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A Time-Frequency Approach for Cerebral
Embolic Load Monitoring
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Abstract—Objective: To enable reliable cerebral embolic
load monitoring from high-intensity transient signals
(HITS) recorded with single-channel transcranial Doppler
(TCD) ultrasound. Methods: We propose a HITS detection
and characterization method using a weighted-frequency
Fourier linear combiner that estimates baseline Doppler
signal power. An adaptive threshold is determined by exam-
ining the Doppler signal power variance about the baseline
estimate, and HITS are extracted if their Doppler power
exceeds this threshold. As signatures from multiple emboli
may be superimposed, we analyze the detected HITS in the
time-frequency (TF) domain to segment the signals into
individual emboli. A logistic regression classification ap-
proach is employed to classify HITS into emboli or artifacts.
Data were collected using a commercial TCD device with
emboli-detection capabilities from 12 children undergoing
mechanical circulatory support or cardiac catheterization. A
subset of 696 HITS were reviewed, annotated, and split into
training and testing sets for developing and evaluating the
HITS classification algorithm. Results: The classifier yielded
98% and 96% sensitivity for 100% specificity on training and
testing data, respectively. The TF approach decomposed
38% of candidate embolic signals into two or more embolic
events that ultimately account for 69% of the overall
embolic counts. Our processing pipeline resulted in highly
accurate emboli identification and produced emboli counts
that were lower (by a median of 64%) compared to the com-
mercial ultrasound system’s estimates. Significance: Using
only single-channel, single-frequency Doppler ultrasound,
the proposed method enables sensitive detection and
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segmentation of embolic signatures. Our approach
paves the way toward accurate real-time cerebral emboli
monitoring.

Index Terms—Emboli, patient monitoring, stroke, time-
frequency analysis, transcranial ultrasound.

I. INTRODUCTION

ACUTE neurological complications remain an important
clinical problem in patients undergoing extracorporeal

membrane oxygenation (ECMO) [1]–[3] and ventricular as-
sist device (VAD) support [4]. One cause of acute brain injury
in these populations is cerebral embolism, which may be de-
tected clinically in real-time by transcranial Doppler (TCD) ul-
trasonography as high intensity transient signals (HITS) within
the Doppler spectrum [5]–[7]. HITS, representing cerebral em-
boli, may be composed of air, thrombi, atheromatous plaque,
lipid, or platelet aggregates. Cerebral emboli can occlude the
cerebral vasculature, potentially causing transient ischemic at-
tacks, stroke, or other acute neurologic injury. A clear under-
standing of the prevalence and clinical significance of HITS in
patients on mechanical circulatory support (ECMO, VAD) or
undergoing cardiac catheterization, and at high risk of cerebral
embolic events is lacking. In a previous study in children with
congenital heart disease undergoing cardiac catheterization, we
found the process of visual review and manual annotation of
HITS and their classification into emboli and artifacts to be
prohibitively time consuming and essentially impossible when
HITS occurred in clusters (often designated as curtains or show-
ers) [8]. We also found that commercial TCD emboli-detection
software generated excessive false positive events.

Typical ultrasound-based emboli detection methods use base-
band (Doppler) ultrasound signals from one or two depths and
one or two simultaneous insonation frequencies [9]–[11]. The
signals may first be prefiltered, for example using wavelet trans-
forms [12]–[15], to help differentiate embolic signals from ar-
tifacts and background blood signatures. HITS may then be
detected using the embolus-to-blood ratio (EBR), defined as the
ratio of backscattered power from an embolic source, normal-
ized by the power calculated over data segments not containing
any emboli. Embolic sources tend to have a high EBR because
of their size and acoustic impedance mismatch relative to sur-
rounding blood [16], [17].

Robust emboli detection using EBR is a challenging task,
however. A baseline Doppler power level of the normal (non-
embolic) blood flow must first be established. This baseline
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power estimate should vary with the cardiac cycle since the
backscattered Doppler power due to pulsatile blood flow is mod-
ulated by an order of magnitude between systole and diastole.
A dynamic detection threshold must also be determined, so that
EBR excursions above that threshold can be flagged as candidate
emboli. A subsequent artifact rejection stage is required since
tissue or ultrasound probe motion can generate large excursions
in EBR that should not be counted as emboli. Finally, mul-
tiple emboli may flow through the ultrasound sample volume
simultaneously, and the corresponding Doppler signal should
be decomposed into individual embolic signatures for accurate
counting. Lipperts et al. [18], for instance, reported that existing
commercial TCD systems do not accurately estimate the num-
ber of cerebral emboli in such situations. To our knowledge, the
problem of automatically separating signatures from multiple
simultaneous emboli using single-depth, single-frequency TCD
systems has not been addressed in the literature.

In this paper, we describe a signal processing pipeline that en-
ables real-time HITS detection and classification into likely em-
boli and artifact using single-channel, single-frequency Doppler
data. We model Doppler baseline power as a Fourier series, and
propose a weighted-frequency Fourier linear combiner (WFLC)
[19] to adaptively estimate the Fourier coefficients in real-time.
Variance of the Doppler power about this baseline leads to an
adaptive HITS detection threshold. Disabling WFLC adaptation
during HITS allows us to retain estimates of the signal back-
ground during prolonged periods of HITS showers or artifact.
We then propose an algorithmic separation of detected HITS
into signatures from individual emboli by time-frequency (TF)
analysis. Finally, logistic regression classification is used to re-
ject artifacts. The method was evaluated on data from twelve
pediatric patients undergoing ECMO, VAD support, or cardiac
catheterization.

We first outline the data collection and annotation steps in
Section II. We then describe our emboli detection and TF-based
separation approach in Section III. The artifact rejection classi-
fier is described in Section IV, and we present and discuss the
results of applying our processing pipeline in Sections V and
VI, respectively.

II. DATA COLLECTION AND ANNOTATION

The study was approved by the Boston Children’s Hospital
Institutional Review Board. Written informed consent was ob-
tained for all subjects from the legally authorized representative,
and patient assent was obtained whenever possible. Children on
mechanical circulatory support (MCS), i.e. ECMO or VAD, or
undergoing cardiac catherization were eligible for study inclu-
sion. Subjects who lacked an acoustic window to permit TCD
ultrasound examination of the middle cerebral artery (MCA)
were excluded after enrollment. Subjects underwent emboli
monitoring of the right or left MCA with a dual frequency
(2 + 2.5 MHz), range-gated, pulsed-wave TCD system (DWL
Doppler-BoxX, Compumedics Germany GmbH, Singen, Ger-
many). The ultrasound probe was handheld, or secured in place
with a soft elastic headband, over the right or left temporal
window. Emboli monitoring began once an adequate Doppler

signal was obtained from the M1 segment of the MCA at the
level of the bifurcation of the MCA and anterior cerebral artery.
Data were collected from eight patients on MCS (3F, 5M, ages:
3 weeks to 14 years), and four patients undergoing cardiac
catheterization (1F, 3M, ages: 4 months to 14 years). Recording
durations ranged from 9 to 118 minutes for a total 625 minutes
(10.5 hours) of data. Further clinical details of our patient cohort
are provided in the appendix.

The comparatively large volume of ultrasound data collected
precluded exhaustive manual HITS annotation and classification
into embolic and artifact events. We therefore first extracted can-
didate HITS using an automated approach reported previously
[20], and two expert annotators (KLL, BDK) were presented
with candidate HITS so identified from a subset of seven MCS
patients. Each annotator independently assessed each candi-
date HITS using previously published criteria for emboli de-
tection [21] and indicated whether each identified segment was
judged to be an embolic event, an artifact, or the annotator
was unsure which of the two categories to assign. Only HITS
marked by both annotators as either emboli or artifacts were
used for training and testing. A 60% cohort of annotated data
segments was randomly selected and used for training of the
artifact-rejection classifiers (Section IV). The remaining anno-
tated data from the MCS patients were used for testing classifier
performance. To determine the robustness of our emboli clas-
sification approach, we retained the data from the four cardiac
catheterization patients as an independent hold-out validation
cohort that was neither used for classifier training nor testing.

III. HITS DETECTION

A. Data Preprocessing

The DWL Doppler-BoxX exports Doppler data in binary for-
mat along with timestamps of the emboli detected by the de-
vice’s proprietary software. The device exports the inphase, ri ,
and quadrature, rq , demodulated signals for the selected target
depth from one insonation frequency (2 MHz) [22]. From the
exported signals we form the complex signal rn = ri

n + jrq
n ,

where n is a discrete sampling index with samples recorded at
the pulse repetition frequency, PRF. Since the DWL system
generates separate binary files whenever the acquisition param-
eters are modified during a recording session, we concatenated
the Doppler streams from each file by rescaling the signals to a
common signal gain and by using MATLAB’s resample func-
tion to resample all segments to the highest PRF used during
the recording session. In accordance with prior work [9], [10],
we computed the signal power, P , in non-overlapping data win-
dows of 2 ms duration. For the mth non-overlapping window of
length Np , the power was computed as

Pm =
1

Np

mNp∑

k=1+(m−1)Np

|rk |2 (1)

Since the Doppler signal power can vary by an order of mag-
nitude during the cardiac cycle, we base our HITS detection
and segmentation approaches on the log-transformed power
Pm = 10 log10(Pm ).
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Fig. 1. Adaptive WFLC filtering architecture. Doppler power is computed and log-transformed. The difference, em , between the computed, Pm ,
and predicted, P̂m , value is used to adapt the Fourier coefficients for modeling the baseline signal. A HITS is determined if the prediction error, em ,
exceeds an adaptive threshold, γm , in which case the Fourier coefficients are not adapted in order to retain the baseline estimate. Here, ζ0 and
{wi}2A

i=0 are the harmonic frequency and Fourier coefficients, respectively. Dashed lines indicate adaptive steps of the WFLC architecture.

B. HITS Detection

For HITS detection, we propose an adaptive baseline power
estimation approach that uses a modified WFLC [19]. The
WFLC was originally developed for canceling physiological
tremor in robotic surgery applications; it models a quasi-periodic
signal as a Fourier series, estimating the Fourier series co-
efficients and the harmonic frequency in real-time and in an
adaptive manner. The original WFLC method was designed to
continually update its parameters. In our approach, we update
the parameters only during baseline flow conditions and forgo
updating when a candidate HITS is detected. For each 2 ms
data window, we compute the difference, em , between the log-
transformed power estimate, Pm , from a predicted background
power, P̂m , for that window. A HITS is detected if em > γm ,
where γm is an adaptive threshold. The WFLC parameters and
γm are retained (i.e. not updated) if a HITS is detected and
updated otherwise. The resulting algorithm architecture is illus-
trated in Fig. 1.

More concretely, given initial estimates for the filter weights,
w1 and w0,1 , and the fundamental frequency, ζ0,1 , a prediction
at a later sample is computed as

P̂m = wᵀ
m xm + w0,m (2)

where wm = [w1,m , ..., w2A,m ]ᵀ are the estimated Fourier co-
efficients, w0,m is the estimated DC bias, A is a preset number
of harmonics to be estimated, and xm = [x1,m , ..., x2A,m ]ᵀ is
the set of Fourier terms

xa,m =

{
sin (a

∑m
l=1 ζ0,l) , 1 ≤ a ≤ A

cos ((a − A)
∑m

l=1 ζ0,l) , A + 1 ≤ a ≤ 2A
(3)

To update the parameters from one window to the next, we
define the prediction error

em ≡
{

Pm − P̂m , Pm − P̂m ≤ γm

0, Pm − P̂m > γm

(4)

where the latter condition occurs during a HITS. Setting the
associated error term to zero prevents parameter adaptation to
the embolic or artifact signal properties. The WFLC parameters
are then updated by performing a gradient-descent step in which

wm+1 = wm + μxm em (5a)

w0,m+1 = w0,m + μ0em (5b)

ζ0,m+1 = ζ0,m

+ μζ em

A∑

a=1

a (wa,m xA+a,m − wA+a,m xa,m )

(5c)

where μ, μ0 , and μζ are preset adaptation parameters [19]. To
initialize the computation, we provide estimates of the funda-
mental frequency (heart rate), and the corresponding Fourier
series coefficients by computing the discrete Fourier transform
of the first 10 seconds of Pm and by analyzing the dominant
frequencies, amplitudes, and phases.

To determine the detection threshold, we examine the stan-
dard deviation of prediction errors. (A similar strategy was pre-
viously proposed in [23].) In our method, the detection threshold
is set to

γm = α × ŜD(em ) (6)

where α is a tunable parameter and γm is not allowed to ex-
ceed 15 dB for system stability. We empirically set α = 3 to
strike a balance between high probability of detecting emboli
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TABLE I
WFLC PARAMETERS

Fig. 2. Measured Doppler power (gray) along with WFLC-derived base-
line power estimate (black), adaptive detection threshold (green), and
segmented HITS (red).

and acceptable probability of false alarm. ŜD(em ) is a recur-
sively low-pass filtered version of the standard deviation of the
prediction errors, SD(em ), in HITS-free segments

ŜD(em ) = αlp × ŜD(em−1) + (1 − αlp) × SD(em ) (7)

where αlp was set to 0.9. The WFLC parameters used in our
analysis are summarized in Table I, and the resulting baseline
and threshold estimates for a representative data segment are
shown in Fig. 2.

The WFLC parameters are reinitialized if a HITS segment
longer than Treinit = 10 s is detected. This is to prevent changes
in signal quality or probe position from being falsely detected
as embolic signatures. The detected candidate HITS segments
can be quite long in duration, which can lead to significant
computation load in the subsequent TF analysis. To reduce this
load, we split HITS into sub-segments of at most Tmax = 0.25 s.

C. HITS Separation

HITS detected by the WFLC-based method can often ap-
pear as consisting of multiple individual embolic signatures that
are temporally merged. We therefore further examined the fine
structure of the detected HITS and separated HITS into con-
stituent embolic events via TF analysis.

To perform the TF analysis, we used a discrete-time approx-
imation of the continuous wavelet transform. Specifically, a
detected HITS is passed through a filter bank that enables real-
time computation. Each filter is a Gaussian kernel modulated

to a center frequency, fv . Each center frequency corresponds
to a Doppler velocity, v, according to the Doppler equation
fv = 2f0v/c, where we assume c = 1540 m/s as the speed of
sound, and f0 = 2 MHz is the transmitting frequency. We denote
the resulting TF decomposition at time sample n and Doppler
velocity v as Rn,v

Rn,v = rn∗hn,v (8)

where the convolution is performed in time and hn,v is a band-
pass filter of the form

hn,v = h0
|fv |√

2πPRF
e−(n/2σv PRF)2

ej2πfv n/PRF (9)

The filter has a temporal spread governed by σv , and h0 is a
scaling constant. In our approach, we select the center veloci-
ties, v, in a logarithmic fashion, such that Vmin < |v| < Vmax ,
where Vmin = 0.05 m/s, Vmax = (0.5 PRF × c/(2f0) − Vmin)
m/s, and 200 center velocities are used. We set σv = SV/βv,
where β = 10 is a scaling constant, and SV is the value of the
sample volume selected during data acquisition. (The term sam-
ple volume is a misnomer since it represents the axial length of
the insonated region and not a volume; we retain its use since
the term is widely accepted.) Filters for higher center veloc-
ities therefore have narrower temporal spread, allowing finer
temporal localization of embolic signals.

A given TF image may then be inverted back to the time
domain as

R−1
n =

∑

v

Rn,v (10)

We first segment HITS in the TF domain before conducting a
linkage step to merge signatures that may correspond to the same
embolus. The resulting merged signatures are then inverted back
to the time domain as illustrated in Fig. 3. The segmentation and
merging steps proceed as follows:

1) TF Segmentation: For each TF domain image, we gen-
erate a threshold and segment the absolute value of the TF image
of the selected HITS. The threshold is generated by applying
Otsu’s method [24] on log-compressed absolute values of the
TF representation (MATLAB’s graythresh function), and taking
the anti-log of the resulting threshold. Log-compression is used
since the TF pixel values can vary by several orders of magni-
tude. Applying the thresholding method on the raw TF images
may therefore lead to unsuitably high thresholds. Regions of
the absolute TF representation that are higher than the threshold
are segmented into patches. First, a rescaled TF image, RSn,v

is generated according to

RSn,v =
|Rn,v | − Rmin

Rmax − Rmin

where Rmin and Rmax are the minimum and maximum ab-
solute values in the TF representation, respectively. Rescaling
allows the application of the H-minima transform [25] to RSn,v

in order to suppress local minima; we used an empirically de-
termined suppression threshold of 0.001. The Watershed image
segmentation algorithm [26] is then used on the resulting image
to extract patches that are above the detection threshold.
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Fig. 3. Time-frequency analysis procedure. A selected embolic HITS
(a) is transformed into the TF domain (b). The corresponding TF image
is segmented into patches using morphological image processing (c).
Individual patches are merged in order to yield TF sub-domains plausibly
corresponding to individual embolic segments (d). The final selected sub-
domains are then transformed back to the time domain, reclassified, and
embolic segments are retained (e).

For each patch, we compute the location of the highest inten-
sity, (nmax , vmax), and the normalized traveled distance, ND.
The latter is computed by first determining the instantaneous
velocity ĨV n for each sample, n, and subsequently integrating
the velocity. The absolute of the resulting displacement is nor-
malized by the sample volume, SV. The instantaneous velocity,
ĨV n , is estimated by computing a weighted average of the TF

image for each n, such that ĨV n =
∑

v |vRn,v |/
∑

v |Rn,v |. The
metrics nmax , vmax , and ND are used subsequently to merge
patches that potentially correspond to the same embolus.

2) TF Merging: The segmentation process may result in
separate patches that belong to the same embolic signal. To
avoid such spurious fragmentation and overcounting of embolic
events, a merging step is necessary. We designed a set of rules
to determine if such merging is necessary. Patches are merged if
they are close in speed and time, have not individually traversed
a sizable fraction of the sample volume, and do not lead to large
traveled distances when combined together. Specifically, two
patches i and j are merged on the basis of

1) the time between their intensity maxima
(|nmax,i − nmax,j |/PRF < Tmin),

2) the absolute difference between their velocity maxima,
(| |vmax,i | − |vmax,j | | ≤ Δv),

(3) their respective traveled distance (ND < NDmin),
(4) the normalized displacement of the union of the patches,

(ND′ < NDmax).
Here, Tmin , NDmin , NDmax , and Δv are predefined thresh-

olds set to 6 ms, 0.85, 1.25, and 0.5 m/s, respectively, and all
conditions must be met for a merger. In our approach, we con-
sider all possible pairs of HITS until we merge a pair that fits
these criteria. The process is then repeated for the new set of
patches until no further matches can be made. The algorithm
reverts to the segments fed originally to the TF-based segmen-
tation stage if the merging process does not converge within
a maximum number of passes, set to 100. Finally, the merged
segments are converted to the time domain. Artifacts in the
remaining segments are then removed using a feature-based
classifier described below.

IV. ARTIFACT REJECTION

Since embolic signals are generally longer than 8 to 10 ms
in duration [8], [21], we first rejected any detected HITS from
further analysis if their duration was less than 6 ms (or three
2 ms data windows). To classify the remaining HITS into likely
emboli or artifact, we applied a feature-based logistic regression
classifier. We computed and evaluated six candidate HITS fea-
tures and selected a subset of three features for our final artifact
rejection classifier. The final classifier is applied twice, once
after the initial WFLC-based HITS detection step and then after
the final TF emboli separation step.

A. HITS Features

1) Unidirectionality: Emboli are known to move in the di-
rection of blood flow [21] leading to a single-sided Doppler
frequency spectrum. A quantitative measure of such unidirec-
tional flow is the ratio P≥0/P<0 [9], where P≥0 and P<0 are
the power of the HITS in the positive and negative frequency
bands, respectively, and blood flow is assumed to be in the posi-
tive direction. It is possible, however, to simultaneously insonate
two vessels with opposite flow directions, and thus a dominant
blood flow direction cannot be assumed a priori. Also, the ratio
can assume arbitrarily large values. Thus, we define the
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Fig. 4. HITS features for an embolus (left panel) and artifact (right panel). Features are derived from the inphase (solid grey), quadrature (dashed
grey), and envelope (solid black) time-domain Doppler signals. The signal’s instantaneous velocity (IV) is first determined (dashed green) and its
median (solid green) is computed. The IV is integrated over time to determine the HITS displacement (dashed red) that is subsequently normalized
by the sample volume (solid red). The Fourier transform of the Doppler signals (blue) is used to determine spectral concentration and unidirectionality.
Temporal skewness (not shown) is determined from the signal envelope (solid black).

(nondimensional) unidirectionality, U , as

U =

{
u/umax , u ≤ umax

1, u > umax

(11)

where u = max
(P≥0

P<0
,
P<0

P≥0

)

where we set umax = 1000 and computedP≥0 andP<0 by sum-
ming the squared magnitude values of the Blackman-windowed
discrete Fourier transform, F (ω), computed over the duration
of each candidate HITS (Fig. 4).

2) Spectral Concentration: We expected emboli to travel
at a finite range of velocities, leading to frequency spectra con-
centrated around a center frequency. We computed a measure
of such spectral concentration as

max
ω

( |F (ω)|∑
ω |F (ω)|

)

with values close to unity indicating a high degree of spec-
tral concentration and values close to zero indicating a broad
frequency spectrum.

3) Speed: In contrast to emboli, artifacts commonly have
bidirectional frequency spectra [9], [21]. Thus, we expected
artifacts to have average Doppler speeds close to zero, and
computed the instantaneous signal frequency, IFn , by numer-
ically differentiating the unwrapped instantaneous phase [27],
arg{r[n]}, of the Doppler signal

IFn ≈ PRF × arg{r[n]} − arg{r[n − 1]}
2π

(12)

According to the Doppler equation [28], the instantaneous
velocity, IVn , is then

IVn =
c

2f0
IFn (13)

where we assume that the insonation direction is parallel to the
flow direction. We then define the HITS speed for the ith HITS

as

si = |mediann (IVn )| (14)

where the time index n spans the duration of the detected HITS.
(Here, the definition of instantaneous velocity introduced earlier
in Section III-C was not used in order to bypass the need to
convert HITS into their TF representations.)

4) Normalized Distance: Motivated by the work of Smith
et al. [29], we note that emboli tend to traverse a significant
fraction of the target SV. Thus, we integrate IVn over time,
and normalize the absolute value of the resulting displacement
by SV. In our implementation we use trapezoidal integration to
compute the HITS displacement before normalizing the absolute
value of the result by SV.

5) Temporal Skewness: We observed that artifacts tend
to have a significantly skewed temporal envelope (Fig. 4). We
therefore defined skewness as the time from the start to the peak
of the envelope divided by the total HITS duration. A value of
0.5 indicates no skew; artifacts tend to have a temporal skewness
value that is small compared to this reference.

6) Measured/Expected Duration: In our visual review of
sample data, we found artifacts to have a short duration com-
pared to embolic signatures that are expected to have durations
corresponding to their speed and SV [29]. Thus the ratio of
measured to expected duration may provide a means of sepa-
rating artifacts from embolic events. We computed the expected
duration as d̂i = SV/si .

B. Classifier Design

We employed logistic regression in our artifact rejection clas-
sifier. Emboli were assigned the value of 1 and artifacts the value
−1. Classifiers were trained on emboli and artifacts; HITS clas-
sified as unsure were excluded from our analysis. For the ith

HITS, the classification function is of the form

ŷi =

{
1, {1 + exp (−hᵀgi)}−1 ≥ η

−1, else
(15)
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where ŷi is the algorithm-assigned label, gi = [1, gi1 , ..., giJ ]ᵀ

is the vector of J features augmented by a bias term, h =
[h0 , h1 , ..., hJ ]ᵀ is the vector of model parameters, and η is
the classification threshold. Features were first converted to Z-
scores by subtracting the respective feature mean, and dividing
by the feature standard deviation in the training data. The model
parameters were obtained by minimizing the l2-regularized
logistic loss function

L(h) =
I∑

i=1

ln {1 + exp (−yih
ᵀgi)} + λ ‖h‖2 (16)

where yi is the training label assigned to the ith HITS, I is the
number of training samples, and the regularization parameter λ

was empirically set to 1.

C. Classifier Evaluation

We analyzed feature statistics and trained logistic regression
classifiers on the individual features to assess their artifact-
rejection performance. We then selected the three top perform-
ing features in this univariate analysis for inclusion in the final
classifier. The final three-feature classifier was applied after
WFLC-based HITS detection and again after the final TF-based
emboli separation step.

We evaluated classifier performance by computing classifi-
cation sensitivity and specificity. By varying the classification
threshold we obtained the full receiver operating characteris-
tic (ROC) curve for each individual classifier, and for the final
three-feature classifier. To select the detection threshold for each
classifier, we computed the distance from each point on the ROC
to the (0,1) point on the ROC plot, thereby giving equal weight
to both sensitivity and specificity. We selected the threshold
value corresponding to the point on the ROC that minimized
that distance.

A randomly selected 60% subset of the agreed-emboli and
agreed-artifacts HITS annotations from the seven MCS patients
was used for classifier training and threshold selection, and the
remaining 40% were used for testing classifier performance. To
ensure robustness of our approach, we applied the classification
rule to annotated HITS from an independent hold-out validation
data set, consisting of 500 emboli and 133 artifact annotations
from the four patients in our study cohort undergoing cardiac
catheterization.

V. RESULTS

A. Data Annotation and Inter-Rater Variability

Each annotator reviewed and scored 696 detected HITS
events from seven MCS patients. Per-patient annotation counts
ranged from 50 to 200. Notably, all annotated emboli events
came from just two patients. The annotation results are sum-
marized as a confusion matrix in Table II, and Cohen’s kappa
metric [30] for inter-rater agreement was 72%. The annotation
accuracy, or fraction of annotations on the main diagonal of the
confusion matrix, was 83%. We trained and tested our classi-
fiers on the 482 annotated HITS events of agreed-embolic and
agreed-artifact events.

TABLE II
ANNOTATION INTER-RATER CONFUSION MATRIX

Fig. 5. Box plots of feature values for the six candidate features
for the training data. Statistical significance at the 0.05 level deter-
mined by Mann-Whitney-Wilcoxon test is indicated by asterisks; n.s.:
not significant.

TABLE III
SINGLE-FEATURE CLASSIFIER PERFORMANCE.

Sen: SENSITIVITY; Spec: SPECIFICITY

B. Artifact Rejection

Box-plots of the feature values obtained on the training data
for each of the six candidate features are shown in Fig. 5. Good
separation of the median feature values for emboli and arti-
facts were achieved for unidirectionality, duration ratio, and
normalized distance. The single-feature classification perfor-
mance is summarized in Table III. Based on their classifica-
tion performance, we selected unidirectionality, duration ra-
tio, and normalized distance for inclusion in the three-feature
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Fig. 6. Scatter plot and 2D projections for three features of emboli
(red) and artifacts (blue) for the validation data. Optimal artifact rejection
decision boundary for the classifier is shown in magenta and was based
on the optimal decision thresholds derived from the training data.

logistic regression classifier. This classifier achieved sensitiv-
ities of 98.0% (95% CI: 95.3–100.0), 95.6% (95% CI: 91.0–
100.0) and 91.4% (95% CI: 88.9–93.9) for 100% (95% CI:
100.0–100.0) specificity on the training, testing, and validation
data, respectively. These results held up under formal 10-fold
cross validation applied to the training data with bootstrapping
to compute confidence intervals on sensitivity and specificity.
We obtained a mean training sensitivity and specificity of 98.4%

Fig. 7. Histogram of emboli generated by TF analysis for each segment
extracted by the WFLC method.

(95% CI 95.8–100.0) and 99.5% (95% CI 98.9–100.0), respec-
tively, and a mean testing sensitivity of 98.1% (95% CI 94.5–
100.0) and associated specificity of 97.9% (95% CI 95.2–100.0).

The trained classifier assigned weights of 2.5, 1.3, and 1.2 to
Z-score-normalized unidirectionality, duration ratio, and nor-
malized distance, indicating that the classification is driven
strongly by the unidirectionality feature. Emboli and artifacts
from the validation cohort are shown in the scatter plot of Fig. 6
along with the classifier boundary derived from the training data.
The projections in Fig. 6 demonstrate that duration ratio and
normalized displacement show strong collinearity for emboli
and may only add incrementally over the classification perfor-
mance of the unidirectionality feature. When we performed a
formal sequential feature selection approach using MATLAB’s
sequentialfs function, only the unidirectionality and normalized
distance features were selected. The two-feature sensitivity and
specificity were 99.0% (95% CI 97.1–100.0) and 99.5% (95%
CI 98.5–100.0) for the training set, 100.0% (95% CI 100.0–
100.0) and 98.4% (95% CI 96.1–100.0) for the testing set, and
96.4% (95% CI 94.8–98.0) and 99.2% (95% CI 97.8–100.0) for
the validation set. The slight loss in sensitivities on the valida-
tion data set is to be expected given that the algorithm was not
trained on any of the validation data and the fact that the vali-
dation data were captured from a different clinical intervention
from the ones represented in the training data.

C. Patient Embolic Loads

We applied the final emboli detection pipeline–consisting of
WFLC-based adaptive HITS detection, TF emboli separation,
and artifact rejection–to the entirety of all twelve patient record-
ings. Of the WLFC-derived embolic HITS, 38% were further
segmented into two or more embolic events by the TF-based
HITS separation approach. This decomposition accounted for
69% of the final emboli count (Fig. 7), emphasizing the need to
incorporate an emboli segmentation step into EBR-based HITS
detection approaches.

Representative cumulative embolic counts for three record-
ings are shown in Fig. 8, and the embolic loads for all records
are summarized in Table IV. The table also lists embolic counts
as derived by applying the three-feature artifact-rejection
classifier to the WFLC-derived HITS (i.e. without applying the
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Fig. 8. Examples show the range of Doppler power (top) and emboli counts (bottom) in patients undergoing (a) VAD support, (b) ECMO, and
(c) cardiac catheterization. The Doppler power (gray) and the estimated baseline power (black) are shown along with the cumulative embolic counts
from the DWL emboli-detection software (blue) and our proposed method (red).

TABLE IV
PER-PATIENT EMBOLI COUNTS ACCORDING TO TCD DEVICE (DWL),

WFLC SEGMENTATION ONLY AND TF PROCESSING

TF HITS separation). Relative to the manufacturer-provided
counts, we observed a median percentage reduction of 64% in
emboli counts.

VI. DISCUSSION

Accurate, real-time emboli monitoring remains an open prob-
lem in the pediatric population. In adults, real-time emboli
monitoring during carotid endarterectomy can alert the surgeon
to incorporate cerebral protection measures [31]. In cardiopul-
monary bypass, it led to the change from bubble to membrane
oxygenators and the introduction of arterial line filters [32]. Ap-
proximately 10% of neonates and infants have seizures (clin-
ical or subclinical) following heart surgery [33]. As seizures
have been associated with adverse neurodevelopmental out-
come [34], correlating the burden of emboli with post-operative
seizures may lead to new strategies for their prevention.

Several limitations of existing Doppler-based embolus detec-
tion methods have been reported in the literature. These include

requiring computations that operate over large signal blocks,
thereby limiting real-time operation [11], generation of exces-
sive false positive events [8], and an inability to distinguish
multiple emboli that flow through the insonation region simul-
taneously [18]. We have developed a novel single-depth, single-
insonation-frequency embolus detection method that attempts
to address these problems.

We introduced a WFLC framework to generate baseline
power estimates of received Doppler data. Segments whose
power exceeds an adaptively estimated threshold were selected
as candidate emboli. We integrated a time-frequency segmenta-
tion step into our algorithm that attempts to separate signatures
from emboli that flow into the ultrasound beam concurrently.
When compared to the embolus detection performance of a
commercially available two-depth, dual-frequency device, our
method led to a median reduction in embolic counts by 64% in
a pediatric patient cohort.

Computation requirements: Our system does not utilize in-
formation from future signal values, thereby allowing it to func-
tion in real-time, albeit with latency inherent in the internal
computations. Preliminary HITS detection is performed with
minimal delay since signal power computation introduces only
a 2 ms latency (as 2 ms nonoverlapping data windows are used),
and because the WFLC algorithm does not introduce additional
delay–it was designed for zero-phase cancellation of periodic
disturbances [19]. An artifact-rejection classifier is applied to
minimize subsequent computation burden. The classification
procedure itself uses three easy-to-compute features in a simple
logistic regression model. We designed our finite impulse re-
sponse filter bank such that each filter has the same group delay
[27]. Thus, these filters may be implemented as a set of parallel,
causal delay lines to generate time-frequency representations of
candidate HITS with a latency equal to the group delay. In our
subsequent TF analysis, we employ commonly used image pro-
cessing tools, optimized implementations of which are readily
available for target deployment platforms.

Artifact rejection performance: Our classification perfor-
mance is predicated on HITS training labels provided by our
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expert annotators, who achieved an inter-rater reliability (Co-
hen’s kappa) of 72%. Our reference annotations may thus be
interpreted as reliable [35]. Similar kappa values (72%, and
90%) have previously been reported in the literature for embo-
lus annotations by human experts [36], [37].

Our artifact rejection scheme uses a logistic regression
classifier that allows interpretation of the factors driving high
classification sensitivity and specificity. Specifically, upon
examining the classifier weights, it may be seen that there
is greater emphasis on unidirectionality. The attained high
classification sensitivity and specificity are on par with those
reported in prior literature [9], [13], [38], [39]. For instance,
Darbellay et al. [13] reported embolus classification sensitivity
of 95% and associated specificity of 97% on a testing data
set comprising 600 emboli and 530 artifacts. Using seven
classification features, Sombune et al. [39] recently reported an
average classification sensitivity of 91.5%, average specificity
of 90.0%, and average accuracy of 90.5%, outperforming the
work by Karahoca and Tunga [38]. Brucher and Russel [9]
previously proposed using four features in a decision tree:
difference in Doppler shift due to dual-frequency insonation (2
and 2.5 MHz), a measure of expected signal duration, emboli
presence in a second depth, and unidirectionality. They reported
that 99% of all artifacts and emboli were classified correctly
by their system in a data set comprising 554 emboli and 800
artifacts. In our approach, we found that while the HITS speed
(or equivalently, the signal frequency) is different between
artifacts and emboli (Fig. 5), the attained classification accuracy
in our data set for this feature was not strong. Also, our classifi-
cation approach only uses information from one depth and one
insonation frequency. During our initial experiments, we found
that several emboli may flow simultaneously, making it difficult
to reliably match their signatures across different depths. The
traveled distance feature has previously been shown to discrim-
inate between gaseous and solid emboli [29]. We found this
metric to be useful in separating artifacts from emboli as well.

Embolus separation using TF analysis: Multiple emboli can
often be generated simultaneously, such as during catheter ma-
nipulation during cardiac catheterization or aortic cross-clamp
release in cardiac surgery [8], [18]. Single-channel Doppler de-
vices have been reported to be incapable of reliably detecting
emboli in such circumstances [18]. Instead, methods have been
proposed that use information from multiple depths (M-mode
imaging) [40] or raw radio-frequency (RF) data [18]. Lipperts
et al. [18], for instance, proposed an image processing approach
using successively received RF ultrasound signals to improve
the estimation of the number of emboli encountered in embolic
showers during cardiac surgical procedures. They claim that ex-
isting TCD systems do not accurately estimate the number of
cerebral emboli during such showers. Using RF data is akin to
processing information from a range of depths, and allows the
authors to separate signals from multiple emboli more easily,
albeit at the expense of processing requirements.

To our knowledge, the problem of automatically sepa-
rating signatures from multiple simultaneous emboli using
single-depth, single-frequency TCD systems has not been ad-
dressed in the literature. Colantonio and Salvetti [41] extracted
HITS patches from Doppler TF images using a line-tracking

procedure, but did not explicitly attempt to separate close HITS.
Moreover, in their approach, the authors use a segmentation
threshold determined via a pre-trained neural network. Like-
wise, in [11], the authors extract a region of interest in HITS
spectrograms by examining asymmetric (unidirectional) flow
regions, without attempting to separate individual HITS. In our
study, 38% of HITS detected by the WFLC stage were sub-
sequently split into two or more emboli by the TF processing
stage. Emboli split in this fashion accounted for 69% of the total
embolic load, suggesting the potential need to incorporate such
emboli segmentation into emboli detection systems.

We believe that extracting individual emboli signatures is
important, not just to establish accurate emboli statistics, but also
for subsequent characterization of embolic signal properties (for
example, their material composition). At present, we employ a
set of simple heuristic rules that determine how TF patches are
merged by analyzing the net traversed distance of the patches
and the difference in velocities of those patches. In doing so,
we implicitly assume that the underlying emboli do not have
a wide size range (by constraining normalized displacements
between NDmin and NDmax ). It has been reported that in adults,
particulate emboli with diameters below 100 μm are unlikely to
be detected via Doppler ultrasound owing to the diameter of the
MCA [13], [16]. Likewise, particulate emboli with sizes above
240 μm are thought to cause stroke [13]. None of the patients
in our cohort suffered from a clinically apparent stroke, and
hence it is plausible that the particulate emboli in our data were
within a narrow size range. Future work, however, can focus
on assessing particle size to further guide the TF patch merging
process.

Comparison with the DWL: The DWL device exports its de-
tected HITS with a timestep granularity of 10 ms, thereby pre-
venting a segment-by-segment comparison between embolic
counts. We found, however, that our embolic counts exhibit
greater sensitivity during embolic showers, as exhibited by
larger steps in the cumulative counts in Fig. 8. At the same
time, we found that in several recordings, the device’s cumu-
lative counts exhibit linear trends, suggesting a constant back-
ground embolic rate. Our method does not show such linear
trends, and this difference could be due to both different detec-
tion sensitivities and embolic classification steps. On the whole,
our method reduced the embolic counts by a median 64%, po-
tentially suggesting that the device may be generating excessive
false positive events.

Contributions: We have proposed a single-depth, single-
frequency Doppler based approach to detect, classify, and sepa-
rate closely opposed emboli. The initial detection is performed
via a WFLC-based method. This is attractive because it enables
modeling the pulsatile nature of blood flow and also computes an
adaptive detection threshold in real-time using simple computa-
tions for high detection sensitivity in both systolic and diastolic
segments. We integrated our simple and interpretable logistic
regression based artifact-rejection scheme into a TF process-
ing approach in order to separate HITS into individual embolic
events that may overlap in both time and frequency (velocity)
using a single Doppler channel. The proposed approach, when
applied to data from pediatric patients ranging in age from 3
weeks to 14 years, reduced the median embolic counts by more
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TABLE V
PATIENT DEMOGRAPHIC AND CLINICAL INFORMATION

MCS; mechanical circulatory support; ECMO, extracorporeal membrane oxygenation; VA, veno-arterial; VAD, ventricular assist device; CHD, congenital
heart disease; PA/IVS, pulmonary atresia/intact ventricular septum; HLHS, hypoplastic left heart syndrome; RV, right ventricle; LV, left ventricle; RA,
right atrium; LA, left atrium; RCA, right carotid artery; RIJV, right internal jugular vein; ECPR, ECMO cardiopulmonary resuscitation; GBS, group B
streptococcus; CPB, cardiopulmonary bypass; TOF/PA, tetralogy of Fallot/pulmonary atresia; PV, pulmonary vein; dTGA, d-transposition of the great
arteries; ASO, arterial switch operation.

than a factor of two, thereby warranting further exploration of
accuracies of commercial devices. Future work should also fo-
cus on examining differences between embolic signatures of
gaseous and particulate emboli. Likewise, integrating the abil-
ity to size emboli will enable better separation of HITS that
occur simultaneously.

Limitations of current work: Currently, our method’s
performance has been evaluated on a small data set in which
ambiguous HITS were excluded and ground truth information
about the type, number, and size of emboli was missing. Further
work is needed to test the classifier on more heterogeneous test
sets, potentially in flow phantoms where embolic composition
and size can be controlled and analyzed (or more reliably
determined). Likewise, our TF method will need to be tested in
a variety of flow environments on a range of embolic sizes and
compared against ground truth data in order to further assess
its detection ability.

VII. CONCLUSION

Patients with a variety of clinical conditions are susceptible
to embolic events and stroke. Single-channel Doppler devices

are commonly used to detect emboli, but current commercial
TCD systems seem to overestimate embolic load. Our proposed
embolus detection approach advances single-channel Doppler
emboli monitoring by: 1) introducing a novel emboli-detection
algorithm, coupled with artifact rejection stages that use simple-
to-compute features; and 2) by separating embolic signatures
through time-frequency processing. Our method paves the way
for more reliable embolic load assessment so that appropriate
clinical trials can be designed that may lead to improved patient
care and neurologic outcomes.
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APPENDIX

Patient information is summarized in Table V.
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