordance with the Declaration of Helsinki, and including a
statement that they have known all possible consequences of the
study.

B. A Hybrid P300-SSVEP BCI Speller Paradigm

The visual stimuli were presented on a 27-inch liquid-crystal
display (LCD) monitor whose resolution was 1,920 × 1,080
pixels and refresh rate was 120 Hz. A 9 × 12 matrix showed
108 black characters on a white background (see Fig. 1(a)). They
were further divided into 12 small 3 × 3 matrices. Each small
matrix was an independent P300 sub-speller whose characters
were individually highlighted by a gray square in a random and
ergodic sequence. Each stimulation square subtended 1.49 de-
grees of visual angle in the vertical direction and 1.78 degrees in
the horizontal direction. The stimulus duration for each character
was 200 ms and the inter-stimulus interval (ISI) was -100 ms.
It was worth noting that the duration of the inter-target stimulus
was greater than 700 ms (the interval for cue presentation and
gaze switching).

So there were no attentional blink and repetition blindness.
All sub-spellers were triggered at the same time. Therefore, it
needed only 1 second to run a complete cycle for 108 characters,
which was defined as a ‘round’ in this study. Different from the
traditional P300 paradigm, the stimulation square changed its
grayscale in a sinusoidal mode whose frequency and initial phase
were different for each sub-speller, as shown in Fig. 1(b), 1(c)
and 1(d). This study used the sampled sinusoidal stimulation
method [15] to present visual flickers using the refresh rate.
The frequencies and phases of the 12 flickering stimuli were
determined with the JFPM method [21]. To separate the SSVEP
frequency band from the P300 frequency band, the 12 flickering
frequencies were selected above 12 Hz, from 12.4 to 14.6 Hz
with a step of 0.2 Hz. According to [35], SSVEPs with any
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Fig. 1. Illustration of the stimulation in the hybrid BCI speller. (a) Distribution of 108 characters on the screen was divided into 12 sub-spellers
by the red dash lines. The characters on the stimulus interface were distributed according to a certain rule. For example, alphanumeric keys were
arranged in order and were placed at sub-speller 2, sub-speller 3, sub-speller 6, and sub-speller 7 (i.e., the center of the interface). (b) The selected
frequency and initial phase of stimulation squares were displayed for each sub-speller. (c) Stimulation process for sub-speller 1. The red dotted
lines with arrows indicate specific time points. (d) Stimulation process for sub-speller 8.

stimulation phase for 40 frequencies (ranging from 8 Hz to
15.8 Hz with step of 0.2 Hz), which covered all the stimulation
frequencies of this experiment, can be simulated by a simulation
method. Therefore, the initial phases were optimized by a search
of phase interval (from 0 to 2π with a step of 0.05π) of the
JFPM method on a public SSVEP dataset using the simulation
method with a stimulus duration of 200 ms, resulting in a phase
interval of 0.35 π between two neighboring frequencies. For
more details, please refer to [35]. The stimulation program
was developed under MATLAB (MathWorks, Inc.) using the
Psychophysics Toolbox Version3.

C. BCI Experiment

Participants sat in front of the monitor screen with a distance
of 60 cm. They were asked to focus on the target character indi-
cated beforehand and count the number of times the target was
highlighted. In the offline experiment, the character specified for
selection would be indicated by an underneath red triangle with
0.79 degrees of visual angle for 0.7 seconds. Then the visual

stimulus ran for five successive rounds for all the characters,
which last 5 seconds, i.e., the subject chose the same target
for five times. Each round contained 1 target stimulus and 8
non-target stimuli. All subjects were required to spell all 108
characters on the screen, which were divided into three blocks
(36 characters in each block). They would have a break of several
minutes between two successive blocks. The offline experiment
lasted about 13 minutes for each subject.

In the online experiments, all subjects were asked to spell
24 specified characters (two characters in each of the twelve
sub-spellers). There were two types of online tasks (i.e., cued-
guided spelling and copy-spelling experiments). Classification
algorithm and the other aspects of the two online experiments
were completely consistent except for with or without visual
cues. For online cued-guided spelling experiments, the subjects
were the same as the offline experiments. The target character
would be indicated by an underneath red triangle for 0.7 seconds
within which the subjects need to shift their attention to the char-
acter and be prepared for the upcoming stimuli. Visual feedback
(i.e., the target character determined by an online data analysis
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Fig. 2. The total flow diagram of signal processing.

program) was presented to the text input field on the top of the
speller (see Fig. 1(a)) in real time. The online copy-spelling ex-
periments were implemented with another group of ten subjects.
Before the experiment, the subjects were trained to remember
the position of each character and they were told the characters
they would spell in the experiment. Therefore, they were able to
shift their fixation points very fast from character to character
in 0.7 second without visual cues at the target characters. All
target characters were presented in a line on top of the text
input field during the copy-spelling task. Visual feedbacks of
characters determined by the online data analysis program were
typed below the line of target characters in real time. For each
subject, the same offline data collection and analysis procedures
were implemented before the online copy-spelling experiment.
In both cued-guided and copy-spelling experiments, only one
round was used for the online spelling test.

D. EEG Recording and Processing

EEG signals were recorded using a Neuroscan Synamps2
system with 13 electrodes placed at Fz, Cz, Pz, PO3, PO4,
PO5, PO6, PO7, PO8, POz, O1, Oz and O2 according to the
International 10/20 system. The reference electrode was placed
on the left mastoid and the ground electrode was placed on the
prefrontal lobe. The recorded signals were band-pass filtered at
0.1–200 Hz and notch filtered at 50Hz, digitized at a rate of
1,000 Hz and then stored in a computer.

In the recognition process, there were two sequential steps:
(1) recognizing the sub-speller containing the target charac-
ter and then (2) recognizing the target character within the
identified sub-speller, as shown in Fig. 2. Fig. 3 shows the
signal-processing flows and the corresponding methods used
in this study. Here, we compared the classification results of
single-modality EEG features (i.e., P300, SSVEP) and hybrid
EEG features using different classification methods for both
recognition steps. The parameters of time windows and filters
were selected according to previous studies [21], [24] and fur-
ther optimization towards the best classification performance in
offline data analysis.

Fig. 3(a) shows the process of sub-speller recognition using
SSVEP. The EEG signals of nine channels (Pz, PO5, PO3, POz,
PO4, PO6, O1, O2, and Oz) [34] were filtered by a filter bank
(containing seven Chebyshev Type I filters) into [X Hz, 92 Hz]
(X = 11, 22, 34, 46, 58, 70 and 82), and then down-sampled to
250 Hz. For each sub-band, the SSVEP samples were extracted
from 140 ms to 340cms. The extended canonical correlation
analysis (CCA) [21] and ensemble task-related component anal-
ysis (TRCA) [34] were then used to recognize SSVEP. The
outputs indicated the predicted sub-speller.

Fig. 3. The flow diagram of signal processing. The sub-speller was
identified using (a) single SSVEP feature, (b) single P300 feature or
(c) hybrid features. The target character within sub-speller was identified
using (d) single SSVEP feature, (e) single P300 feature or (f) hybrid
features.

Fig. 3(b) shows the process of sub-speller recognition using
P300. It is typically measured most strongly by the electrodes
covering the parietal lobe [18]. The EEG signals of six channels
(Fz, Cz, Pz, PO7, PO8, and Oz) were filtered to 1–10 Hz with
Chebyshev type I filters, and then down-sampled to 250 Hz. The
P300 features extracted from 0 ms to 800 ms were classified
by the extended CCA and ensemble TRCA, respectively. The
outputs indicated the predicted sub-speller.

Fig. 3(c) shows the process of sub-speller recognition using
hybrid features. The EEG signals of eight channels (Fz, Cz,
Pz, PO7, PO8, O1, O2, and Oz) were filtered by a filter bank
(including eight Chebyshev Type I filters) into [X Hz, 92 Hz] (X
= 1, 11, 22, 34, 46, 58, 70 and 82). As shown in Fig. 4, the hybrid
features were significantly separable between 100 and 400 ms.
And after experimenting with different time windows, we found
that the time window of 50–450 ms achieved better results for
the hybrid features. Extended CCA and TRCA were then used
to recognize SSVEP, respectively. The outputs indicated the
predicted sub-speller.

Fig. 3(d) shows the process of character recognition within
sub-speller using SSVEP. Parameters and settings were the same
as Fig. 3(a). The outputs indicated the predicted character within
the sub-speller.

Fig. 3(e) shows the process of character recognition within
sub-speller using P300. The classic stepwise linear discriminant
analysis (SWLDA) was used and compared with the extended
CCA and the ensemble TRCA. The EEG signals of channel Fz,
Cz, Pz, PO7, PO8, and Oz were filtered to 1–10 Hz with Cheby-
shev type I filters, and then down-sampled to 20 Hz for SWLDA
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classification, and 250 Hz for extended CCA and TRCA. The
P300 features used for classification were extracted from 0 ms
to 800 ms. The outputs indicated the predicted character within
the sub-speller.

Fig. 3(f) shows the process of character recognition within
sub-speller using hybrid features. For the extended CCA and
ensemble TRCA, the parameters were the same as Fig. 3(c). For
the SWLDA, the data were filtered to 1–17 Hz and extracted
from 0 ms to 800 ms.

E. Step-Wise Linear Discriminant Analysis

SWLDA works well in recognizing P300 potentials for the
hybrid P300-SSVEP BCIs [37]. SWLDA is an extension of
Fisher linear discriminant (FLD) analysis, which reduces fea-
ture space by selecting the most significant features for the
discriminant function. A combination of forward and backward
stepwise analyses was implemented in SWLDA. The input
features are weighted using ordinary least-squares regression
(equivalent to FLD) to predict target class labels. Starting with no
initial features in the discriminant function, the most statistically
significant input feature for predicting target label is added to the
discriminant function. After each new entry to the discriminant
function, a backward stepwise analysis is performed to remove
the least significant input features. This procedure ensures that
the regression equation only contains significant variables before
each new variable is introduced. This process is repeated until
the discriminant function includes a predetermined number of
features or until no additional features satisfy entry/removal
criteria. In this study, the p-value for entry was set to <0.1,
while for removal was set to >0.15. The predetermined number
of features was set to 60.

F. Extended Canonical Correlation Analysis

CCA is a statistical way to measure the linear relation-
ship between two multidimensional variables, which may have
some underlying correlation [38], [39]. Considering two mul-
tidimensional variables X, Y and their linear combinations
x = XTWX(X,Y ) and y = Y TWY (X,Y ), CCA finds the
weight vectors,WX(X,Y )andWY (X,Y ), which maximize the
correlation between x and y. For the extended CCA, there are
three multi-dimensional variables: multi-channel EEG test data
X(m) ∈ RNc×Ns×Nt, individual template obtained by averag-
ing multiple training trials as χ̄(m) ∈ RNc×Ns, and sine-cosine
reference signals Yf [21]. Nc is the number of channels, Ns is
the number of sample points, and Nt is the number of trials. The
correlation coefficient between the projections of two variables
using the CCA-based method is used to identify the target. We
define the following three weight vectors obtained by CCA:
(1) as shown bottom of this page, W (m)

X (X(m), Yf )between the

test data X(m)and reference signals Yf ; (2) W (m)
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(1)

where m indicates the index of sub-bands designed by filter bank
(mε[1, Nb]), n indicates the index of sub-spellers (nε[1, 12]) and
ρ(a, b) indicates the Pearson’s correlation analysis between a
and b. The five features and correlation coefficients in different
sub-bands are weighted by the following equations [24]:

R(m)
n =

5∑
l=1

sign
(
r
(m)
n,l

)
∗ (r(m)

n,l )
2 (2)

ρn =

Nb∑
m=1

(
m−1.25 + 0.25

) ∗ (R(m)
n )2 (3)

where sign () is symbolic function and Nb indicates the number
of sub-bands (The value of Nb using different selected features
was different. For P300, Nb = 1. For SSVEP, Nb = 7. For hybrid
features, Nb = 8.). In practice, target can be identified by the
following equation:

τt = arg max
n

ρn (4)

where n is the index of test data trials (The number of n was
different in different conditions. For sub-speller recognition,
n ranged from 1 to 12. For character recognition within the
specified sub-speller, n ranged from 1 to 9). Target class τt can
be identified by equation (4).

G. Ensemble Task-Related Component Analysis

The Ensemble TRCA has been proved the most power-
ful recognition algorithm for SSVEP classification [34], [40].
TRCA is an algorithm that finds projection matrix W =
[wj1wj2 . . . wNc]

T to maximize the covariance of task-related
components between trials [41]. j1 and j2 refer to the index of
channels. Specifically, for the recorded NC-channels EEG signal
x(t) ∈ RNc (The value of Nc using different features varied. For
P300, Nc = 6. For SSVEP, Nc = 9. For hybrid features, Nc =
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8.), all possible combinations of trials are summed as:

Ntrial∑
h1,h2=1
h1 �=h2

Ch1,h2
=

Ntrial∑
h1,h2=1
h1 �=h2

NC∑
j1,j2=1

wj1wj2Cov
(
x
(h1)
j1

(t), x
(h2)
j2

(t)
)

= WTSW (5)

Here, the matrix S = (Sj1j2)1≤j1,j2≤Nc is defined as:

Sj1j2 =

Nt∑
h1,h2=1

h1 �=h2

Cov
(
x
(h1)
j1

(t) , x
(h2)
j2

(t)
)

(6)

where,Cov(a, b) refers to the covariance between a and b,Ntrial

refers to the number of training trials, h1 and h2 refer to the
index of training trials. The periods of x(h)

j1 (t) are fixed as t ∈
[th, th +T]. Here th is the beginning of the h-th trial and T is
the duration of the h-th trial. In order to obtain the final result,
the following restriction is defined as:

Var(y(t)) =

Nc∑
j1,j2=1

wj1wj2Cov(xj1(t), xj2(t))

= WTQW = 1 (7)

At this point, looking for the best projection direction can be
transformed into the following optimization problems:

ŵ = arg max
W

(
WTSW

)
/
(
WTQW

)
(8)

For the optimization, Lagrange multiplier method is effective.
The optimal spatial filter is solved as the eigenvector of the
matrix Q−1S. All spatial filters corresponding to all stimulus
frequencies are integrated as following equations:

Wm =
[
Wm

1 Wm
2 . . . . . . Wm

Nf

]
(9)

where Nf is the number of stimulus frequency. The correlation
coefficient between the projection of test data X(m) and aver-
aged individual template χ̄(m) is calculated as:

Rm
n = ρ

(
(Xm)TWm, (χ̄m

n )TWm
)

(10)

Finally, correlation coefficients in different sub-bands are
weighted by equation (3). The target can be identified by
equation (4).

H. Performance Evaluation

To evaluate the performance of the high-speed BCIs, this
study uses classification accuracy and ITR as evaluation indi-
cators, which have been widely adopted in BCI research. The
ITR can be calculated as [1]:

ITR = {log2N + P log2P + (1− P )

× log2((1− P )/(N − 1))} × (60/T ) (11)

where N is the number of instruction sets, P is the classifi-
cation accuracy and T is consuming time for each selection,
i.e., cue time plus flashing time. In this study, the consuming

Fig. 4. (a) Transient ERPs at electrode Cz, Pz and Oz were averaged
across all subjects and all sub-spellers. A band-pass filter of [1 Hz,
10 Hz] was applied to remove the SSVEP influence. (b) Grand average
amplitudes of fundamental SSVEP components at electrode Cz, Pz, and
Oz were displayed across all subjects and all sub-spellers. A band-pass
filter between 11 and 17 Hz was applied to remove the transient ERP in-
fluence. The SSVEP amplitude was indicated by its envelope calculated
by the Hilbert transform. The gray blocks presented significant statistical
differences (p < 0.05) across subjects by paired t-tests between the
target and the non-target conditions in the corresponding periods.

time was 1.7 s, 2.7 s, 3.7 s, 4.7 s, and 5.7 s for 1 to 5 rounds,
respectively.

III. RESULTS

A. EEG Features Analyses

As mentioned in Introduction, the concurrent P300 and
SSVEP features should have four different kinds of EEG fea-
tures, i.e., time-modulated P300, frequency-phase- flickering-
modulated P300, time-modulated SSVEP, and frequency-phase-
modulated SSVEP. As the transient ERP is mainly distributed
in the low-frequency band of 1–10 Hz while the fundamental
SSVEP frequencies used in this study were higher than 12 Hz,
they could be isolated from each other using different band-pass
filters.

First, we analyzed the time-modulated EEG features between
the target and non-target stimuli within the same sub-speller.
Fig. 4(a) shows the transient ERP waveforms at Cz, Pz, and Oz,
which were band-pass-filtered between 1 and 10 Hz. Consistent
with previous studies, the target stimulus could induce a larger
potential than the non-target stimulus. Moreover, the SSVEP
feature was also discriminative between the target and non-target
conditions in this study, as shown in Fig. 4(b). Specifically, the
amplitude of the SSVEP recorded at Oz increased from 60 to
560 ms after the stimulus onset for the target condition but not
for the non-target condition. It implies both EEG features can
be used to recognize the target character within sub-speller in
this study.

Then, we analyzed the frequency-phase modulated EEG fea-
tures across different sub-spellers. As expected, the SSVEP
waveforms induced by the short-duration SSVS had different
shapes among sub-spellers, as shown in Fig. 5. Specifically, the
latency of the largest peak was the shortest for sub-speller 3 but
the longest for sub-speller 9. Furthermore, sub-speller 10 had
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Fig. 5. The average SSVEP at electrode Oz across all subjects from
−200 ms to 800 ms for each sub-speller. Time 0 represents the onset of
stimulus. The band-pass filter was set to [11 Hz, 17 Hz].

Fig. 6. ERP variations of different sub-spellers are displayed at Cz
(left), Pz (middle), and Oz (right). The band-pass filter was set to [1 Hz,
10 Hz]. The temporal waveforms were averaged across all subjects for
each sub-speller.

six evident SSVEP cycles while sub-speller 3 had only three
evident cycles. As to the transient ERP (Fig. 6), the sub-spellers
had a variety of P300 potentials recorded at both Cz and Pz.
Furthermore, the P1-N1 complex recorded at Oz was also dif-
ferent among sub-spellers. Specifically, sub-speller 5 had the
largest P1 while sub-speller 3 had the smallest one. Sub-speller
6 had the largest N1 while sub-speller 8 had the smallest one.
Sub-speller 12 had the largest P300 while sub-speller 8 had
the smallest one. The variability of transient ERP might be
caused by the non-linear phase resetting of neural oscillations,
which is sensitive to the initial conditions of background EEG
[30], [32], [33].

B. Offline BCI Performance

In this section, offline accuracies were calculated and com-
pared between single EEG features and hybrid EEG features
using different classification methods. A leave-one-out cross-
validation, which meant the data of 1 character was used as the
test set and the data of the other 107 characters were used as the
training set in each of the 108 validation steps, was adopted to
ensure the robustness of the classification accuracy. Fig. 7 shows
the accuracy of the sub-speller recognition against the number
of rounds. It’s obvious that the hybrid EEG features achieved
higher accuracies than the single SSVEP feature regardless
of classification methods. Specifically, compared to the single
SSVEP feature, the hybrid EEG features had an improvement
of 7.87%, 4.63%, 2.77%, 2.50% and 1.48% on average at 1 to 5

Fig. 7. Average accuracies of sub-speller recognition across subjects
are displayed against the number of rounds, which are achieved by using
different classification algorithms and different EEG features. The red
dash line indicates the theoretical chance level of the classification (i.e.,
1/12). The error bars indicated standard errors.

rounds, respectively, when using the ensemble TRCA, and had
an improvement of 7.68%, 4.81%, 5.84%, 4.91% and 2.03%
on average when using the extended CCA. Two-way repeated
measures ANOVA showed the improvement was significant for
both algorithms (ensemble TRCA: F(1,9) = 7.95, p < 0.05;
extended CCA: F(1, 9) = 8.77, p < 0.05). Furthermore, the
ensemble TRCA performed significantly better than extended
CCA for both the single SSVEP feature (F(1, 9) = 54.63, p <
0.001) and the hybrid EEG features (F(1, 9)= 43.24, p< 0.001).
Therefore, the hybrid EEG features with ensemble TRCA had
the highest accuracy among all conditions, which achieved
75.37%, 89.91%, 94.07%, 95.09% and 96.39% on average at
1 to 5 rounds, respectively.

Fig. 8 shows the accuracy of the character recognition within
sub-speller across rounds. For the SWLDA algorithm, the single
P300 feature achieved higher accuracies than the hybrid EEG
features. However, the situation reversed when using the en-
semble TRCA or extended CCA as the classification method.
Specifically, for the ensemble TRCA, the hybrid EEG features
achieved 91.85%, 97.31%, 99.17%, 99.44% and 99.53% at 1
to 5 rounds, respectively, which were significantly higher than
the single P300 feature (F(1, 9) = 46.17, p < 0.001). For the
extended CCA, the hybrid EEG features brought about 82.59%,
92.96%, 97.50%, 98.89% and 98.79% at 1 to 5 rounds, re-
spectively, which were significantly higher than the single P300
feature (F(1, 9) = 114.82, p < 0.001). Overall, the hybrid EEG
features with the ensemble TRCA achieved the highest accu-
racy, which was significantly superior to the other conditions at
first round by paired t-test (hybrid ensemble TRCA vs. hybrid
extended CCA: t9 = 1.95 × 10−3, p < 0.005; hybrid ensemble
TRCA vs. hybrid SWLDA: t9= 4.89 × 10−7, p< 0.001; hybrid
ensemble TRCA vs. P300 ensemble TRCA: t9 = 2.23 × 10−6,
p < 0.001; hybrid ensemble TRCA vs. P300 extended CCA: t9
= 6.49 × 10−8, p < 0.001; hybrid ensemble TRCA vs. P300
SWLDA: t9 = 1.36 × 10−5, p < 0.001; hybrid ensemble TRCA
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Fig. 8. Average accuracies of character recognition within sub-spellers
across subjects are displayed against the number of rounds, which are
achieved by using different classification algorithms and different EEG
features. The red dash line indicates the theoretical chance level of the
classification (i.e., 1/9). The error bars indicated standard errors.

Fig. 9. The highest accuracies and the corresponding ITRs of sub-
speller recognition, character recognition within sub-spellers, and overall
target recognition across subjects are displayed against the number of
rounds, which are achieved by using the ensemble TRCA and hybrid
EEG features. The error bars indicated standard errors.

vs. SSVEP ensemble TRCA: t9= 1.91× 10−2, p< 0.05; hybrid
ensemble TRCA vs. SSVEP extended CCA: t9 = 1.65 × 10−4,
p < 0.001).

Fig. 9 compares the highest accuracies and the corresponding
ITRs of sub-speller recognition, character recognition within
sub-speller, and overall target recognition. As the combination
of hybrid EEG features and ensemble TRCA performed best
on recognizing both sub-spellers and characters within sub-
speller, it was used to calculate the overall accuracy of target
character recognition among all 108 characters. As shown in
Fig. 9, the average accuracy had a rising trend against the
number of rounds, which increased from 73.80% at 1 round to
96.29% at 5 rounds. The corresponding simulated online ITRs
were calculated, which added another 0.7 s as the cue time for
each selection. The results showed the average ITR reached a
maximum of 150.09 bits/min at 1 round. Therefore, only one
round was used for the following online test.

TABLE I
RESULTS OF ONLINE CUED-GUIDED SPELLING EXPERIMENTS

TABLE II
RESULTS OF ONLINE COPY-SPELLING EXPERIMENTS

C. Online BCI Performance

In both online cued-guided spelling and copy-spelling exper-
iments, the classification algorithm for each subject was trained
with offline data collected before the online experiment. All
subjects were asked to spell 24 characters equally from 12
sub-spellers. For each selection in two online experiments, only
1.7 seconds were used, including 1 second for flickering and 0.7
second for shifting attention. The parameters of online experi-
ments (i.e., the corresponding processing flow of output 6 and
output 14 in Fig. 3) were selected according to the optimization
of offline analyses (Fig. 7, Fig. 8 and Fig. 9), i.e., the time window
was 50–450 ms and the ensemble TRCA algorithm was used.
Specially, the sample rate was 250 Hz. The EEG signals of eight
channels (Fz, Cz, Pz, PO7, PO8, O1, O2, and Oz), which were
filtered by a filter bank (including eight Chebyshev Type I filters)
into [X Hz, 92 Hz] (X = 1, 11, 22, 34, 46, 58, 70 and 82), were
used for target identification.

Table I lists the results of the online cued-guided spelling
tests for the ten subjects. As a result, subject 1 achieved the
highest ITR of 238.41 bits/min with an accuracy of 100%. Two
subjects achieved higher than 90% in accuracy and higher than
200 bits/min in ITR. The average accuracy was 81.67% and the
average ITR was 172.46 bits/min across all subjects. Table II lists
the results of the online copy-spelling tests. In this session, the
subjects were trained to remember the position of each character
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according to character distribution rule and were able to shift
their fixation points very fast in 0.7 seconds. The mean accuracy
was 79.17% and the mean ITR was 164.69 bits/min across the ten
subjects. These results indicated the feasibility and effectiveness
of the proposed high-speed BCI system with a large instruction
set.

IV. DISCUSSION

A. Advantages of the Concurrent P300 and
SSVEP Features

It has been demonstrated in previous studies that hybrid
P300 and SSVEP features are effective in controlling BCIs.
As they represent two different aspects of EEG features, i.e.,
from the time and frequency domains, respectively, the two
features were often addressed in an independent manner to
indicate the user’s intent [18], [30], [42]. However, they were
not two absolutely independent components when concurrently
induced in this study. The frequency and phase characteristics
of SSVEP can impose a great influence on the concurrent ERP,
while the SSVEP duration is restricted by the target stimulus
period. Therefore, besides the traditional time-modulated P300
and frequency-phase-modulated SSVEP features, two additional
new EEG features, i.e., frequency-phase-flickering-modulated
P300 and time-modulated SSVEP, could be elicited for the
concurrent P300 and SSVEP features. As a result, the con-
current P300 and SSVEP features provide more useful infor-
mation than the traditional hybrid P300 and SSVEP features
for BCIs.

Although previous studies have indicated that ERPs vary
with different SSVEP background, the corresponding features
were too weak to be extracted and used in the past [30],
[32], [33]. To deal with this problem, this study addressed
the ERP variation and SSVEP as a whole rather than sep-
arate features. When taking the ERP variation as an aspect
of SSVEP signals, the recognition of ERP variation could be
regarded as the recognition of SSVEP differences. Because
minor differences among SSVEP signals could be accurately
identified using the ensemble TRCA [34], the ERP variation
embedded in the SSVEP would be more effectively recog-
nized. As expected, the results showed that adding the ERP
variation into the SSVEP features led to a significant improve-
ment in recognizing sub-spellers than purely using the SSVEP
features.

Recent studies have strikingly boosted the ITR of the SSVEP-
based BCIs [21], [24], [34]. However, the problem of visual
fatigue still remains to be addressed for SSVEP-based BCIs.
Besides our previous attempt to reduce the stimulus size [20],
another remedy to this problem is to reduce the duration of
SSVS. Currently, a period of 300 ms of SSVS was considered
the lower limit for SSVEP classification, and a further reduction
would degrade the BCI performance [34]. This study used only
200 ms of SSVS. To compensate the SSVEP degradation, a
concurrent P300 feature was added to the SSVEP classification.
The results demonstrated the feasibility of further shortening
the SSVS duration by using the concurrent P300 and SSVEP
features.

Fig. 10. A comparison of the instruction number and ITRs of online
hybrid P300-SSVEP BCI spellers in the past decade (2008–2018).

B. Compare With Previous Hybrid P300-SSVEP
BCI Studies

The counteraction between the instruction amount and ITR
has restricted the performance of hybrid P300-SSVEP BCIs
in the past. This study proposed a new P300-SSVEP BCI
speller that expands the instruction set while keeping a high
ITR. We further compared this study with the previous hybrid
P300-SSVEP BCI studies in the last decade with a focus on
online BCIs [16], [18], [19], [30], [42]–[45]. It is worth noting
that since not all studies adopted copy-spelling experiment, we
used the results of online cued-guided spelling experiment for
comparison. The instruction number and ITR for each study are
indicated by a solid dot in Fig. 10. For the previous studies, the
largest instruction set contained 64 commands and the highest
average ITR was 56.44 bits/min, which were much lower than
those in this study. The X marks the average instruction set
and ITR across previous studies, which was 31.50 commands
at 38.33 bits/min. Overall, the proposed P300-SSVEP speller
had almost triple numbers of instructions and quadruple ITRs
relative to the traditional hybrid P300-SSVEP speller.

V. CONCLUSION

This study implements an ever-largest instruction set (over
100 command codes) for a high-speed BCI system using con-
current P300 and SSVEP features. An elaborate hybrid paradigm
was developed to make a compromise between the instruc-
tion number, accuracy, and target-selection time. The ensemble
TRCA algorithm was adopted to classify the concurrent P300
and SSVEP features. Consequently, only 1.7 seconds were
needed for a correct target selection in online tests, resulting in a
maximum ITR of 238.41 bits/min with an average of 172.46 ±
32.91 bits/min in the cue-guided spelling task and an average of
164.69 ± 33.32 bits/min in the copy-spelling task. The results
demonstrate that the proposed BCI system realizes high-speed
and accurate target selection from a large number of instructions,
which has broad application prospects.
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