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Faster Gait Speeds Reduce Alpha and Beta
EEG Spectral Power From Human

Sensorimotor Cortex
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and Daniel P. Ferris , Senior Member, IEEE

Abstract—Objective: Our aim was to determine if walking
speed affected human sensorimotor electrocortical dy-
namics using mobile high-density electroencephalography
(EEG). Methods: To overcome limitations associated with
motion and muscle artifact contamination in EEG record-
ings, we compared solutions for artifact removal using
novel dual-layer EEG electrodes and alternative signal pro-
cessing methods. Dual-layer EEG simultaneously recorded
human electrocortical signals and isolated motion artifacts
using pairs of mechanically coupled and electrically inde-
pendent electrodes. For electrical muscle activity removal,
we incorporated electromyographic (EMG) recordings from
the neck into our mobile EEG data processing pipeline.
We compared artifact removal methods during treadmill
walking at four speeds (0.5, 1.0, 1.5, and 2.0 m/s). Results:
Left and right sensorimotor alpha and beta spectral power
increased in contralateral limb single support and push
off, and decreased during contralateral limb swing at each
speed. At faster walking speeds, sensorimotor spectral
power fluctuations were less pronounced across the
gait cycle with reduced alpha and beta power (p < 0.05)
compared to slower speeds. Isolated noise recordings
and neck EMG spectral power fluctuations matched gait
events and showed broadband spectral power increases
at faster speeds. Conclusion and significance: Dual-layer
EEG enabled us to isolate changes in human sensorimotor
electrocortical dynamics across walking speeds. A com-
parison of signal processing approaches revealed similar
intrastride cortical fluctuations when applying common
(e.g., artifact subspace reconstruction) and novel artifact
rejection methods. Dual-layer EEG, however, allowed us to
document and rule out residual artifacts, which exposed
sensorimotor spectral power changes across gait speeds.
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I. INTRODUCTION

E LECTROENCEPHALOGRAPHY (EEG) is a non-
invasive, lightweight and portable neuroimaging method

with fast time scale for studying human electrocortical dynam-
ics. Unfortunately, speed related changes in human electrical
brain activity have been challenging to study because of mo-
tion artifact contamination at fast gait speeds [1]–[3]. Neural
pathways between cortical motor planning centers and spinal
cord circuits have also been a source of contention [4], with
gait speed changes attributed to subcortical structures that can
require limited cortical input [5].

Gait speed adjustments have been studied across species us-
ing invasive recordings from cortical and subcortical structures.
Locomotion speed control has been traced to the mesencephalic
locomotor region of the midbrain, which responds to electri-
cal stimulation by initiating gait and proportionally increasing
gait speed [5]–[7]. Recently, however, slow and fast gait speed
mechanisms have been dissociated in mice by Caggiano et al.
[8] and Josset et al. [9]. Separate neuronal populations were
identified within pedunculopontine nucleus for controlling slow
speeds and cuneiform nucleus for fast speeds. Separate gait
speed control mechanisms therefore appear to project from these
structures through the brainstem via lateral paragigantocellular
nucleus and ultimately to the spinal cord [5], [8], [10].

Although gait speed is modulated by the mesencephalic loco-
motor region, presynaptic inputs to pedunculopontine nucleus
are received from basal ganglia and medulla, and cuneiform nu-
cleus receives input from the periaqueductal grey and inferior
colliculus [5]. Inhibitory mesencephalic inputs are also received
from central amygdala, superior colliculus and dorsal raphe [5],
[11]. Motor cortex, however, has input into basal ganglia, which
appears to relay into pedunculopontine nucleus during slow lo-
comotor control [5]. To understand the role of motor cortex
during gait, its activity has therefore been studied across the
stride and during locomotor adjustments.

Neuronal activity in motor cortex during animal locomotion
has revealed fluctuations across the gait cycle. Studies in cats
by Drew et al. [12], [13] and Beloozerova et al. [14], [15] have
shown increased motor cortex activity during forelimb swing,
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which further increased during precision stepping. Studies in
rats, however, showed hindlimb locomotion can be largely con-
trolled subcortically [16], [17], though gait timing and limb
kinematics can be decoded from cortical activity [18]–[20]. Re-
cently, DiGiovanna and colleagues [21] showed neuronal firing
in rat motor cortex more closely resembles activation patterns
in cats than previously thought. Specifically, motor cortex firing
preceded gait initiation, fluctuated with hindlimb trajectories
and muscle activities, and decreased in more automated behav-
iors, such as treadmill stepping [21]. Studies in non-human pri-
mates have shown similar instrastride fluctuations that are highly
structured and reproducible across gait speeds [22]–[24]. Within
specific gait phases, however, locomotion speed has shown little
effect on motor cortex firing rates in cats [25], [26] and rats [21],
and non-human primates have shown mixed trends [22]–[24].
Although human sensorimotor alpha (8–13 Hz) and beta band
(13–30 Hz) cortical oscillations have shown reduced spectral
power during upper and lower limb motor preparation and ex-
ecution [27]–[30], and at the instant of gait speed adjustments
in slow treadmill walking [31], spectral power changes at faster
walking speeds remain unclear.

Many human EEG studies have now reported electrocortical
fluctuations across the gait cycle [32]–[39]. Gwin and colleagues
[32] first identified gait related spectral fluctuations in left and
right sensorimotor cortices, along with anterior cingulate and
posterior parietal cortices. The authors [32] showed alpha and
beta spectral power increases during double support and de-
creases during limb swing, but the appearance of broadband
(3–150 Hz) spectral power fluctuations in each cortical clus-
ter could relate to motion or muscle artifacts [1], [2], [32]. To
limit EEG artifacts during locomotion, human brain dynamics
have therefore largely been studied in slow walking and gait-
like tasks [32]–[42]. Although scalp EEG recordings are prone
to artifacts arising from electrode and cable motions, as well as
confounding electrophysiological signals (e.g., eye and muscle)
and environmental electrical noise, recent hardware and sig-
nal processing advances have expanded possibilities for study-
ing electrical brain signals in dynamic tasks [43], [44]. Dual
layer EEG hardware that simultaneously records electrocortical
signals along with isolated noise from secondary sensors can
enhance signal processing efforts for noise removal and help
rule out the influence of noise artifacts in EEG recordings dur-
ing locomotion [43], [44]. Capabilities and best practices for
dual layer EEG processing, however, have yet to be established
for human EEG recordings. Comparisons among common and
novel signal processing approaches using dual layer EEG hard-
ware are therefore needed for removing electrical, mechanical,
and biological artifacts from mobile EEG.

Our aim was to study human electrocortical dynamics across
a range of gait speeds using mobile EEG. Because motion and
muscle artifacts have imposed barriers to the collection and
interpretation of human scalp EEG at fast gait speeds, we evalu-
ated traditional and novel processing approaches for motion and
muscle artifact removal using dual layer EEG. We hypothesized
that alpha and beta EEG spectral power would increase during
double support and decrease during limb swing, independent of
gait speed, and that dual layer EEG would allow motion and

Fig. 1. (A) Dual layer EEG displayed on a mannequin head. 128-
channel scalp interfacing EEG electrodes and 40 mechanically coupled
and inverted noise-only electrodes bundled into a dual layer EEG array.
(B) Noise-only sensors were referenced to an overlaid custom conduc-
tive fabric cap.

muscle artifacts to be quantified and removed through signal
processing. Dual layer EEG artifact removal may then uncover
gait speed-related changes in human EEG spectral power.

II. METHODS AND MATERIALS

Prior to participation, nine healthy subjects (6M, 3F, mean
age 27 ± 4 years) provided institutionally approved informed
consent. Institutional Review Boards at the University of Michi-
gan and University of Florida approved the study. To begin each
collection, subjects were fit with an appropriately sized 128-
channel EEG cap and the location of each scalp electrode was
measured with a Zebris digitizing system. After participation,
each subject received an anatomical magnetic resonance image
used during EEG source localization.

A. Dual Layer EEG Hardware

Our dual layer EEG array consisted of 128-scalp interfac-
ing EEG electrodes, with 40 mechanically coupled and inverted
noise-only electrodes that were electrically isolated from the
primary scalp EEG sensors [43], [44] (Fig. 1). The 128-scalp
EEG electrodes were pin type BioSemi ActiveTwo sensors that
fit into a standard 128-channel EEG cap after applying con-
ductive gel into each electrode well. The 40-noise electrodes
were flat type BioSemi ActiveTwo sensors that were paired
with scalp sensors evenly distributed across the EEG cap. Wires
from each EEG-noise pair were bundled with each other elec-
trode wire, forming a single cable bundle exiting the rear of
the EEG cap (Fig. 1(A)). To serve as an electrically isolated
artificial skin circuit for the noise electrodes, a custom conduc-
tive fabric cap (Eeonyx, Fig. 1(B)) was fit over the inverted
noise sensors, which approximately matched the resistivity of
human skin [44]. Conductive gel was inserted between the con-
ductive fabric and the inverted recording electrode to complete
the artificial skin circuit. Eight flat type BioSemi ActiveTwo
sensors were also placed on the left and right sternocleidomas-
toid and trapezius muscles (2 electrodes per muscle), capturing
EMG activity from the neck. In total, the 128-scalp EEG and
8-neck EMG electrodes were collected from a single BioSemi
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Fig. 2. (A) Single and (B) dual layer EEG processing pipelines. Common EEG processing steps (white boxes) and dual layer specific EEG
processing steps (black boxes). Single-layer EEG approaches relied on 128-scalp EEG electrodes without additional preprocessing (1: Single layer
EEG) and after Artifact Subspace Reconstruction (2: ASR). Dual-layer EEG approaches relied on 128-scalp EEG electrodes, 40 isolated noise-only
electrodes, and 8 neck EMG electrodes merged into an adaptive mixture independent component analysis (AMICA) after contrasting preprocessing
steps. Dual-layer EEG processing was completed without additional preprocessing (3: Dual layer EEG), after frequency domain noise cancellation
(4: Noise cancel), after ASR (5), and after applying frequency domain noise cancellation to artifact components from principal component analysis
and canonical component analysis (6: PCA+CCA).

collection box and the 40-noise electrodes were collected from
a separate BioSemi collection box. The two systems were daisy-
chained, which stored the EEG, EMG, and noise data in a single
synchronized data file sampled at 512 Hz. During testing, the
BioSemi collection boxes were placed above the subject on a
bodyweight support apparatus.

B. Experimental Protocol

Subjects completed testing in randomized walking speed con-
ditions (0.5, 1.0, 1.5, 2.0 m/s) on a Bertec force-instrumented
treadmill used to detect heel strike and toe off events for each
limb. During testing, additional experimental conditions were
completed, but we focus this analysis on continuous walking
conditions at different speeds. Each speed condition lasted 3-
minutes with rest periods between. Subjects were instructed to
walk normally while restricting unnecessary eye blinks, head
motions, or jaw clenching. Because our fastest locomotion con-
dition was near the preferred human walk to run transition speed
[45], we asked subjects to remain walking in each condition.
Prior to gait speed conditions, a standing baseline trial was also
recorded.

C. EEG Processing

Figure 2 illustrates our EEG processing pipeline used to iso-
late and fit electrocortical sources to each subject’s brain, per-
form time-frequency and spectral analyses, and statistical testing

in EEGLab [46]. We evaluated multiple EEG processing proce-
dures that included two single layer EEG methods (Fig. 2(A))
and four dual layer EEG methods (Fig. 2(B)) using EEGLab
functions and custom MATLAB scripts. To distinguish tradi-
tional single layer EEG processing from our dual layer EEG
approach, we highlighted novel processing steps in black boxes
(Fig. 2(B)). Single and dual layer EEG processing differed in the
number of channels analyzed, data preprocessing, independent
component analysis input, and independent component rejec-
tion. Otherwise, common EEG processing steps are shown in
white boxes (Fig. 2).

Common EEG processing steps involved high-pass filtering
channel data (1 Hz) followed by preprocessing. Next, data from
each speed condition were concatenated and outlier channels
were rejected using statistical criteria (kurtosis and standard de-
viation) [32]. In methods without preprocessing, EEG data were
common average referenced after channel rejection (methods 1
& 3, Fig. 2). A robust average reference was applied before
each other preprocessing method by excluding outlier channels
from the average. Prior to performing adaptive mixture inde-
pendent component analysis (AMICA) [47], we down sampled
data to 256 Hz. We then modeled independent components as
equivalent current dipoles using a three layer boundary element
model and subject-specific anatomical magnetic resonance im-
age warped to the Montreal Neurological Institute standard brain
using DIPFIT and Fieldtrip function in EEGLab [48]. Dipoles
with residual variance less than 0.15 were retained for further
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analysis. We extracted complete gait cycles from our EEG data
using synchronized vertical ground reaction force gait events,
delimited by right heel strike. Time-frequency analysis was
performed using single trial spectrograms that were baseline
normalized within each speed condition, and time-warped to
create event related spectral perturbation (ERSP) plots across
the gait cycle [32], [50]. Group analysis relied on k-means
clustering using vectors jointly coding dipole locations, scalp
maps, and spectral power similarities in EEGLab [40], [49].
Clusters containing multiple independent components per sub-
ject were first aggregated within subjects to avoid artificially
inflating sample size during statistical testing [44]. We then
averaged time-frequency data across subjects in each cluster.
Next, we set non-significant spectral power changes to zero us-
ing bootstrap methods in EEGLab (α = 0.05). Cortical clusters
with components from more than 50% of the subjects were
further analyzed. Because we compared multiple EEG process-
ing methods, we focused our analysis on consistent cortical
clusters with spectral fluctuations across the gait cycle. Finally,
we evaluated spectral power differences among speed condi-
tions using non-parametric bootstrap-based ANOVA in EEGLab
(α = 0.05).

D. Single Layer EEG Processing

Single layer EEG processing (Fig. 2(A)) was completed with-
out additional preprocessing (1: Single layer EEG) and after
artifact subspace reconstruction (2: ASR) in EEGLab. ASR is a
commonly used EEG preprocessing method that relies on 0.5 s
sliding window principal component analysis to correct and re-
construct non-stationary high variance EEG data based on sta-
tistical criteria from clean EEG [51]. Here, we used a standing
baseline for each subject during ASR and applied a 7 standard
deviation cutoff based on pilot testing. The remainder of each
single layer EEG processing approach was performed as out-
lined above and in Fig. 2(A) using data from the scalp interfacing
dual layer EEG sensors and omitting data from the outer layer
sensors (Fig. 1).

E. Dual Layer EEG Processing

Dual layer EEG processing (Fig. 2(B)) was completed with-
out additional preprocessing (3: Dual layer EEG), after fre-
quency domain noise cancellation (4: Noise cancellation), after
artifact subspace reconstruction (5: ASR), and after applying
frequency domain noise cancellation to artifact components
from principal component analysis and canonical component
analysis (6: PCA+CCA). Each dual layer EEG preprocessing
approach relied on methods adapted from Nordin et al. [44], us-
ing similar AMICA input and independent component rejection
steps. In each case, dual layer EEG preprocessing output was
merged with 40-channel dual layer noise data and 8-channel
EMG data by stacking channels. We reduced dual layer EEG
AMICA output to 136 dimensions using PCA. To reject dual
layer EEG independent components, component spectra were
compared to noise and EMG channels using a polynomial fit.

Components with flat spectra (linear slope � −0.06) or those
matching noise or muscle (R2 � 0.99) were rejected.

Frequency domain noise cancellation was applied using meth-
ods from Nordin et al. [43]. This method cancels artifacts from
scalp-interfacing EEG electrodes using artifacts captured by
dual layer noise electrodes. Because our array consisted of 128-
EEG electrodes and 40-matched noised pairs, we used spherical
interpolation in EEGLab to compute matched noise pairs for
all 128-EEG electrodes. We then used the noise cancellation
algorithm to separately perform Fast Fourier Transform (FFT)
on the EEG and noise data in a 0.5 s sliding window with
94% overlap. Noise frequencies in the EEG signal were can-
celled using cutoffs based on the median Fourier coefficients
across frequencies, and the signal was reconstructed using in-
verse FFT [43]. We used separate upper (>6× median) and
lower cutoffs (<2× median) for motion artifact and electri-
cal noise cancellation, respectively. To account for magnitude
differences between EEG and noise signals, we scaled noise
FFT coefficients to the median EEG FFT coefficients and re-
constructed an amplitude-matched noise signal, which we later
used in dual layer AMICA. Our aim was to match noise and
EEG artifact signal amplitudes by compensating for resistivity
differences between the scalp and conductive fabric. This overall
approach outperformed direct time or frequency domain noise
subtractions using algorithm parameters selected during pilot
testing.

To remove motion and muscle artifacts from our dual layer
EEG data, we combined preprocessing approaches. Because
ASR relies on principal component analysis to reconstruct sig-
nal components that deviate from clean EEG data, we developed
a process to clean large variance components based on compar-
isons to dual layer noise electrodes. To do so, we used a 0.5 s
sliding window with 50% overlap to perform PCA on the EEG
channel data. We replaced outlier PC scores (>2 SD from the
median) with the median and cleaned components highly cor-
related with 40-channel dual layer noise mean (>5 SD from the
median noise correlation) using frequency domain noise can-
cellation (cancel Fourier coefficients >2× noise median). The
signal was then reconstructed from artifact cleaned principal
components.

Next, because canonical component analysis has been used
to remove EEG motion and muscle artifacts [52], [53], we used
a 3.0 s sliding window with 50% overlap to perform CCA on
the PCA preprocessed EEG data. CCA input relied on chan-
nel data with a 1-frame lag autocorrelation, which separates
low frequency, high autocorrelation motion artifact components
from high frequency, low autocorrelation electrical and muscle
artifact components. Components with low autocorrelation (be-
low the component-autocorrelation plot knee) or biased power
spectra (negatively skewed: high frequency, or outlier skewness
or kurtosis: >2 SD from the median) were cleaned using fre-
quency domain noise cancellation (cancel Fourier coefficients
>6× noise median or <2× noise median). The signal was then
reconstructed from artifact cleaned canonical components. We
found that using PCA before CCA to cancel large artifacts
improved the performance of CCA for muscle and electrical
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Fig. 3. Left sensorimotor cortex data processing comparisons (separate processing in each row). Two traditional single-layer EEG approaches
were applied to the scalp interfacing dual layer EEG sensors (top two rows) and four dual-layer EEG approaches incorporated all sensor data
(bottom four rows). Left to Right: Mean cluster topographic map, Dipole locations (Blue: subject dipoles, Red: cluster centroid), Event Related
Spectral Perturbation plots at each walking speed (R: right, L: left, HS: heel strike, TO: toe off, significance masked: p < 0.05), Power spectral
density at each walking speed (significant speed differences at each frequency identified below each plot in black, p < 0.05). ERSP plots without
statistical significance masking are in Supplementary Fig. A.

artifact cancellation, as well as residual motion artifacts. Over-
all parameter selection was the result of pilot testing.

F. Dual Layer EEG Noise and EMG Channel Processing

After analyzing our EEG data using each single and dual
layer method, we performed similar channel-based analyses on
the 40 dual layer noise channels and 8 neck EMG channels. The
purpose was to evaluate pure motion and muscle artifacts by
examining equivalent spectral power fluctuations across the gait
cycle and changes in spectral power among speed conditions.
We compared motion and muscle artifact signal changes to our
preprocessed and ICA-derived electrocortical sources. Channel
data were analyzed after high pass filtering at 1 Hz, down sam-
pling to 256 Hz, extracting gait cycle epochs, and performing

time-frequency analysis. ERSP plots were normalized to base-
line within each speed condition and masked for significance
(α = 0.05). Spectral power differences among speed condi-
tions were also assessed using non-parametric bootstrap-based
ANOVA in EEGLab (α = 0.05).

III. RESULTS

Left and right sensorimotor cortices showed spectral power
fluctuations across the gait cycle using contrasting EEG pro-
cessing methods. Figure 3 shows increased left sensorimotor
alpha and beta spectral power surrounding left heel strike, and
decreased alpha and beta spectral power after right toe off. Left
sensorimotor alpha and beta fluctuations therefore increased
during right limb single support and push off in double support,
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Fig. 4. Right sensorimotor cortex data processing comparisons (separate processing in each row). Two traditional single-layer EEG approaches
were applied to the scalp interfacing dual layer EEG sensors (top two rows) and four dual-layer EEG approaches incorporated all sensor data
(bottom four rows). Left to Right: Mean cluster topographic map, Dipole locations (Blue: subject dipoles, Red: cluster centroid), Event Related
Spectral Perturbation plots at each walking speed (R: right, L: left, HS: heel strike, TO: toe off, significance masked: p < 0.05), Power spectral
density at each walking speed (significant speed differences at each frequency identified below each plot in black, p < 0.05). ERSP plots without
statistical significance masking are in Supplementary Fig. B.

but decreased during right limb swing. In contrast, Fig. 4 pre-
dominantly shows asynchronous spectral power fluctuations in
right sensorimotor cortex compared to left. Right sensorimotor
alpha and beta power increased surrounding right heel strike,
followed by decreased alpha and beta power after left toe off.
Right sensorimotor alpha and beta power therefore decreased
during left limb swing, but increased during left limb single
support and push off in double support. At faster gait speeds,
electrocortical fluctuations were less pronounced across the gait
cycle, with limited amplitude, duration, and spectral bandwidth
compared to slow walking (Figs. 3 & 4, ERSPs). Supplementary

Figures A and B show spectral power fluctuations from Figs. 3
and 4 without significance masking.

Discrepancies were apparent among EEG processing ap-
proaches when assessing spectral power fluctuations across the
gait cycle. Similarities were evident in the scalp map, dipole lo-
cations and ERSP plots among single layer and dual layer EEG
processing using ASR (Figs. 3 & 4, rows 2 & 5, respectively)
and dual layer PCA+CCA (Figs. 3 & 4, row 6). Each of these
methods showed lateralized asynchronous sensorimotor elec-
trocortical fluctuations across the gait cycle. In contrast, single
and dual layer EEG without additional preprocessing (Figs. 3 &
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4, rows 1 & 3, respectively) and noise cancellation (Figs. 3 & 4,
row 4) did not show consistent gait-related spectral power fluc-
tuations, despite relatively similar scalp topography and dipole
locations compared to each other processing method.

Spectral power changes across speed conditions further ex-
posed differences among EEG processing methods (Figs. 3 &
4, right column). Left sensorimotor cortex mostly showed in-
creased gamma power at faster gait speeds (p < 0.05) based
on single layer EEG and ASR (Fig. 3, rows 1 & 2, respec-
tively), as well as dual layer EEG without preprocessing and
after noise cancellation (Fig. 2, rows 3 & 4, respectively). In
contrast, dual layer ASR and PCA+CCA showed reduced left
sensorimotor beta power at faster gait speeds (Fig. 3, rows 5
& 6, p < 0.05), and PCA+CCA also showed reduced alpha
power at faster speeds (Fig. 3, row 6, p < 0.05). Similar to the
left, right sensorimotor cortex showed greater gamma power at
faster speeds (p < 0.05) based on single layer EEG and ASR
(Fig. 4, rows 1 & 2, respectively), as well as noise cancellation
and dual layer ASR (Fig. 4, rows 4 & 5, respectively, p < 0.05).
In contrast, PCA+CCA, showed reduced beta power at faster
gait speeds (Fig. 4, row 6, p < 0.05).

Dual electrode noise recordings captured spectral fluctuations
due to motion artifacts across the gait cycle (Fig. 5). Noise fluc-
tuations varied slightly across scalp locations, but consistently
showed increased spectral power following heel strike, dur-
ing double support, and reduced spectral power during swing,
without lateralization. Artifact related broadband spectral power
fluctuations are seen clearly in Supplementary Figure C, which
shows Fig. 5 ERSPs without significance masking. Spectral
power fluctuations tended to increase in amplitude at faster gait
speeds (Fig. 5 & Supplementary Fig. C ERSPs), along with
broadband spectral power increases (Fig. 5, right column, p <
0.05).

Neck EMG recordings showed spectral power fluctuations
across the gait cycle (Fig. 6). Each neck muscle recording
contained lateralized high frequency gamma oscillations, and
broadband spectral fluctuations were evident without signifi-
cance masking (Supplementary Fig. D). Left and right stern-
ocleidomastoid and trapezius muscles predominantly showed
increased spectral power preceding heel strike and during dou-
ble support with the contralateral limb leading, and prior to
ipsilateral heel strike. Left and right neck muscles also showed
decreased spectral power during double support with the ip-
silateral limb leading, through swing. Lateralized neck EMG
spectral power fluctuations did not match left and right sen-
sorimotor fluctuations across the gait cycle, nor did they match
dual electrode noise recordings. Neck EMG spectral fluctuations
tended to increase at faster gait speeds (Fig. 6 & Supplementary
Fig. D ERSPs, p < 0.05), along with broadband spectral power
increases (Fig. 6, right column).

IV. DISCUSSION

We observed asynchronous spectral power fluctuations in
left and right sensorimotor cortices across the gait cycle,
with reduced duration and frequency bandwidth at faster gait
speeds. Sensorimotor alpha and beta power increased during

contralateral limb single support and push off, and decreased
during contralateral limb swing. Mean spectral power across
the gait cycle showed reduced left and right sensorimotor beta
power, and reduced right sensorimotor alpha power, at faster
gait speeds, after removing muscle artifacts. Gamma power in-
creased in left and right sensorimotor cortices at faster gait
speeds without removing EEG muscle artifacts, but did not show
gait speed differences after EMG artifact removal.

By simultaneously collecting isolated noise recordings from
our dual layer EEG electrodes, we were able to characterize
spectral power fluctuations due to motion artifacts across the
gait cycle at a range of speeds (Fig. 5). Motion artifact related
spectral power fluctuations increased with gait speed and over-
lapped with left and right sensorimotor electrocortical fluctua-
tions in Figs. 3 and 4, which illustrates challenges involved in
isolating brain signals from scalp EEG during locomotion. Af-
ter preprocessing with ASR or PCA+CCA, however, we were
able to identify robust lateralized sensorimotor cortical activity
across a range of gait speeds that is distinct from isolated EEG
motion artifacts and EMG recordings. Dual layer EEG therefore
allowed us to rule out residual artifacts from our electrocortical
sources.

Our observed changes in sensorimotor dynamics with gait
speed are largely in agreement with invasive recordings during
animal locomotion. Our human electrocortical spectral power
fluctuations occurred within specific phases of the gait cycle
that were maintained across locomotion speeds These data re-
flect similar neuronal firing rate patterns throughout the gait
cycle in cats [25], [26], rats [21] and non-human primates [22]–
[24], with neuronal spike rates that varied across the stride.
Increased firing rates within the motor cortex have also been
reported in transitions between single and double support [21],
[22] and during limb swing [12], [13], [15], [24]. Our EEG data
had spectral power increases in sensorimotor cortices during
contralateral limb single support and push off, and decreases
in swing. Compared to slower speeds, however, faster walking
speeds had reduced spectral power fluctuation durations and
frequency bandwidth in the gait cycle. Reduced overall sensori-
motor alpha and beta power at faster gait speeds suggests greater
cortical involvement compared to slow walking [54]. One ex-
planation is that sensorimotor cortices are processing increased
sensory feedback throughout the gait cycle at faster speeds. If
sensorimotor cortex is more attuned to sensory feedback, it could
be better primed for performing unexpected gait adjustments at
fast speeds, such as stepping over obstacles [44]. Although an-
imal studies have shown increased, decreased, and unchanging
neuronal firing rates in sensorimotor cortex with changes in lo-
comotion speed [21]–[26], comparisons between neuronal firing
rates and EEG spectral power are indirect. Despite substantial
evidence that locomotor speed is largely controlled subcortically
[5]–[11], sensory integration involves many cortical structures
[13]. Reduced alpha and beta EEG spectral power from human
primary motor and parietal cortices at the instant of slow gait
speed transitions (∼0.3–0.6 m/s) have therefore exposed cortical
contributions to gait speed adjustments [31].

Slow gait-like stepping tasks have previously shown sen-
sorimotor electrocortical fluctuations measured with EEG.
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Fig. 5. Exemplar dual electrode noise channel data. Left to Right: Noise channel scalp location (red circle), Event Related Spectral Perturbation
plots at each walking speed (R: right, L: left, HS: heel strike, TO: toe off, significance masked: p < 0.05), Power spectral density at each walking
speed (significant speed differences at each frequency identified below each plot in black, p < 0.05). ERSP plots without statistical significance
masking are in Supplementary Fig. C.

During slow robot assisted walking (∼0.5–0.6 m/s), Wagner
and colleagues [33] and later, Seeber et al. [34], [35], showed
low gamma fluctuations (∼24–40 Hz) in central sensorimotor
areas, without lateralization, though task differences might
present contrasting brain dynamics compared to unassisted gait.
Bradford and colleagues [36] subsequently showed lateralized
asynchronous spectral fluctuations in left and right sensorimotor
cortices during level and incline walking at 0.75 m/s, and
Oliveira et al. [37] isolated similar activities in somatosensory
cortices during walking at 1.0 m/s with eyes open and closed.
In each case, alpha and beta power increased in double support
during contralateral limb push off, and decreased during swing,
in agreement with our results.

Bulea and colleagues [38] also studied slow (0.8–0.9 m/s) and
fast treadmill walking (1.4–1.5 m/s), in active and passive speed
control conditions, with some evidence of lateralized spectral

fluctuations in left and right motor cortices in slow walking. The
authors [38], however, applied ASR to their EEG data using an
aggressive three standard deviation cutoff that can attenuate or
remove brain signals along with artifacts. In separate studies,
Luu et al. also applied ASR with a three standard deviation cut-
off, but did not report lateralized sensorimotor activity during
level walking, and ramp and stair ascent [41], nor while control-
ling an avatar during treadmill walking [42]. Recently, however,
Artoni and colleagues [39] reported spectral power fluctuations
across the gait cycle in cortical motor regions after applying
ASR with 20 standard deviation cutoff. Similar to our results
and previous studies, the authors showed spectral power de-
creases during limb swing and increases during double support,
and the authors were able to identify unidirectional connectivity
to lower limb muscles during limb swing, indicative of motor
drive [39].
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Fig. 6. Exemplar neck EMG channel data (left and right sternocleidomastoid and trapezius muscles). Left to Right: EMG channel location (red
circle), Event Related Spectral Perturbation plots at each walking speed (R: right, L: left, HS: heel strike, TO: toe off, significance masked: p < 0.05),
Power spectral density at each walking speed (significant speed differences at each frequency identified below each plot in black, p < 0.05). ERSP
plots without statistical significance masking are in Supplementary Fig. D.

Although we report lateralized activity in sensorimotor cor-
tices, gait related spectral fluctuations have been reported in
several cortical areas in previous mobile EEG studies, includ-
ing occipital lobe, supplementary motor area, anterior cingulate,
posterior parietal, prefrontal, and premotor cortices [32], [36]–
[39], [41], [42]. We therefore cannot rule out gait speed changes
in other cortical structures, but restricted our analysis to clus-
ters that appeared in multiple preprocessing methods, and with
prominent spectral fluctuations across the gait cycle. The inclu-
sion of additional tasks, contrasting EEG processing, electrode
configurations, or residual motion and muscle artifacts, could
also lead to the appearance of intrastride spectral fluctuations
in other brain areas. Additional studies that apply preprocess-
ing steps to remove artifacts while preserving electrocortical
activity are therefore needed.

In addition to our reported spectral power fluctuation patterns
across the gait cycle, mean spectral power revealed important
electrocortical changes among gait speeds. Reduced sensori-
motor alpha and beta power was observed at faster gait speeds,
often coinciding with increased gamma power (Figs. 3 & 4,
right column). Although multiple processing methods showed
these trends, dual layer EEG preprocessing with PCA and
CCA appeared to limit artifact related variability that masked

statistical differences in alpha and beta bands, and broad gamma
band increases that were similar to motion artifact and EMG
recordings (Figs. 5 & 6, right column). Decreased sensorimo-
tor alpha and beta spectral power are expected electrocortical
responses during motor preparation and execution [27]–[30],
but increased gamma power has also been reported in isolated
upper and lower limb movements using electrocorticography,
magnetoencephalography, and EEG [27], [55]–[57]. Observed
spectral power differences among gait speeds could therefore in-
dicate signal over cleaning when applying dual layer PCA and
CCA for motion and muscle artifact removal [58]. Movement
related gamma band activity, however, tends to be localized with
short duration around movement onset and offset, which is dif-
ficult to record using scalp EEG because of its comparatively
low signal to noise ratio and spectral overlap with muscle ac-
tivity [55]–[57]. Nevertheless, increased primary motor cortex
gamma power has been reported by McCrimmon et al. using
electrocorticography during treadmill walking [59], and this ac-
tivity showed intrastride fluctuations. The authors reported more
gamma bursts across the gait cycle at faster walking speed, but
this finding was limited to one of two epileptic patients in the
study [59]. Intrastride fluctuations were also shown in alpha and
beta bands for one subject [59], but the authors acknowledge the
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possibility of alpha band motion artifact contamination in their
electrcortographic data. Because the scalp, skull, and dura mater
can also blur and low pass filter electrocortical signals [57], [60],
[61], representations of gait related electrocortigraphic gamma
activity might differ from scalp EEG, particularly during loco-
motion when muscle activity increases.

Acknowledging uncertainty in ground truth EEG spectral
content during locomotion, intrastride alpha and beta fluctua-
tions are well reported during slow walking using EEG. Bilat-
eral sensorimotor alpha and beta activities therefore appear to be
involved in regulating stride dynamics. Although McCrimmon
and colleagues [59] attributed increased primary motor cortex
gamma activity to high level locomotor control processes, such
as adjusting gait speed and duration, rather than sensory pro-
cessing, recordings from additional brain structures are required
to draw concrete conclusions. Decreased bilateral coordination
has also been reported based on lower limb gait dynamics in
slow compared to fast walking [62]. The authors speculated
that slower gait speeds might therefore require greater atten-
tional resources and supraspinal input [62]. Ultimately, loco-
motor control likely involves complex interactions among brain
areas that integrate sensory and motor processes, particularly
during online gait adjustments. Fortunately, high density EEG
captures electrocortical signals across the scalp, which has un-
covered interactive processes among cortical structures in upper
limb tasks [63], [64]. Here we show that novel hardware and
signal processing can enable similar advances in the study of
locomotor control using mobile EEG, though additional work
is needed to decode the information from these brain signals
during gait. Along these lines, reduced EEG beta power was re-
cently reported over the contralateral sensorimotor cortex during
a seated knee extension task in spinal cord injured subjects [65].
This spectral power decrease during movement was followed
by a spectral power increase after movement termination that
further increased with spinal cord stimulation. The authors at-
tributed this EEG spectral power change to cortical excitability
modulation through proprioceptive pathways [65].

To study a wide range of locomotion speeds, we chose rel-
atively aggressive cleaning parameters in each preprocessing
method. Although these parameters are adjustable, some evi-
dence of over cleaning was apparent using ASR, which showed
reduced delta and theta spectral power in 2.0 m/s walking
(Figs. 3 & 4, rows 2 & 5, right column). Low frequency spectral
power reductions, however, were also observed when applying
higher standard deviation cutoffs (e.g., 10 and 20). Notably,
similar spectral power fluctuation patterns were apparent af-
ter applying ASR to single and dual layer EEG, compared to
dual layer EEG processing using PCA and CCA. In this case,
however, single layer EEG also benefitted from a passive me-
chanical effect of cable bundling and the overlaid secondary cap
[43], [44] because all data were collected with dual layer EEG
hardware. An important distinction between ASR and our dual
layer EEG approach using PCA and CCA is that our artifact
component selection and cleaning criteria are based on simul-
taneous noise recordings, rather than statistical features from
clean EEG while subjects were motionless. Dual layer EEG
processing can therefore be carried out without calibration or

baseline comparisons, which can enable more straightforward
online EEG artifact removal without assumed similarities be-
tween EEG recorded at rest and EEG recorded during motor
tasks. Although each approach carries assumptions, we believe
objective artifact measures can improve EEG cleaning reliability
and validity. Our ability to directly compare artifact recordings
to pre and post-processed EEG removes uncertainty when inter-
preting brain activity during movement. Artifact identification is
therefore simplified during channel-level preprocessing and in-
dependent component rejection, similar to previous approaches
that identified and filtered components based on accelerometer
data [66], [67]. Our dual layer EEG approach, however, is well-
suited for removing electrical artifacts [42]. Dual layer EEG
processing might also benefit from alternative cleaning meth-
ods, including adaptive filtering [68]. Future signal processing
evaluations should nevertheless include benchmark tests with
ground truth signals broadcast through electrical head phantom
devices during motion [43], [44], [69], [70].

In the current EEG processing approach, we applied fre-
quency domain noise cancellation to artifact related principal
and canonical components. Frequency domain noise cancella-
tion was also applied directly to EEG channel data, but was less
effective at removing artifacts that masked gait related electro-
cortical fluctuations (Figs. 3 & 4, row 4). Component decompo-
sition methods prior to EEG cleaning therefore appeared to be
more effective at isolating noise. We elected to clean rather than
reject artifact related components in order to limit over cleaning
and data rank reductions prior to ICA. Related to these con-
cerns, we acknowledge contention surrounding PCA dimension
reduction prior to ICA [71], but do not believe this step dra-
matically altered our ICA-derived brain sources during dual
layer EEG processing. We do, however, note fewer subjects and
components contributed to our cortical clusters after dual layer
processing (Figs. 3 & 4, left column), which is likely due to
additional artifact component rejection steps. Ultimately, these
steps helped to ensure our electrocortical clusters were free of
artifacts.

V. CONCLUSION

Human sensorimotor electrocortical dynamics changed with
gait speed, revealing lateralized sensorimotor activity tied to gait
events. Intrastride electrocortical activity showed left and right
sensorimotor alpha and beta power increased in contralateral
limb single support and push off, and decreased during swing
at each gait speed. At faster speeds, spectral power fluctuations
had limited duration and bandwidth, along with reduced alpha
and beta power across the gait cycle, after dual layer EEG mo-
tion and muscle artifact removal. Reduced sensorimotor spectral
power could be indicative of greater cortical resources attuned
to sensory feedback at faster locomotion speeds. This would
prime sensorimotor cortices for performing sudden gait adjust-
ments. Using our dual layer EEG hardware we were able to
quantify artifact sources and clean noisy data. Isolated noise
recordings showed discernible spectral power fluctuations from
electrocortical activity after preprocessing, which helped rule
out the effects of motion and muscle artifacts. Dual layer EEG
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can therefore help expand possibilities for studying human brain
activity in dynamic tasks.
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