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Abstract—Objective: A noninvasive intracranial pressure
(ICP) estimation method is proposed that incorporates a
model-based approach within a probabilistic framework to
mitigate the effects of data and modeling uncertainties.
Methods: A first-order model of the cerebral vasculature re-
lates measured arterial blood pressure (ABP) and cerebral
blood flow velocity (CBFV) to ICP. The model is driven by the
ABP waveform and is solved for a range of mean ICP values
to predict the CBFV waveform. The resulting errors between
measured and predicted CBFV are transformed into likeli-
hoods for each candidate ICP in two steps. First, a baseline
ICP estimate is established over five data windows of 20
beats by combining the likelihoods with a prior distribution
of the ICP to yield an a posteriori distribution whose median
is taken as the baseline ICP estimate. A single-state model
of cerebral autoregulatory dynamics is then employed in
subsequent data windows to track changes in the base-
line by combining ICP estimates obtained with a uniform
prior belief and model-predicted ICP. For each data window,
the estimated model parameters are also used to determine
the ICP pulse pressure. Results: On a dataset of thirteen
pediatric patients with a variety of pathological conditions
requiring invasive ICP monitoring, the method yielded for
mean ICP estimation a bias (mean error) of 0.6 mmHg
and a root-mean-squared error of 3.7 mmHg. Conclusion:
These performance characteristics are well within the ac-
ceptable range for clinical decision making. Significance:
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The method proposed here constitutes a significant step
towards robust, continuous, patient-specific noninvasive
ICP determination.
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I. INTRODUCTION

INTRACRANIAL pressure (ICP) is the hydrostatic pressure
of the cerebrospinal fluid (CSF). The normal mean ICP in

healthy adults in the supine posture ranges from about 6 to
18 mmHg [1]–[3]. Its clinical importance derives from the fact
that elevated ICP can impair brain tissue perfusion, possibly
culminating in severe cerebral ischemic injury and brain herni-
ation [4], [5]. Such ICP elevations can occur in a variety of neu-
ropathological conditions that include hydrocephalus, traumatic
brain injury (TBI), hemorrhagic stroke, and brain tumors [4].
Elevated ICPs are therefore treated aggressively in current clin-
ical practice. The latest consensus guidelines for TBI care in
adults recommend maintaining mean ICP below 22 mmHg [6]
and in children below 20 mmHg [7].

Clinical ICP measurement modalities are invasive, require
neurosurgical expertise, and carry an associated risk of infec-
tion [8], [9]. ICP monitoring is therefore used only for severely
ill patients in spite of evidence that a larger pool of subjects
may benefit from ICP assessment [10]. This potential need has
prompted the development of noninvasive ICP (nICP) estima-
tion approaches. Despite significant research effort, however,
continuous nICP estimation has remained elusive and has not
been adopted in clinical practice [11]. For intermittent ICP as-
sessment, tympanic membrane displacement [12], optic nerve
sheath distension [13], and application of external pressure on
the eyeball to balance retro-orbital tissue pressure with ICP [14]
have all been shown to correlate with ICP. Examples of proposed
continuous nICP estimation methods include exploiting tran-
scranial acoustic signal properties [15], [16], measuring cere-
bral blood flow velocity (CBFV) and calculating CBFV-derived
indices [17], and measuring the arterial blood pressue (ABP)
waveform and employing machine learning based methods us-
ing ABP and CBFV as inputs [18]–[20].

Recently, methods have been proposed to estimate mean ICP
using mechanistic models of cerebrovascular physiology that
relate cerebral blood flow (CBF), cerebral ABP (cABP), and
ICP [21]–[26]. In practice, CBF and cABP are not measured,
and these methods instead use CBFV and ABP measured at
a peripheral location (pABP) as surrogates. These approxima-
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Fig. 1. Illustration of proposed method for mean nICP estimation. Arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) constitute
the input waveforms. The ICP and two model parameters that represent cerebrovascular flow resistance and compliance, α and β, are then
estimated. First, a baseline ICP is established by generating an a posteriori ICP distribution by combining a model-derived ICP likelihood distribution
with a preselected prior belief. Model-derived changes in this baseline are subsequently filtered via predictions, and are added incrementally to the
baseline to yield longitudinal ICP estimates.

tions, if not properly accounted for, can introduce errors in the
estimated nICP because the ABP profile changes along the dis-
tributed arterial tree due to reflections from arterial branching
sites and vessel taper [27]. Additionally, there is a physiologi-
cal time delay between pABP and cABP due to the finite ABP
wave propagation velocity as well as a time delay introduced by
different bedside monitoring devices used to measure the ABP
and CBFV waveforms [25]. Here we propose a probabilistic,
model-based mean nICP estimation and tracking framework to
reduce estimation sensitivity to such approximations. We then
extend this framework to estimate the ICP pulse amplitude.

First, we estimate the mean ICP. To do so we represent cere-
bral hemodynamics as a first-order, time-varying system that
relates cABP, mean ICP, and CBF, and model the temporal
ICP evolution as a first-order autoregressive (AR) process. We
use radial ABP (rABP) and CBFV as surrogates for cABP and
CBF, respectively. Our method achieves resilience to the tempo-
ral misalignment via a Bayesian estimation framework, wherein
we solve our model of cerebral hemodynamics for a physiolog-
ically plausible range of candidate ICP values and time offsets
to form an ICP likelihood distribution. We combine this distri-
bution with a prior belief about the patient’s ICP and select the
resulting posterior distribution’s median as the baseline ICP. In
addition, the likelihood distributions of each data window are

utilized to form estimates of the cerebrovascular flow resistance
and compliance that are then used to estimate the ICP pulse
pressure in a computationally simple and training-free man-
ner. Subsequent changes in the mean ICP are computed with a
uniform prior belief to reduce dependence on the initial prior
distribution. The estimated ICP changes are further filtered via
predictions obtained from the AR model of ICP dynamics for
increased robustness.

We first present our nICP estimation method in Section II
and describe our clinical data in Section III. We present and
discuss our nICP estimation results on a cohort of thirteen pe-
diatric patients in Sections IV and V, respectively, and provide
concluding remarks in Section VI.

II. NONINVASIVE ICP ESTIMATION METHOD

We model the CBFV waveform as the output of a two-tap
finite impulse response (FIR) filter whose input is the cerebral
perfusion pressure (CPP) – the difference between cABP and
ICP (Fig. 1). We neglect pulsatility in the ICP waveform, thus
simplifying our task to estimating the filter taps (or model pa-
rameters) and the mean ICP value using measured rABP and
CBFV. To do so, we subtract a range of physiologically plausi-
ble mean ICP values from the rABP signals to generate a set of
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CPP waveforms. We then obtain estimates of the FIR filter taps
for each CPP waveform by minimizing the associated CBFV
prediction error in a least-square error sense. This is done for a
range of time offsets between the CBFV and CPP signals. The
CBFV prediction errors obtained for each candidate CPP and
time offset pair are then transformed into a likelihood distribu-
tion of ICP values. Point estimates of this likelihood distribution
(such as the mean or median) may then be taken as the final nICP
estimates.

We employ this scheme in a two-stage process to increase
the nICP estimation accuracy (Fig. 1). First, we establish a
baseline nICP estimate and subsequently track changes in this
value. To set the baseline, we combine the likelihood distribution
with a preset prior belief of ICP values, and take the median
of the resulting a posteriori distribution as the nICP estimate.
This procedure is repeated for several data windows, and the
nICP estimates are averaged together to yield the baseline. We
employed a prior distribution that generously models ICP values
encountered at the bedside – extremely high and low values
are given significant weight – in order to ensure our method’s
generalizability.

After this initial baseline estimation stage, subsequent nICP
estimates are computed with a uniform distribution to reduce
dependence on the initial prior belief. A downside of using a
uniform distribution, however, is that the resulting nICP esti-
mates are more prone to deviate from measured values. In our
method, we addressed this problem by filtering changes in es-
timated nICP by model-predicted ICP changes via a Kalman
filter-like approach [28], and subsequently adding the filtered
nICP changes back to the baseline. We first describe our model
of cerebral hemodynamics, before describing the associated es-
timation and tracking method.

A. Model of Cerebral Hemodynamics

We employed a discrete-time approximation of the two-
element continuous-time model proposed earlier by our
group [21], [23] with the addition of an AR process descrip-
tion of ICP evolution. For the mth estimation window, this
continuous-time model is of the form

q(t − t0) =
1

Rm
(pa(t) − pi(t)) + Cm

d

dt
(pa(t) − pi(t)) (1)

where q and pa denote the CBFV and cABP, respectively
(Fig. 2), and t0 is an unknown time offset between measured
CBFV and ABP. The time offset explicitly reflects the real-
ity associated with measuring pABP and the model assuming
cABP.

The resistive element, Rm , models resistance to cerebrovas-
cular blood flow, while the capacitive element, Cm , represents
the aggregate arterial and brain tissue compliance. The cere-
bral autoregulatory processes that modulate the resistance and
compliance tend to occur over timescales longer than the data
window lengths considered here [23], and hence both Rm and
Cm are assumed constant over the duration of a data window,
chosen to be 20 beats throughout this work.

We initially focus on estimating the mean ICP, I[m], in the
data window, and make the simplifying assumption that pulsatil-

Fig. 2. (a) Continuous-time circuit model of cerebral hemodynamics
proposed in [23]. We employed a discrete-time approximation of this
model augmented with an AR process description of ICP evolution.
(b) Discrete-time model of the cerebral vasculature. Samples of the
cABP, pa , and the CBFV, q, are related by a time-varying FIR filter,
whose coefficients, αm and βm are assumed to remain constant during
individual estimation windows. The mean ICP, I [m], is also assumed to
be constant during an estimation window, and its evolution is modeled
by an AR process.

ity in the ICP waveform may initially be ignored. This leads to
the simplified dynamic relationship

q(t − t0) =
1

Rm
(pa(t) − I[m]) + Cm

d

dt
(pa(t) − I[m]) (2)

where we have substituted the mean ICP, I[m], for the ICP
waveform and assume I[m] to be constant over the duration of
an estimation window. Approximating the derivative operation
by first-order finite differences, and denoting the discrete-time
sampling index with n, we obtain

q[n − d0 ] =
(

1
Rm

+ Cm fs

)
(pa [n] − I[m])

− Cm fs (pa [n − 1] − I[m])

= αm (pa [n] − I[m]) + βm (pa [n − 1] − I[m]) (3)

where fs is the sampling rate, αm = 1/Rm + Cm fs , βm =
−Cm fs , and d0 = fs × t0 . We chose first-order finite differ-
ences because cABP and CBFV are quasi-periodic signals, and
their spectral content is concentrated around a few frequency
harmonics, thus limiting the order of models whose parameters
can be reliably estimated using only the cABP and CBFV [29].
Like their continuous-time counterparts, the model parameters
αm and βm are assumed to remain constant during individual
estimation windows.

We augmented this model with a first-order AR process to
model inter-estimation-window temporal evolution of the mean
ICP. This AR process is of the form

ΔI[m] = γm ΔI[m − 1] + vm (4)

where ΔI[m] = I[m] − I[m − 1] is the window-by-window
difference in mean ICP, and vm is a white-noise sequence with
variance σ2

v . The parameter γm represents the autoregulatory
state, with values of γm close to zero modeling static mean ICP
values. In our method, we set γm = 1 to model rapidly changing
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mean ICP values. Final mean nICP estimates are obtained by
fusing noninvasive estimates of ΔI with predictions generated
from this AR model.

The first-order system of (3), along with the ICP AR process
description of (4), form our complete model of cerebral hemo-
dynamics in the proposed mean nICP estimation method, and
are summarized schematically in Fig. 2. This method comprises
two stages that employ a common model-solving routine. We
describe this routine next, and then proceed to describing the
two stages. Finally, we describe how our model-based estima-
tion routine can also be used to noninvasively estimate the ICP
pulse pressure.

B. Model-Based Bayesian Estimation Routine

The model-based nICP estimation routine is employed in
both baseline determination and subsequent nICP tracking, and
it solves the model in (3) for a range of candidate ICP and
time offset pairs. It takes as input rABP and CBFV signals in
individual estimation windows, and computes nICP estimates
by treating each window independently. Since all operations are
confined to individual data windows, we omit the window index,
m, for clarity in the remainder of this section.

We select the time offset range on a window-by-window basis
such that, on average, the CBFV peaks are constrained to lead
the corresponding rABP systolic peaks whilst ensuring that the
diastolic points of the two waveforms are aligned with each
other (Fig. 3). These imposed constraints are motivated by the
underlying Windkessel-like model (Fig. 2a) that implies that
both signals should start rising nearly simultaneously at the
onset of systole, with the CBFV rising faster to reach its peak
before the rABP. To compensate for inaccurate beat detections
and modeling inaccuracies, we allowed the diastolic indices of
the two waveforms to differ by at most three sampling intervals
(≈25 ms). All time offsets that satisfy these two criteria are
included in the time offset scan range.

To form the ICP scan range, we start scanning from an ICP
of 0 mmHg in increments of 1 mmHg, a granularity deemed
sufficient for clinical purposes. We stop at the mean rABP in
the estimation window, as the ICP should not exceed the mean
rABP itself. Negative ICP values are not considered here as they
occur rarely [30], particularly in the pathologies of interest here.

For each ICP and time offset pair, we compute estimates for
α and β in a least-square error sense

[
α̂I , d , β̂I , d

]ᵀ
=

(
ΦI ᵀ

ΦI
)†

ΦI ᵀ
qd

where qd = [q[2 − d], . . ., q[N − d]]ᵀ

ΦI =

⎡
⎢⎣

pa [2] − I pa [1] − I
...

...
pa [N ] − I pa [N − 1] − I

⎤
⎥⎦ (5)

Here, the † symbol represents a matrix pseudo-inverse, N de-
notes the number of samples in the estimation window, and I and
d signify the solution’s dependence on the candidate ICP and
time offset values, respectively. Values for the cerebrovascular

flow resistance and compliance can be estimated according to

R̂I , d =
(
α̂I , d + β̂I , d

)−1

ĈI , d = −β̂I , d/fs (6)

The corresponding residual-error norm is given by

ζI , d =
∥∥∥ΦI

[
α̂I , d , β̂I , d

]ᵀ
− qd

∥∥∥
2

(7)

We define a likelihood distribution L(I, d) over the ICP and
time offsets as

L(I, d) =
1
SL

× exp

{
−

(
ζI , d

ζm

)2
}

ζm = min
I , d

ζI , d (8)

where SL is chosen so that L(I, d) normalizes to one. This
formulation assigns a high likelihood to (I, d) pairs that result
in a small residual CBFV prediction error, and a low likelihood
to pairs with large residual error norms. To subsequently em-
ploy a prior distribution across the ICP, we marginalize L(I, d)
across the time offsets to generate a one-dimensional likelihood
distribution defined across ICP only

L(I) =
∑

d

L(I, d) (9)

An nICP estimate may be derived from the likelihood by com-
puting a point statistic, ÎL , with an associated distribution vari-
ance, σ2

L . For our application here, ÎL = median(L(I)). Finally,
an a posteriori distribution is generated by combining the like-
lihood distribution with our prior belief

Pr(I|pa , qv ) =
1

SP
× Pr(I)L(I) (10)

where Pr(I) is the prior belief and SP is chosen so that the
distribution normalizes to one. The median and variance of this
combined distribution are denoted as ÎC and σ2

C , respectively.
In our method, we used both a uniform belief and a belief of

the form

Pr(I) =⎧⎪⎨
⎪⎩

1
S

× ∑2
k=1

wk√
2πσk

exp

{
−1

2

(
I − μk

σk

)2
}

, I ∈ Irange

0, I /∈ Irange

w1 , w2 ∈ [0, 1], subject to the constraint w1 + w2 = 1 (11)

where Irange denotes the ICP scan range, and S is chosen such
that Pr(I) sums to unity.

We established the parameters of this distribution in a pilot ex-
ploration using 46 twenty-beat estimation windows from three
subjects [31], and found the mean ICP and associated standard
deviation to be 13.6 and 2.8 mmHg, respectively. We then set
μ1 = 13.6 mmHg to model low ICP, and set σ1 = 10 mmHg – a
value larger than the ICP standard deviation in the 46 estimation
windows – to model greater variation in ICP. Additionally, we
set μ2 = 50 mmHg and σ2 = 20 mmHg to model high ICP.
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Fig. 3. Illustration of the time offset range. The input ABP and CBFV waveforms are plotted in black and red, respectively, and the range over
which the CBFV signal is shifted is plotted as a red band.

Fig. 4. Prior distribution used for baseline estimation. ICP values be-
low 5 mmHg, as well as those exceeding 30 mmHg, have been as-
signed probabilities larger than that found in our data to make our
method broadly applicable. The distribution is composed of a mix-
ture of two truncated Gaussian distributions that model low and high
ICP values.

We set w1 = 0.8 and w2 = 0.2, noting that the mean ICP ex-
ceeded 30 mmHg in 20% of the data reported in a previous
study [23]. The resulting distribution is shown in Fig. 4.

C. Baseline nICP Estimation

To establish a baseline, we compute a posteriori nICP esti-
mates, ÎC , in the first Mb = 5 twenty-beat data windows. These
estimates are averaged to yield the baseline, ÎB . We set Mb to
five to ensure that one hundred beats (normally more than a
minute) of data are analyzed before setting the baseline.

The baseline ICP is then passed to the subsequent tracking
stage. This stage uses the nICP estimates ÎL derived from the
likelihood distribution alone. This amounts to using a uniform
prior belief, and is done to reduce dependence on the initial
prior distribution. Using a uniform belief, however, also in-
creases the chances of erroneous nICP estimates. We therefore
developed a tracking framework that filters the changes in nICP
estimates computed with the uniform prior belief. This filter-
ing is achieved by combining the changes in nICP estimates
with model-predicted changes obtained with our AR process
model.

D. Tracking Changes in the ICP

Filtered nICP-change estimates are computed by combining
model-predicted changes in ICP with noninvasively determined
window-by-window estimates of ICP change. The latter are
computed using the method in Section II-B with a uniform
prior distribution, and are denoted as ΔL[m] to suggest their
dependence on the nICP estimates ÎL derived from the likeli-
hood distribution. Their associated variances are σ2

ΔL [m]. We
denote the model-predicted ICP changes as ΔP [m]. Their esti-
mated variances are denoted as σ2

ΔP [m]. Likewise, the filtered
nICP-change estimates are denoted as Δ̂I[m] and their variance
estimates as σ2

Δ̂I
[m].

Assuming that likelihood distributions of successive estima-
tion windows are statistically independent,

ΔL[m] = ÎL [m] − ÎL [m − 1]

σ2
ΔL [m] = σ2

L [m] + σ2
L [m − 1] (12)

The variance estimates are upper bounds on the true variances
because, by virtue of the independence assumption, the covari-
ance terms have not been included. We compensated for this by
using relatively large values of σ2

v in (4). Next, we compute the
model-predicted ICP change and its variance as

ΔP [m] = γm Δ̂I[m − 1]

σ2
ΔP [m] = γ2

m σ2
Δ̂I

[m − 1] + σ2
v (13)

where the prediction is made using the filtered change estimate,
Δ̂I[m − 1], of the previous window. To initialize this computa-
tion at m = Mb + 1, we set Δ̂I[Mb ] and σΔ̂I

[Mb ] to 0 mmHg.
Once both model-predicted and noninvasively determined

ICP changes and their variances have been computed, they are
combined such that

x =
σ2

ΔP [m]
σ2

ΔP [m] + σ2
ΔL [m]

σ2
Δ̂I

[m] = x σ2
ΔL [m]

Δ̂I[m] = (1 − x) ΔP [m] + x ΔL[m] (14)
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The resulting filtered change, Δ̂I[m], is added to Î[m − 1] to
yield the final nICP estimate,

Î[m] = Î[m − 1] + Δ̂I[m] (15)

where the baseline, ÎB , is used in the first iteration.
In this formulation, (14) can be seen to merge the model-

predicted and noninvasively determined estimates of the
window-by-window ICP change by assigning greater weight
to the estimate with lesser variance. This Kalman-filter like pro-
cess is repeated for subsequent estimation windows to yield
nICP estimates with reduced dependence on the initial prior
information.

E. Noninvasive ICP Pulse Pressure Estimation

The proposed pseudo-Bayesian approach generates a likeli-
hood distribution, L(I, d), that may be used to determine av-
erage (window-by-window) values for the model parameters,
αm and βm , or – equivalently – their continuous-time counter-
parts, Rm and Cm . These model parameters can then be used
to estimate the average window-by-window ICP pulse pressure.
The pulse pressure estimation procedure can be applied inde-
pendently to each data window. In the following description
we therefore again omit the window index, m. Then for each
window, the expectation operator yields,

R̄ =
∑
I , d

R̂I , d · L(I, d)

C̄ =
∑
I , d

ĈI , d · L(I, d) (16)

where R̂I , d and ĈI , d are determined according to (6). Like-
wise, a window-by-window value for t0 may be determined by
choosing t̄0 = d̄0/fs , where d̄0 is chosen to maximize L(I, d).
Then, for mean-subtracted ABP, CBFV, and ICP waveforms,
Eqn. (1) may be rewritten as

q̃ (t − t̄0) =
1
R̄

(p̃a(t) − p̃i(t)) + C̄
d

dt
(p̃a(t) − p̃i(t)) (17)

where q̃(t), p̃a(t), and p̃i(t) are mean-subtracted CBFV, ABP,
ICP, respectively. Taking Fourier transforms and rearranging the
equation yields

P̃i(jΩ) = P̃a(jΩ) − R̄ · e−jΩ t̄0

1 + jΩR̄C̄
Q̃(jΩ) (18)

where Q̃(jΩ), P̃a(jΩ), and P̃i(jΩ) are the Fourier transforms of
q̃(t), p̃a(t), and p̃i(t), respectively, and Ω is the radial frequency.
We first determine representative wavelets for q̃(t) and p̃a(t) in
each data window by averaging over the individual heartbeats
in that window while maintaining a common length across each
heartbeat. This common length is set to the smallest beat dura-
tion in the ABP data, and beats exceeding this length are clipped.
We then compute the discrete Fourier transform (DFT) of the
wavelets with the transform length set to the number of sam-
ples in the wavelets. Doing so amounts to performing a discrete
Fourier series decomposition of periodic signals formed by the
ABP and CBFV wavelets with each DFT bin corresponding to
a frequency harmonic [32]. P̃i(jΩ) can thus be evaluated at the

TABLE I
PATIENT INFORMATION

frequency harmonics by using the DFT output in conjunction
with Eqn. (18) such that

P̃i(jhΩ0) = P̃a(jhΩ0) − R̄ · e−jhΩ0 t̄0

1 + jhΩ0R̄C̄
Q̃(jhΩ0) (19)

where h = ±1,±2, . . . indicates the frequency harmonic, Ω0 =
2πfs/M is the continuous-time periodic frequency for a repeat-
ing wavelet of M samples, and P̃a(jhΩ0) and Q̃(jhΩ0) are set
to the hth DFT bins of the ABP and CBFV wavelets, respectively.
Noise and modeling inaccuracies mean that reliable estimates
may not be available for higher harmonics. Instead of fixing the
number of harmonics to estimate, we applied a heuristic scheme
that enforces monotonicity in the spectral estimates by retain-
ing only those harmonics whose spectral magnitude is below the
preceding harmonics. Once the harmonics have been selected,
the inverse DFT is used to obtain an approximate reconstruction
of an ICP wavelet.

III. DATA COLLECTION AND PREPROCESSING

We used data collected at Boston Children’s Hospital (BCH)
between February 2015 and June 2017 as previously reported
in [25]. Briefly, the data collection protocols were approved by
the Institutional Review Boards at BCH and MIT, and informed
consent was obtained from patients or their surrogates prior to
data collection. Individual recording sessions typically lasted for
nearly twenty minutes during which the rABP, CBFV, and (inva-
sive) ICP waveforms were recorded simultaneously. Important
metadata, including height differences between the location of
ICP and rABP transducers, were also recorded. Data were in-
cluded from thirteen patients (4 females, 9 males, aged between
2–25 years with a median age of 11 years) who presented with
different pathologies including TBI, hydrocephalus, and hem-
orrhagic strokes with ICP values ranging from 1 to 25 mmHg.
The patient information is further summarized in Table I.
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Fig. 5. Three examples of nICP, resistance, and compliance estimates. Top panel: Invasive reference ICP measurements are shown in gray.
Window-by-window average of the reference ICP and nICP values are in black and red, respectively. The nICP estimates had a bias of 0.7, −1.0,
and −0.3 mmHg, standard deviation of error of 1.9, 1.4, and 1.1 mmHg, and RMSE of 2.0, 1.7, and 1.1 mmHg, respectively. Bottom panel: Resistance
(black) and compliance (red) estimates.

We tested our method’s performance on clean data segments
extracted from the ensemble data. Details of the segment extrac-
tion process are presented elsewhere [25]. Briefly, CBFV and
rABP waveform quality was assessed, and segments of noisy
data were removed before applying a coarse time-alignment
step between the rABP and the CBFV signals to account – on
average – for time delays introduced by different measurement
devices. This was done by computing the cross-correlation be-
tween rABP and CBFV signals, and selecting the lag with the
highest cross-correlation coefficient as the desired offset. The
signals were then resampled to a common 125 Hz to compensate
for any underlying sampling frequency discrepancies. Finally,
the baseline rABP was adjusted to account for differences in ICP
and rABP transducer heights as suggested previously in [24].

In contrast to [25], we passed the resulting six hours and forty
minutes of data through an out-of-band-noise removal stage.
The rABP and CBFV trends were first extracted via a moving-
average filter. These trends were subtracted from the rABP and
CBFV signals, respectively, and the resulting detrended signals
were filtered by a bandpass filter with cutoffs at 0.5 and 16 Hz.
The trend removed in the first stage was then added back to the
filter output to restore the original DC levels. The filtered data
were then passed to our estimation routine that computed nICP
estimates in non-overlapping twenty-beat windows.

IV. ICP ESTIMATION RESULTS

Nearly seven hours of data (1,657 twenty-beat nonoverlap-
ping estimation windows) were analyzed, and estimates were
computed in a fully automated manner for reproducibility. The

results were computed by setting σv = 15 mmHg for the model
in (4) to model rapidly changing ICPs. This was done to ensure
our method’s generalizability to diverse datasets [31].

Representative examples of the estimation results are shown
in Fig. 5. These recordings indicate that our method can generate
nICP estimates that are within clinically acceptable accuracy
compared to standard invasive methods.

Bland-Altman analysis [33] on a per-estimation-window ba-
sis (Fig. 6) indicates that our method achieved a mean error
(bias) of 0.6 mmHg and RMSE of 3.7 mmHg across the 1,657
ICP-to-nICP comparisons, with associated limits of agreement
(bias ± 1.96 standard deviation (SD)) of −6.6 to 7.7 mmHg,
respectively. Likewise, the comparison on a per-recording basis
revealed an estimation bias and RMSE of 0.8 and 3.3 mmHg,
respectively, with limits of agreement of −5.5 to 7.1 mmHg.

To further gauge our method’s performance, we computed
the fraction of nICP estimates below a certain RMSE on a per-
record, per-estimation-window, and per-patient basis. This anal-
ysis is illustrated in Fig. 8 and indicates that nearly 80% of all
our nICP estimates were within ±5 mmHg of the invasive refer-
ence ICP measurements, indicating a strong agreement between
invasive reference and noninvasive estimates.

While not a measure of agreement of two candidate mea-
surement approaches [33], the correlation coefficient has his-
torically been cited in studies on nICP estimation. Here, we
achieved a correlation coefficient of 0.64 for the per-record anal-
ysis (Fig. 9). Given the comparatively small SD achieved in our
nICP estimates, the value of the correlation coefficient seems
limited by the limited range of measured ICP values, rather than
pointing to a limitation of the estimation approach [23], [33].
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Fig. 6. Bland-Altman analysis of estimation performance on (a) per-estimation-window and (b) per-recording-window bases. Solid lines indicate
the bias (mean error); dashed lines are the limits of agreement computed as bias ± 1.96 × SD.

Fig. 7. Estimation performance across all thirteen patients. Bars in-
dicate the estimation bias; the unit standard deviations are shown in
gray.

Fig. 8. Fraction of nICP estimates below a specified RMSE in per-
estimation-window (solid), per-record (dotted), and per-patient (dashed)
bases.

To assess our method’s performance in the absence of prior
information about the ICP, we computed nICP estimates with
a uniform prior distribution. The estimation performance is
summarized in Table II, and shows that while the estimation

Fig. 9. Scatter plot of measured reference and estimated ICP on a
per-record basis. A correlation coefficient of 0.64 was achieved.

TABLE II
ESTIMATION ACCURACY

accuracy decreased, the degree of degradation is not severe
enough to render the estimates clinically unusable. Further-
more, we also computed the estimation accuracy by disabling
the scans over multiple time offsets. The results are summarized
in Table III and indicate that scanning over time offsets leads
to improved accuracy with and without the Gaussian mixture
prior distribution, although the effect is more pronounced when
using a uniform prior distribution.
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TABLE III
EFFECT OF NOT SCANNING OVER TIME OFFSETS

Fig. 10. Synthetic trend added to CBFV waveforms to determine effi-
cacy of the tracking scheme.

Fig. 11. Example of a plateau wave. Mean ABP (black), CBFV (red),
and ICP (green) are shown. Rise in ICP is accompanied by a drop in
mean CBFV while the mean ABP remains relatively stable. Data courtesy
of Professor Marek Czosnyka, Department of Clinical Neurosciences,
Addenbrooke’s Hospital, University of Cambridge.

To test the tracking scheme’s ability to follow transient
changes, we added a synthetic trend to the CBFV signals and
recomputed nICP estimates with the modified CBFV, whilst
leaving the ABP waveforms unchanged. The synthetic trend is
shown in Fig. 10, and we expected the nICP to increase in re-
sponse, thereby mimicking plateau waves [34] (see Fig. 11 for
an example of a plateau wave recorded in a clinical setting).
Such plateau waves did not occur in our data. Estimates were
computed both with tracking and with a static prior distribution
applied to all data windows in data segments whose duration was

Fig. 12. Mean (solid) and unit SD bounds (dashed) of nICP estimates
obtained with synthetic trend in CBFV (a) without and (b) with tracking.

longer than that of the five-minute synthetic trend. The mean
and unit SD bounds of the resulting nICP estimates are shown
in Fig. 12. The figure demonstrates that enabling the tracking
scheme led to estimating greater transient changes than with a
static prior distribution.

ICP pulse pressure estimation – Reference invasive ICP wave-
forms recorded with open external drain were excluded in this
analysis since the pulsatility of those waveforms was damped
due to exposure to atmospheric pressure. This resulted in 1093
20-beat data windows, or 4 hours of data. Distributions of differ-
ences between the measured and noninvasively determined ICP
pulse pressure are shown in Fig. 13. On average, our noninva-
sively determined ICP pulse pressures had a bias of−1.2 mmHg,
a SD of 3.8 mmHg, and a RMSE of 4.0 mmHg, suggesting that
our estimates were close to invasively determined values, albeit
on a small dataset.

V. DISCUSSION

Comparison with invasive ICP measurement modalities – In-
vasive ICP monitoring modalities include external ventricular
drains (EVDs), commonly regarded as the clinical gold stan-
dard, integrated (micro-transducer) parenchymal sensing de-
vices, such as the Camino or Codman sensors, and epi- or
sub-dural pressure measurement probes. The latter are consid-
ered less reliable compared to parenchymal devices [11], [35],
[36] and have largely been discontinued in neurocritical care.
Performance analyses of parenchymal micro-transducers have
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Fig. 13. Distribution of differences between estimated and reference
ICP pulse pressure per estimation window. The bias (solid line) is
−1.2 mmHg and 2 SD limits (dashed lines) are −8.8 mmHg and
6.4 mmHg.

also been reported in the literature [11]. Lescot et al. [37], for
example, reported that in a cohort of fifteen patients, the Cod-
man sensor had an ensemble bias of 0.3 mmHg with limits of
agreement of−6.7 and 7.1 mmHg, relative to simultaneous EVD
measurements. Other studies reported similar performance met-
rics for two simultaneous invasive ICP measurements [38]. Our
system achieved comparable performance characteristics (bias
of 0.6 mmHg and limits of agreement of −6.6 and 7.7 mmHg).

Radial ABP measurement was the only (minimally) invasive
aspect of our approach and was used because these measure-
ments are readily available at the bedside in neurocritical care.
The risk of infection from arterial catheters is reported to be
far less than that associated with EVDs. O’Horo et al. [39],
for instance, have reported infection rates of 1.5% in femoral
arterial lines with 1.9 times greater risk of infection at femoral
sites compared to radial sites. In contrast, infection rates of 5%
[8] and 10% [9] have been previously reported in EVDs. Thus,
our approach has a potentially lower risk of infection than inva-
sive ICP measurement methods. Future use of noninvasive ABP
monitors will eliminate any residual infection risks associated
with our method [31].

ICP pulse pressure estimation – The obtained results indicate
that our noninvasive procedure may also be used to determine
ICP pulsatility. The slight negative ICP pulse pressure estima-
tion bias may be attributed to estimation of limited, often fewer
than two, harmonics. The estimation procedure, however, is
training-free since it uses the likelihood distribution (instead
of the posterior distribution) in a model-based fashion. It in-
volves elementary computations and can thus be implemented
in real-time with minimum computational burden. Since a vari-
able number of harmonics are estimated per data window, it
is not always possible to conduct a thorough analysis of the
waveform morphology.

Other attempts of noninvasive determination of ICP pulsatil-
ity include the use of transcranial acoustic signals in conjunc-
tion with pretrained statistical models [15], use of pre-trained
transfer functions between ICP and aortic blood pressure [40],

Fig. 14. Histogram of reference ICP values across all estimation win-
dows in our data.

and application of an iterative ensemble Kalman filter to a mul-
tiscale model of intracranial dynamics [26]. These approaches
involve use of pre-trained models and associated parameters that
may not generalize over larger patient populations. The pulse
pressure information obtained from our method, in contrast,
does not involve pre-training.

Features of our approach – Our proposed method yields
accurate and patient-specific nICP estimates by combining a
simple model of cerebral hemodynamics with an easily inter-
pretable prior distribution of ICP values in a realtime, compu-
tationally straightforward manner. Doing so obviates the need
to employ sophisticated multi-parameter models that describe
complex cerebrovascular behaviors [41], [42] whose parame-
ters are difficult to identify in a simple, noninvasive, robust, and
patient-specific manner. Likewise, our proposed approach by-
passes the need to resort to statistical learning frameworks that
require rich datasets across a multitude of clinical conditions for
robust training.

The proposed estimation framework differs from classical
Bayesian system identification approaches that utilize iterative
Markov chain Monte Carlo methods (see [43], [44]) and that
may therefore not be feasible for real-time computation. More-
over, our prediction model allows for a simple method to fuse
predicted and observed ICP changes. More sophisticated predic-
tion models may be used. Increasing the complexity, however,
may come at the cost of more computationally involved fusion
methods.

We employed a prior distribution that only coarsely represents
the ICP values in our dataset (see Fig. 14). Notably, we assigned
greater probabilities to ICP values both below 5 mmHg and
above 30 mmHg than the actual proportion of such values in our
data. That our approach still achieved an RMSE below 4 mmHg
is therefore highly encouraging. To us, this indicates that our
method can potentially yield comparable accuracy to invasive
measurements when some prior information about subjects’ ICP
ranges can be provided to the system. The system’s performance
in absence of prior information does not degrade significantly,
as is indicated by the results achieved with a uniform prior
distribution. This points towards the method’s applicability to
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cases where no a priori information may be available about
patients’ ICP values.

At present, we have employed a simplistic model of temporal
ICP evolution. Filtering our ICP change estimates using pre-
dictions from this model yielded improved performance, whilst
simultaneously relieving dependence on the initial prior distri-
bution. The reduced dependence on the initial prior information
will be important in monitoring subjects’ ICP over long dura-
tions, and through large swings of ICP, as indicated by Fig. 12.

Kashif et al. [23] previously proposed the two-element
continuous-time ICP model used here, and also developed an
associated nICP estimation scheme. The authors reported an
ensemble bias of 1.6 mmHg with an SDE of 7.6 mmHg in
data from TBI patients with significant underlying ICP vari-
ability. They also averaged the nICP estimates obtained from
CBFV signals recorded simultaneously from left and right mid-
dle cerebral arteries, and reported that this averaging resulted in
a reduced SDE of 5.9 mmHg. They were, however, unable to
account for the hydrostatic pressure offset between rABP and
ICP measurements as they analyzed archived data and did not
have access to the height differences between the ICP and rABP
pressure transducers. Also, their data were recorded solely from
adult TBI patients. Building on this work, Fanelli et al. [25]
introduced an automated signal quality assessment stage in the
model-based estimation scheme of Kashif et al. and automated
all pre-processing steps, including time-alignment of the ABP
and CBFV waveforms. Their method, however, still remained
sensitive to temporal alignment of the input waveforms. They
collected data from a heterogeneous pediatric patient population
and reported nICP estimation bias and RMSE of 1.0 mmHg and
5.2 mmHg, respectively.

Our method differs from these prior approaches in several
aspects. Sensitivity to time alignment is overcome by forming a
likelihood distribution over several time offsets. Our method in-
cludes a strategy to take prior information about a subject’s ICP
into account whilst retaining the interpretability and computa-
tional simplicity afforded by the Kashif model. We incorporate
temporal evolution of the mean ICP via our tracking framework
– a facility not afforded by the previous work. While we did
not have access to simultaneous bilateral CBFV recordings, our
method might achieve better performance characteristics in such
scenarios if averaging similar to that used by Kashif et al. were
applied. We demonstrate that estimates of the mean ICP can
be obtained with accuracies approaching those of gold-standard
invasive methods. Moreover, our proposed method also deter-
mines the ICP pulse pressures noninvasively, in a training-free
manner – a feature not previously developed in the prior work.

Contributions – The contributions of this present work in-
clude developing a model-based nICP estimation framework
that encounters unknown physiologically-induced time offsets
between rABP and CBFV signals. An attractive feature of our
approach is that it retains its interpretability due to the underly-
ing physiologic model – a facility not provided by pure statistical
learning approaches to nICP estimation. Additionally, we have
introduced a simple AR model of ICP dynamics that helps in
tracking ICPs over long recording durations without overly re-
lying on the prior distribution employed in the initial stage of the

method. For each data window, our method generates a proba-
bility distribution of ICP values, that can potentially be used to
determine estimation-confidence metrics. We demonstrate that
the likelihood distribution can also be used to determine esti-
mates of the ICP pulse pressure in a patient-specific manner.
Our system does not require calibration to invasive ICP mea-
surements. It can thus be used as a screening tool for identifying
patients suffering from elevated ICP without resorting to inva-
sive procedures such as lumbar punctures.

In addition to monitoring patients suffering from neurological
diseases, our approach can also be useful in monitoring intra-
operative cerebral perfusion and autoregulation, for example.
Both inadequate and excessive cerebral perfusion during surgi-
cal procedures has been shown to be a cause of post-operative
delirium [45]. Surgical procedures such as coronary artery by-
pass grafting typically do not employ concurrent invasive ICP
monitoring, and thus CPP cannot be directly measured. CPP
derived from our nICP estimates can potentially be used to ame-
liorate this problem. Such clinical translation of our method will
require implementing it for real-time operation. This is a feasi-
ble prospect because the method employs a set of deterministic,
causal mathematical operations.

Limitations and future work – At present, we used a preset
prior distribution. However, in a clinical scenario, physicians
could be allowed to modify the distribution at the bedside using
their insight. Additional work may focus on testing our proposed
method on a larger dataset comprising subjects with additional
pathologies and larger variations and transient changes in ICP.
We have used routinely measured rABP recordings for estimat-
ing ICPs in our clinical dataset, and future validation of the
method could also involve noninvasive blood pressure moni-
tors. Work may also focus on harnessing information in the
estimated model coefficients, αm and βm , or equivalently Rm

and Cm , both for monitoring a subject’s cerebral autoregula-
tion status, and for assessing nICP estimation confidence on a
window-by-window basis.

VI. CONCLUSION

Continuous nICP estimation can benefit a large number of
patients that have traditionally been excluded from ICP moni-
toring due to the current invasiveness of the measurement. The
nICP estimation framework proposed in this paper attempts to
overcome challenges associated with model-based nICP estima-
tion methods. Several possible time offsets between the rABP
and CBFV are considered, which helps address the challenge
posed by unknown (and patient-specific) time offsets between
these signals. Estimation is performed within a Bayesian frame-
work, which helps increase the method’s resilience to structured
errors that may be introduced, for instance, by differences be-
tween rABP and cABP morphology, and also to unstructured
errors due to signal noise and motion artifacts in recorded data.
Moreover, ICP pulse pressure amplitudes are determined in a
patient-specific manner. It is hoped that this work will pave the
way towards developing a reliable, continuous, realtime, accu-
rate, and fully noninvasive ICP monitoring device to improve
neurocritical care across the world.
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