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Objective Assessment of Beat Quality in
Transcranial Doppler Measurement of Blood

Flow Velocity in Cerebral Arteries
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Abstract—Objective: Transcranial Doppler (TCD) ultra-
sonography measures pulsatile cerebral blood flow velocity
in the arteries and veins of the head and neck. Similar
to other real-time measurement modalities, especially in
healthcare, the identification of high-quality signals is
essential for clinical interpretation. Our goal is to identify
poor quality beats and remove them prior to further analysis
of the TCD signal. Methods: We selected objective features
for this purpose including Euclidean distance between
individual and average beat waveforms, cross-correlation
between individual and average beat waveforms, ratio of the
high-frequency power to the total beat power, beat length,
and variance of the diastolic portion of the beat waveform.
We developed an iterative outlier detection algorithm to
identify and remove the beats that are different from others
in a recording. Finally, we tested the algorithm on a dataset
consisting of more than 15 h of TCD data recorded from
48 stroke and 34 in-hospital control subjects. Results: We
assessed the performance of the algorithm in the improve-
ment of estimation of clinically important TCD parameters
by comparing them to that of manual beat annotation. The
results show that there is a strong correlation between
the two, that demonstrates the algorithm has successfully
recovered the clinically important features. We obtained
significant improvement in estimating the TCD parameters
using the algorithm accepted beats compared to using
all beats. Significance: Our algorithm provides a valuable
tool to clinicians for automated detection of the reliable
portion of the data. Moreover, it can be used as a pre-
processing tool to improve the data quality for automated
diagnosis of pathologic beat waveforms using machine
learning.

Index Terms—Biomedical signal processing, ultrasonog-
raphy, signal processing algorithms, change detection algo-
rihms, heuristic algorithms, algorithm design and analysis.
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I. INTRODUCTION

TRANSCRANIAL Doppler (TCD) ultrasonography is a di-
agnostic technique for rapid, non-invasive assessment of

cerebrovascular health [1]. TCD was first used in neurology in
the 1980s and measures cerebral blood flow velocity (CBFV)
[2]. TCD has demonstrated utility in the diagnosis of clinical
conditions such as acute ischemic stroke [3], [4], intracranial
pressure [5], [6], sickle cell disease [7], traumatic brain injury
[8], dementia [9], cerebral emboli [10] and many others [11],
[12].

CBFV beat waveform morphology has not been extensively
studied mainly due to the noise level and lack of signal process-
ing techniques developed for TCD signal analysis [5], [13]. Beat
waveform morphology can exhibit a high degree of variability
due to noise within the signal often caused by the movement of
the subject or sonographer or the electronics, Fig. 9(A). How-
ever, clinically important parameters such as mean Cerebral
Blood Flow Velocity (mCBFV) or Pulsatility Index (PI), which
may be used to aid in diagnostic assessment, are often extracted
from this same highly variable TCD beat waveform morphol-
ogy [5], [8], [14], [15]. Thus, being able to reliably identify and
exclude the low-quality portions of the signal in a consistent,
quantitative manner is imperative for the accurate extraction
of clinically relevant TCD parameters and any ensuing clinical
interpretation based on those parameters.

The problem of variability and noise in the CBFV record-
ing is often mitigated by manual classification of beats by an
expert that “appear” different than others in a recording. This
process can be time-consuming, labor intensive, subjective, and
difficult to reproduce. In addition, it precludes real-time com-
putation of clinically relevant parameters. Consequently, there
is a need for objective beat quality criteria and an automated
algorithm for classification of poor-quality beats to make the
analysis comprehensive, reliable, and repeatable. The purpose
of this paper is to present candidate features for objective quan-
tification of beat quality, develop a classification algorithm
to identify poor-quality beats in a recording, and to validate
the resulting tool through comparison to human experts us-
ing a large dataset consisting of healthy and pathological beat
waveforms.
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TABLE I
SUMMARY OF THE TCD EXPERIMENTS, AND NUMBER OF BEATS REJECTED

BY HUMAN RATERS AND ALGORITHM WITH DIFFERENT FEATURES

II. METHODS

In this section, we describe the experimental protocol for data
acquisition, the features we used to characterize beat quality, and
an algorithm to classify and remove low-quality beats.

A. Experiments

1) Subjects: We acquired TCD waveforms from 82 sub-
jects enrolled at Erlanger Health Systems Southeast Regional
Stroke Center in Chattanooga, TN. The subjects were either
diagnosed with Large Vessel Occlusion (LVO) of intracranial
arteries confirmed with Computed Tomography Angiography
(CTA) or in-hospital control subjects who arrived at the hospital
presenting with stroke symptoms, but were later confirmed neg-
ative for LVO by CTA imaging. We also performed a follow-up
TCD recording on the LVO subjects within 72 hours of injury.
In total, we acquired data from 131 sessions. The experiment
protocols were approved by University of Tennessee College of
Medicine Institutional Review Board (ID: 16-097).

2) Recording: A trained sonographer acquired TCD scans
using a 2 MHz hand-held probe. CBFV signals associated with
the left or right Middle Cerebral Arteries (MCA) were identified
by insonating through the transtemporal windows and recording
the CBFV at the sampling rate of 125 Hz. The sonographer
obtained recordings for as many depths as possible between
45-60 mm. Once a CBFV signal with a smooth fitting envelope
trace was identified and optimized at a specific depth, a recording
interval would begin, continuing for a total duration of 30 s. Two
TCD experts manually inspected 1,872 recording intervals with
a total of 74,500 beats (see Table I). Rater 1 was a peer-reviewed
published scientist in the area of TCD waveform morphology.
Rater 2 was a licensed registered vascular technologist.

B. Algorithm

1) Features: For each recording interval, we identified
beat start and end times using the algorithm developed in
[16] as shown in Fig. 1(A). Then, we normalized individual
beat lengths to the median beat length. This was achieved by
padding the beats whose lengths were shorter than the median
beat length with the last value of the beat and truncating

Fig. 1. Beat start/end times were identified from measurement of CBFV
using our beat detection software (A), and the average beat waveform
CBF V b (k) (red beat) was computed from ensemble averaging of indi-
vidual beat waveforms (grey beats) (B).

the beats whose length was longer than the median beat
length. Then, from the l length-normalized beat waveforms
CBFVb1(k), . . . , CBFVbl(k), we computed the average
CBFV beat waveform (see Fig. 1(B)) denoted by CBFV b(k).
We extracted the following features for each individual beat.

Euclidean Distance (ED): EDi is the Euclidean distance of
the i-th length-normalized beat waveform from CBFV b(k):

EDi =

√
√
√
√

n∑

k=1

(

CBFVbi(k) − CBFV b(k)
)2

(1)

where n is the number of samples in the length-normalized beats
and i ∈ {1, . . . , l}.

Cross-Correlation (CC): CCi is the maximum of cross-
correlation coefficient between CBFVbi(k) of the i-th beat and
CBFV b(k):

CCi = max

(
n∑

m=1

CBFVbi(m)CBFV b(m + k)

)

(2)

Beat Length (BL) BLi is the length of the i-th original (vs
length-normalized) beat.

High Frequency Noise Power (HFNP) HFNPi is the ratio
of the high-frequency to low-frequency power for the i-th beat.

HFNPi =

∑fN

f =ft
|Xi(f)|2

∑ft

f =1 |Xi(f)|2 (3)

where X(f) is the discrete Fourier transform of the CBFV, and
ft represents the threshold frequency set to 15 Hz and fN is the
Nyquist frequency.

Diastolic Variance (DV) DVi is the variance of the diastolic
portion of the i-th beat which was defined as the last 20% of the
beat.

See Fig. 2 for an illustration of the distributions of these
features for a sample recording.

2) Iterative Outlier Detection Algorithms: We developed
an iterative version of the InterQuartile Range (IQR) outlier
detection method. The IQR method, first proposed by Tukey
[17], [18], works by calculating IQR = q3 − q1 where q1 and
q3 are the first and third quadrants. It labels the data points that
fall below BL = q1 − 1.5IQR or above BH = q3 + 1.5IQR
as outliers. The range is shown by the location of the whiskers
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Fig. 2. Five features are assembled from individual beat CBFV waveforms: (A) High-Frequency Noise Power (HFNP) is the ratio of the high-
frequency to low-frequency power; (B) Euclidean Distance (ED) is the euclidean distance from the average beat waveform; (C) Diastolic Variance
(DV) is the variance of the diastolic portion of the beat waveform; (D) Cross-Correlation (CC) is the maximum of cross-correlation with the average
beat waveform; (E) Beat-Length (BL) is the beat length in samples. The orange line indicates the median of the data. The boxes extends from the
25-th (q1 ) to 75-th (q3 ) percentiles of the data, indicating the interquartile range (IQR = q3 − q1 ) and the whiskers extends from q1 − 1.5IQR to
q3 + 1.5IQR.

in the box plot, Fig. 2. The Iterative IQR (IIQR) method works
by identifying the farthest outlier from the boundary, if any,
and removing one outlier at each iteration, continuing until no
further outliers are present. This ensures that the boundaries BL

and BH are not biased because of the presence of too many
large outliers.

Iterative InterQuartile Range (IIQR) Algorithm: The follow-
ing iterative algorithm works by identifying outliers from the
set F = {f1 , f2 , . . . , fl} for a beat feature described above (e.g.
ED) where n is the total number of beats.

1) Denote the list of outlier indices as Io = {}.
2) Calculate q1 and q3 that are the 25-th and 75-th percentiles

of F .
3) Populate Fo with the outliers:

Fo
s = {∀x ∈ f, x < q1 − 1.5IQR}

Fo
l = {∀x ∈ f, x > q3 + 1.5IQR} (4)

If Fo
s and Fo

l are empty, then exit, returning the list of the
outlier indices Io .

4) Find the outlier that is the farthest from the boundaries:

δs = fo
s − (q1 − 1.5IQR)

δl = q3 + 1.5IQR − fo
l (5)

5) Append Io with the index of the maximum, io :

io = arg max(δs , δl) (6)

6) Go to step 2.
We used the IIQR algorithm on each beat for all features in

the feature set. The final rejected beats were the union of those
identified as outliers for each feature.

C. Clinical Metrics

We computed the following clinically significant TCD pa-
rameters from the average beat waveform for each recording
interval. The average beat waveform was calculated using the
technique described above II-B1 from all the beats as well as
the beats accepted by a rater in a recording interval.

Fig. 3. Typical average beat CBF V b (k) calculated from a recording
interval. The figure is annotated to show the morphological points of the
waveform that based on which the TCD parameters (e.g. mCBFV, PI)
are defined.

See Fig. 3 for illustration.
� Mean Cerebral Blood Flow Velocity (mCBFV) is the mean

of the average beat waveform.

mCBFV =
1
l

l∑

k=1

CBFV b(k) (7)

� Pulsatility Index (PI) is defined as:

PI =
sys − dia

mCBFV
(8)

where sys is the systolic peak and dia is the diastolic val-
ley of the average beat waveform. PI represents a measure
of cerebrovascular resistance.

D. Statistics

We compared the agreement between raters and the algorithm
at two levels: (i) beats; (ii) clinical parameters.
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1) Beat Agreement: We compared the agreement of raters
in acceptance and rejection of beats using confusion matrix
and the Cohen’s Kappa coefficient (κ). In order to determine
the intra-rater agreement, the experts inspected 200 recordings,
randomly selected from the data pool, again at a later time.

2) Clinical Parameter Agreement: We will use the follow-
ing notation for comparison between raters at the level of clinical
parameters:

DC M
rater1−rater2 = 100

CMrater1 − CMrater2

CMrater2
(9)

where CM is the clinical metric: mCBFV or PI . D is the
percentage difference in the clinical metric of interest between
two raters.

To compare two raters at this level, we first computed the
percentage difference in the clinical metric of interest compared
to when all beats are accepted: DC M

all−rater1 and DC M
all−rater2 .

Second, we aggregated the results for all recording intervals
and computed the Pearson correlation coefficient between
DC M

all−rater1 and DC M
all−rater2 . Here a rater can be human or

algorithm.
In order to compare the efficacy of the algorithm with a human

rater and identify an optimal feature combination, we defined
improvement I as the net reduction in error using the algorithm-
accepted beats:

IC M =
∣
∣DC M

all−rater

∣
∣ − ∣

∣DC M
algo−rater

∣
∣ (10)

If the rejected beats by a human rater shift the estimate of the
clinical parameter considerably, then

∣
∣DC M

all−rater

∣
∣ would be a

significant positive value. If the algorithm is as effective as a

human rater, then
∣
∣
∣DC M

algo−rater

∣
∣
∣ would be close to zero and the

improvement IC M becomes positive. Otherwise, improvement
IC M is negative. For many recording intervals, improvement
in the estimate of clinical parameters of using the algorithm-
accepted beats over using all beats was positive. For some
recordings, however, the improvement was negative, which is
because of frequent misclassified beats in a recording and/or
misclassified beats that had a disproportionately large contribu-
tion to the clinical parameter. We quantified the performance of
each feature combination using the sum of the positive improve-
ments (Spos brown area under the curve in Fig. 4) and the sum
of the negative improvements (Sneg absolute value of the cyan
area under the curve in Fig. 4):

SC M
pos =

∑ [

x : ∀x ∈ IC M ∧ x ≥ 0
]

SC M
neg =

∣
∣
∣

∑ [

x : ∀x ∈ IC M ∧ x < 0
]
∣
∣
∣ (11)

Thus, the larger the positive improvement Spos and smaller
the negative improvement Sneg , the closer the algorithm to the
human rater. See Fig. 4 for illustration of the case when we use all
five features in the algorithm. For the purpose of identifying the
optimal feature combination, we normalized and consolidated
the clinical parameters mCBFV and PI:

Spos = SmC BF V
pos + SP I

pos

Sneg = SmC BF V
neg + SP I

neg (12)

Fig. 4. Sorted improvement gained by using the algorithm-accepted
beats over using all beats in the computation of clinical parameters: (A)
mean Cerebral Blood Flow Velocity (mCBFV); (B) Pulsatility Index (PI).
All five features ED-CC-BL-HFNP-DV were used for this figure. The area
under the curve for positive improvement Spos is shown in brown and for
negative improvement Sn eg in cyan. The larger Spos and smaller Sn eg ,
the closer the algorithm to human rater in filtering TCD beats for a more
accurate estimate of TCD clinical parameters.

To identify the variability of improvement for each feature
combination, we performed a bootstrap analysis using 1000
iterations for each feature combination. At each iteration, we
randomly selected the data with replacement and calculated the
mean and variability.

III. EXPERIMENTAL RESULTS

At the beat level, the agreement between human raters was
in the moderate range (κ12 = 0.58). Rater 1 rejected 11.4% and
Rater 2 rejected 9.0% of the beats. Overall, they disagreed on
acceptance/rejection of 7.7% of the beats (Fig. 5). Similarly, the
agreements of the raters with themselves were in the moderate
range: κ11 = 0.62, κ22 = 0.64.

At the level of clinical parameters, the percentage differences
in the clinical parameters were highly correlated between the
two human raters (dC M

all−rater1 versus dC M
all−rater2), Fig. 6. Fol-

lowing the same analysis, we also compared the human raters to
a random rater simulated as a Bernoulli distribution that rejected
10.2% of the beats (average of the rejection ratios of the human
raters). Fig. 6 shows that the correlation between human raters
and the random virtual rater was zero which further signifies the
identified correlation between the human raters.

Fig. 7 illustrates the normalized positive and negative im-
provements for the 31 possible feature combinations. There
was a trade-off between Spos and Sneg , i.e. a feature com-
bination with large Spos (desired) typically resulted in larger
Sneg (undesired). The optimal feature is one that maximizes
Spos − Sneg . There were three common combinations among
the top five combinations for each rater: ED-LEN, CC, CC-LEN.
Interestingly, for both raters, the poorest feature combination
was DV. Perhaps more importantly though, is the fact that a
large number of combinations containing different constituent
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Fig. 5. Beat level agreement between the two human raters. Cohen’s
Kappa coefficient κ12 was 0.58.

Fig. 6. Correlation coefficient of different raters between percent-
age differences in the clinical parameters because of beat rejection
DC M

all−r a ter 1 , DC M
all−r a ter 2 , DC M

all−r an dom ra ter where CM is the clinical
metric of interest (mCBFV, PI). The correlation between human raters
was high and the correlation between human rater and a random rater
was insignificant. The boxes extend from the 25-th (q1 ) to 75-th (q3 )
percentiles of the data, and the whiskers extends from q1 − 1.5IQR to
q3 + 1.5IQR.

features all perform significantly better compared with not per-
forming any beat rejection. In fact, even the worst performing
feature combination (DV) had a significantly larger positive im-
provement over negative improvement for both raters. As seen
in Fig. 7, the majority of other feature combinations comprise
a significantly better performing cluster, which provides evi-
dence for the robustness of the algorithm as a tool for generally
differentiating between low and high quality segments of data,
independent of the exact features selected.

We also assessed the agreement between the algorithm
and the human raters at the level of estimation of clinical
parameters. We used CC as the only feature for the algo-
rithm and inspected the correlation coefficient between the
percentage differences in the clinical parameters: DC M

all−rater1 ,
DC M

all−rater2 and DC M
all−algorithm . Fig. 8 demonstrates this high

correlation.

Fig. 9 demonstrates typical performance of the beat rejection
algorithm with CC as the only feature. It is evident that there is
agreement between human rater-accepted beats (Fig. 9(A)) and
those accepted using the algorithm (Fig. 9(B)). In this example,
however, there are three beats that are subject to disagreement;
two are rejected by the human rater but accepted by the algo-
rithm and one rejected by the algorithm but accepted by the
human rater. We elaborate on these disagreements in more de-
tail in Section IV-C. Fig. 9(C-E) visualizes the average and 95%
range of the beat waveforms calculated from all beats, human
rater-accepted and algorithm-accepted beats. The average beat
waveforms were consistent between human rater and algorithm-
accepted beats as evident by the small Euclidean distance be-
tween them (7.48, Fig. 9(F)) and the consistent estimate of the
clinical parameters mCBFV and PI . The variability of the
ensemble was also reduced dramatically as a result of removal
of poor quality beats. Evidently, the beats that were the subject
of disagreement had little effect on the final average beat wave-
form morphology and thus on the extracted clinical parameters.
However, the difference in clinical parameters between all beats
and human rater-accepted beat waveforms was quite large, high-
lighting the importance of filtering out poor quality beats for a
more accurate estimate of clinical parameter.

IV. DISCUSSION

A. Conclusion

In this paper, we proposed objective features to assess beat
quality in TCD recordings from cerebral arteries, namely CC,
ED, LEN, HFN, DV. We described the Iterative InterQuartile
Range (IIQR) algorithm, an outlier rejection method that used
these features to label beats that were different from others in a
TCD recording. We assessed the performance of this tool on a
dataset consisting of over 15 hours of TCD data with more than
74,000 beats recorded from healthy and pathological subjects.
We identified that the best feature combinations for identifying
poor-quality beats were CC, CC-LEN, and ED-LEN for our
data. We demonstrated that the IIQR algorithm successfully
identified low-quality beats such that the clinical parameters
from the algorithm-accepted beats were consistent with those
computed from expert-accepted beats.

B. Raters

Two expert human raters manually inspected 74,500 beats
to make acceptance/rejection decisions. The rating process was
highly time-consuming and took several days. The agreement
between the raters at the beat level was moderate κ12 = 0.58
[19]. We visually inspected the first hundred ratings with the
largest disagreement between the raters. It was evident the ma-
jor source of discrepancy between raters was disagreement over
beats with “average” quality. We also found that their thresh-
old for accepting an “average” beat was variable. This finding
was consistent with our finding of moderate intra-rater agree-
ments: κ11 = 0.62, and κ22 = 0.64 comparable to the inter-rater
agreement. The shifts in the clinical parameters because of the
rejected beats were, however, highly correlated for the raters.
This is presumably due to the insensitivity of the clinical metrics
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Fig. 7. Cumulative positive and negative improvements Spos , Sn eg for 31 possible feature combinations. Each combination is shown by a cross;
the center of the cross represents the mean bracketed by vertical and horizontal bars representing standard deviations in Spos and Sn eg directions
associated with the bootstrap study. The optimal combinations which maximized Spos − Sn eg were CC, and CC-DV.

Fig. 8. Correlation coefficient of the algorithm versus human raters
between percentage differences in the clinical parameters because of
beat rejection: DC M

all−r a ter 1 , DC M
all−r a ter 2 and DC M

all−a lg or ithm .

to the acceptance/rejection of the “average” quality beats while
both raters agreed on rejecting beats that were very poor and
whose rejection did make a difference in the estimate of the clin-
ical metrics. This points to the much-needed rejection of very
poor beats, the lack of objective guidelines for beat classification
and the subjective nature of manual beat classification.

C. Data

In order to properly interpret the results of this study, a number
of facets pertaining to the data require discussion, specifically
with regard to the expert annotations.

We found the optimal features for the beat rejection model
by reproducing the shifts in the clinical parameters that expert
human raters made. We did not attempt to tune our model to re-
produce the accepted/rejected beats directly. The major reason
was the inherently subjective and unrepeatable nature of man-
ually evaluating data quality, evident from the moderate agree-
ment between our human raters. This limitation likely persists
even for the most experienced TCD experts, and it is important
to keep this in mind when drawing comparisons to the expert-
accepted beats, e.g. Fig. 9. Furthermore, while the difference be-
tween poor and good beats is generally self-evident, no objective
classification criteria exists. An unavoidable consequence of this
is low inter-and intra-rater reliability for intermediate range of

signals. As a result, no true gold standard can exist for this type
of work. Thus, beat level disagreement between the raters does
not necessarily imply inaccuracy and can be simply the side
affect of rater variability and lack of objective classification
criteria.

Nevertheless, some method of evaluation is required, and
some metric of performance, however imperfect, is needed. It
is clear from the examples shown here, comparison to random
raters (Fig. 6), and based on inspection by other independent ex-
perts that the set of manually accepted beats used in this study
represents a significant improvement in signal quality over sim-
ply using the set of all detected beats. While exact agreement is
not necessarily desirable or even achievable, the percentage shift
in clinical parameters estimated from accepted beats compared
to using all beats provides an objective way of quantifying the
discrepancies to compensate for the lack of a gold-standard. This
metric was particularly useful because it is clinically meaning-
ful, sensitive to the poor beats whose acceptance/rejection makes
a difference in the estimate of the clinical parameters, and insen-
sitive to average quality beats whose acceptance/rejection does
not necessarily shift the clinical parameters considerably.

Finally, to facilitate the manual inspection process, a software
tool was developed to display the data along with the detected
beats, which would allow the user to add, delete, or shift beat
start and stop indices. In addition, this tool included a feature to
aid the user in identifying potentially bad beats by flagging beats
that were abnormal according to their cross correlation with the
average beat waveform. The user was ultimately responsible
for manually labeling the data. We turned off this feature for
the second rater but CC still stood out and was among the top
features for both raters together with ED-LEN and CC-LEN.
Nevertheless, we feel that one of the more important takeaways
from this work is that any combination of the features discussed
resulted in significantly improved performance, a result which
appears to be robust in spite of the limitations or biases present
in this study.

D. Features & Algorithm

To ensure fidelity of reported clinical parameters from
TCD measurement, an expert typically inspects the data and
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Fig. 9. Typical TCD recording annotated manually by a human rater (A) and by the algorithm (B). Comparison of the average beat waveforms from
all beats accepted (C), human-rater accepted beats (D), and algorithm accepted beats (E) along with the TCD clinical parameters mCBF V and
P I estimated from the average beat waveforms. Euclidean-distance between the identified average beat waveforms (F).

labels/removes the low-quality portion of the data, a process
which is fraught with problems, as previously detailed. Quanti-
tative measures of TCD signal quality are of paramount im-
portance for the accurate extraction of clinical parameters.
However, the TCD beat waveform is complex and can change
based on subject, age, race, health, vessel, and sonographer
skill, among other things. Therefore, absolute feature criteria
for beat classification can be inappropriate as they can change
from recording to recording independent of data quality. Conse-
quently, we chose to classify beats by comparing their features
relative to others in a recording and developed the IIQR algo-
rithm to identify those with substantially different values.

In this work, we have presented quality features for each beat
to be compared against those from other beats in a recording for
decision making. We selected these features with physiological,
clinical and signal processing considerations. We presented
two features to assess the beat waveform morphology. Clinical
features such as systole, diastole, mean and peaks velocities,
systolic flow acceleration, oscillating flow, curvature among
others extracted from the TCD beat waveform morphology have
been shown to be a major source of clinical information. We
used Euclidean distance and cross-correlation to characterize
the difference of a beat waveform morphology from the average
waveform. They are different in the sense that cross-correlation
(the normalized version that we used here) is not sensitive to
velocity scaling or shifting, and to the temporal shifting of
the beat waves and is a measure of synchrony between the
waveforms. Euclidean distance is more effective when it is
desired to reject beats based on the variation in morphological
points of beats. We also used beat length. Deviations in beat
length can be attributed to both the inherent healthy and
pathologic variability of the heart. More importantly, beat
length deviations can also be due to errors in identifying the
beat onset and end point. It is also common to fail to detect
any beats in portions of very low quality signal, resulting in
abnormal lengths. Thus, it is in our interest to label beats that

are either outliers in terms of beat length, i.e. statistically longer
or shorter than their adjacent beats. Inclusion of these beats may
compromise the quality of the average beat waveform. We used
high frequency noise power and diastolic variance for signal
processing and instrumentation reasons. High frequency noise
power is a measure of undesired high-frequency noise in the
acquired signal since the CBFV should have power primarily in
low frequencies only (f < 15Hz). Therefore, beats with larger
high frequency powers are more likely to be of low quality and
subject to environmental noise and signal processing artifacts.
The diastolic portion of a CBFV beat waveform is more prone
to lower signal-to-noise ratio compared to the systolic portion
because of the lower power of the diastole. Therefore, we
proposed to use diastolic variance as a measure of power in
the diastolic portion of the beat which is expected to have low
variability but occasionally has high variability due to noise.

With the five proposed features, we had 31 different combi-
nations of features to choose from. In order to find the optimal
feature combination, we systematically assessed each feature,
inspected the results and compared the clinically important pa-
rameters against those obtained from expert-accepted beats. We
identified a trade-off: the higher the positive improvement for a
combination, the higher the negative improvement, Fig. 7. An
important factor was the number of features. As the number
of features in a feature combination increased, with the ex-
ception of a few, both the positive and negative improvements
increased, as illustrated in Fig. 10. Therefore, a combination
with more features, on average, resulted in large positive im-
provement when quality was poor and many beats needed to be
rejected. However, the same combination also rejected beats in
recordings where beat quality was not poor which resulted in
negative improvements. Therefore, we selected the combination
that maximized the “score function” defined as the negative im-
provement subtracted from positive improvement. We identified
that CC, CC-LEN, ED-LEN were the best feature combinations
to make beat rejection decisions. It is important to note that these



890 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 3, MARCH 2020

Fig. 10. Changes in cumulative positive Spos (A) and negative Sn eg

(B) improvements as a function of number of features in a feature com-
bination. The improvement of a feature combination is represented by a
circle centered at (number of feature + jitter, improvement) with radius
representing the 95% range. Small jitter in horizontal axis was intro-
duced for visual separation of circles. On average, a combination with
many features had a large Spos (desired) at the cost of having a large
Sn eg (undesired).

choices were optimal only for our labeled data. Theoretically,
the choice could be different depending on the experimental
conditions, for example with a different ultrasound probe, data
acquisition system, sonographer, etc. Nevertheless, as a general
rule of thumb, we believe that cross-correlation is a good first
feature to inspect. In addition, if there are strong a priori rea-
sons to choose certain features based on knowledge of the data
or particular study, then the appropriate features can be selected.

We have developed the Iterative InterQuartile Range (IIQR)
method to detect outlier beats. We chose Tukey’s IQR method
because it is non-parametric, robust to outliers, requires no
a priori information about the data, and is not guaranteed to
always label a portion of the data as outliers [18], [20]. In this
method, outliers are the points falling outside of the whiskers.
We used Tukey’s standard boxplot where whiskers are at
q1 − β(q3 − q1) and q3 + β(q3 − q1) with β = 1.5 where q1
and q3 are the 25-th and 75-th percentiles. One can change the
sensitivity of the algorithm by changing β. The lower the β, the
higher the sensitivity of the algorithm in rejecting outliers, i.e.
the user is specifically interested in the regions of the data with
the highest quality because of their specific use case. In fact,
there are some studies demonstrating optimal β other than 1.5 if
the number and distribution of the observations are known [21],
[22]. However, since these are not known a priori for our appli-
cation, we used the conventional β = 1.5 in this paper. Outlier
detection algorithms typically work by comparing a data point to
the statistics gathered from all the available data points to make
a decision about whether the data point is an outlier. Importantly,
the outliers themselves are used to compute the statistic, which
under the right circumstances, can bias the resulting statistics
enough to prevent the detection of all outliers. To get around
this problem, we chose to develop an iterative algorithm to re-
compute the statistics each time an outlier is removed. At each
iteration, we remove only the most prominent outlier and

recompute the statistics, iterating until no further outlier can
be detected. While this approach is more accurate in the
computation of the statistics due to minimizing the contribution
of outliers in the statistics, it can be computationally more
expensive due to the number of the iterations.

The IQR method is a two-sided outlier rejection technique
and identifies both too low and too high outliers. However, for
some features, it is more appropriate to have a single-sided
rejection rule. Thus, we also developed and used the single-
sided rejection versions of the IQR method as needed. For high
frequency noise, Euclidean distance, and diastolic variance, we
only rejected too high outliers as low values for these features
are desired by definition. For cross-correlation, we only rejected
low outliers as high correlation is desired by definition. For beat
length, however, we used the two-sided version as both low and
high beat lengths can be inappropriate.

The final rejected beats were the union of beats identified
by each of the features since each feature inspected a different
physiological aspect of the beats. While there was overlap be-
tween the features, this is a simple and the least conservative
approach. In the future, it is of interest to study more complex
feature voting algorithms.

Since the proposed beat rejection mechanism is based on
outlier detection, it can possibly break if the overall data quality
is extremely poor. For example, the algorithm will likely pass
the poor beats if they are the majority. As such, the TCD signal
is of such low quality to begin with that any attempt at analysis
should be avoided at the first place. Future work is needed to
filter out the TCD scans that do not retain a minimum absolute
signal quality.

The IIQR algorithm, in the current implementation, is not
designed for real-time implementation in a target processor.
The main application is to refine the TCD data at the beat level
for other post hoc analyses and diagnostic algorithms that are
sensitive to data quality.

E. Other Algorithms

There are a few other relevant algorithms that can be used to
assess and improve the quality of the TCD signal. Gunn’s recent
technique requires an auxiliary signal [23]. They have developed
a system identification algorithm and trained a model between
Arterial Blood Pressure (ABP) signal and CBFV which detected
and corrected for artifacts in CBFV. It assumed that artifacts are
sparse events that increase the complexity of the dynamics of
the system between ABP and CBFV. This approach requires
measurements of additional signals i.e. ABP. Moreover, the
identified model will presumably need to be tuned for each
TCD recording to account for intersubject and intrasubject vari-
abilities and differences in the waveform between health and
disease.

Similar to TCD recordings, Intracranial Pressure (ICP) is a
triphasic pulsatile waveform that can be contaminated with noise
and artifacts. A few methods have been developed to improve
the ICP/CBFV data quality as well as the extraction of addi-
tional features [24], [25]. As one example, the MOrphological
Clustering nd Analysis of Intracranial Pulses (MOCAIP) algo-
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rithm utilizes a five-step process, including a hierarchical clus-
tering method to construct a representative non-artifactual beat
known as a dominant pulse [12], [24], [26]–[28]. Following the
clustering of the pulsatile beats, the dominant pulse is compared
to a pulse library to determine if it is a spurious pulse and sub-
peak landmarks are identified for post-hoc feature extraction.
Although this work was originally used for ICP pulses, it was
later adapted for the analysis of CBFV waveforms [12]. In com-
parison to the IIQR algorithm developed in this work, there are
a few advantages and disadvantages. First, the identified clus-
ters in the MOCAIP algorithm could be meaningful, e.g. cluster
with pathologic pulse waveform or high-noise cluster, etc. Sec-
ond, the use of the validated pulse library in MOCAIP provides
insight into the quality of the signal collected, e.g. if there is
no signal, the MOCAIP algorithm will not return valid results.
However, it is this pulse library and post hoc analysis that does
not allow MOCAIP to be used in a near real-time use, such
as within the clinical environment for fast diagnostic purposes
where the IIQR could be. Furthermore, the IIQR algorithm is
more general in the sense that we can label and reject beats
based on a select feature (five proposed in this paper) whereas
MOCAIP is based on Euclidean distance between the beats.

F. Clinical Implication

This paper presents a tool that can be used as a pre-filtering
stage to improve data quality for assessment of many cere-
brovascular pathologies including Acute Ischemic Stroke (AIS),
[3], [29], [30]. The limited number of available effective treat-
ments and interventions are highly time-sensitive. Therefore,
to avoid unnecessary delays, pre-hospital diagnostic tools are
critical for the fast triage and transfer of patients to special-
ized and appropriate treatment centers. Because TCD measures
blood flow through the cerebral vasculature directly in a fast,
portable, and noninvasive way, it is a strong candidate tech-
nology for pre-hospital diagnosis and assessment [31]. Further-
more, analysis of subtle, clinically significant changes in CBFV
waveform morphology has shown promise for potentially dis-
covering new biomarkers and developing machine learning al-
gorithms to aid in performing objective diagnostic assessments
for diseases which affect the cerebrovasculature [14], [15], [32].

Nevertheless, difficulties associated with acquiring high qual-
ity TCD data have hindered its adoption for this purpose. Due
to the ability of the algorithm presented here to reliably assess
the quality of local segments of data based on objective criteria,
we have taken yet another step forward toward alleviating the
obstacles preventing the adoption of TCD as a pre-hospital di-
agnostic tool. In being able to quickly and accurately extract the
high quality portions of signal from a TCD recording, this algo-
rithm may be able to aid in diagnostic assessments for conditions
such as AIS as well as many other cerebrovascular conditions,
which often rely heavily on obtaining an accurate, clean pic-
ture of the beat waveform present in the signal. Significantly,
the algorithm was able to closely replicate the performance of
a TCD expert in terms of measured clinical parameters, yet it
has none of the disadvantages normally associated with manual
inspection.
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