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Model-Based Separation, Detection, and
Classification of Eye Movements

Federico Wadehn , Thilo Weber , David J. Mack, Thomas Heldt , and Hans-Andrea Loeliger

Abstract—Objective: We present a physiologically moti-
vated eye movement analysis framework for model-based
separation, detection, and classification (MBSDC) of eye
movements. By estimating kinematic and neural controller
signals for saccades, smooth pursuit, and fixational eye
movements in a mechanistic model of the oculomotor sys-
tem we are able to separate and analyze these eye move-
ments independently. Methods: We extended an established
oculomotor model for horizontal eye movements by neu-
ral controller signals and by a blink artifact model. To es-
timate kinematic (position, velocity, acceleration, forces)
and neural controller signals from eye position data, we
employ Kalman smoothing and sparse input estimation
techniques. The estimated signals are used for detecting
saccade start and end points, and for classifying the record-
ing into saccades, smooth pursuit, fixations, post-saccadic
oscillations, and blinks. Results: On simulated data, the
reconstruction error of the velocity profiles is about half
the error value obtained by the commonly employed ap-
proach of filtering and numerical differentiation. In experi-
ments with smooth pursuit data from human subjects, we
observe an accurate signal separation. In addition, in neural
recordings from non-human primates, the estimated neural
controller signals match the real recordings strikingly well.
Significance: The MBSDC framework enables the anal-
ysis of multi-type eye movement recordings and pro-
vides a physiologically motivated approach to study motor
commands and might aid the discovery of new digital
biomarkers. Conclusion: The proposed framework provides
a model-based approach for a wide variety of eye movement
analysis tasks.

Index Terms—Eye movements, Kalman filter, oculomotor
system, saccades, signal separation, smooth pursuit eye
movements, sparse Bayesian learning, state space models.

I. INTRODUCTION

EYE movements provide valuable information about the vi-
sual system and related brain areas [1]. Early oculomotor
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studies took place in tightly controlled environments with head-
fixed subjects, simple stimuli, and single-type eye movements.
In contemporary mixed-type [2] and free-viewing [3] exper-
iments, accurate estimation of eye movement parameters is
more demanding. A further challenge is posed by the large
variety of eye tracking technologies, which range from invasive
methods such as search coils, to electro-oculography, to non-
contact methods, such as infrared- and video-oculography [4],
[5]. These techniques vary, among others, in their signal-to-
noise ratio and sampling rates. Such diverse recordings call for
robust and flexible signal analysis algorithms.

Traditionally, kinematic signals (eye position, velocity and
acceleration) have been obtained by lowpass filtering and nu-
merical differentiation of the measured eye position [6]. Un-
wary filtering, however, can substantially alter characteristics of
eye movement recordings, in particular saccadic peak veloci-
ties [7], [8]. Nonetheless, filtered position and velocity profiles
are commonly used for detecting saccades and extracting rel-
evant parameters. Prominent approaches are the Identification
by Velocity (IVT) or Dispersion Threshold (IDT) algorithms
[9]. By themselves, IVT and IDT are not well-suited for multi-
type recordings due to the overlap of saccades and other eye
movements in the velocity domain [10]. In particular, in smooth
pursuit eye movement (SPEM) analyses, naturally occurring
catch-up saccades must be detected to allow for a meaningful
analysis. An ad-hoc remedy is to first estimate the SPEM veloc-
ity profile by lowpass filtering and then to detect saccades using
time-varying thresholds [11].

Recent machine learning approaches, trained on annotated
data, classify eye position recordings directly into different types
of eye movements using algorithms such as random forests [12],
hidden Markov models [13], and neural networks [14]. While
performant, such approaches lack a physiological basis and their
estimation quality heavily depends on the training data available.
Hand-labeled data, however, were shown to present substantial
inter-rater variability [15], [16].

In biomechanics there has been a significant effort in mech-
anistic modeling of the oculomotor plant and the pertaining
neural controller signals [17]–[21]. Such models have been
used, among others, for obtaining biomarkers from model pa-
rameter estimates [22]. In this paper, we propose a physio-
logical model for different types of eye movements such as
saccades, smooth pursuit eye movements (SPEM), and fixa-
tional eye movements (FEM). The present model describes one-
dimensional eye movements and is obtained by extending the
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Fig. 1. Physiological and measurement model of the MBSDC framework: The three neural controller systems for saccades, SPEM, and FEM feed
into the oculomotor plant, whose output (eye position θ) is fed into the measurement model. The latter accounts for measurement noise and blink
artifacts, and outputs the measured eye position y.

oculomotor plant [20] for horizontal eye movements with neural
controller signals for saccades, SPEM, and FEM. By combining
this model with state space methods such as Gaussian mes-
sage passing [23] (a generalization of Kalman filtering) and
sparse input estimation [24], we obtain a unifying framework
that we denote Model-Based Signal Separation, Detection, and
Classification (MBSDC.1), for

1) estimation of kinematic signals (eye position, velocity,
acceleration, and forces of oculomotor muscles),

2) estimation of neural controller signals to the oculomotor
muscles from positional eye movement recordings,

3) separation and classification of eye movements,
4) extraction of relevant parameters (e.g., saccadic ampli-

tudes, durations, and peak velocities as well as post-
saccadic oscillation start/end points).

Preliminary results of this approach were presented in [25].

II. BACKGROUND

Over a hundred years ago, Dodge published the first tax-
onomy of the five main types of eye movements [26], now
commonly known as saccades, SPEM, vestibulo-ocular reflex
(VOR), optokinetic nystagmus (OKN), and vergence. Saccades
are fast eye movements for rapid gaze changes. Their charac-
teristics are influenced, among others, by age [27], exposure
to video games [28], and neurodegenerative diseases [29]. In
spinocerebellar degeneration, for example, saccadic peak veloc-
ity is markedly reduced [30]. SPEM are slower eye movements
for “following an object moving across the field of vision” [26].
The ability to perform SPEM can be affected by various disor-
ders, among which schizophrenia [31] and autism [32]. VOR is
a slow, compensatory eye movement for “fixation during head
rotation” [26]. OKN is a sequence of fast and slow eye move-
ments that stabilize the gaze during egomotion, and in vergence
the two eyes slowly turn into opposite directions. While the
eyes seem still during fixations, there is yet another class of
eye movements subsuming microsaccades and slow fixational
eye movements (FEM) below 1◦ of visual angle. These include
tremor and drift. FEM become pronounced in, e.g., Parkinson’s
disease, where ocular tremor was observed in a large fraction of
patients [33].

1Code: https://bitbucket.org/magnetilo/mbsdc_code

III. PHYSIOLOGICAL AND MEASUREMENT MODEL

Dodge’s eye movement taxonomy phenomenologically is still
undisputed, but it is not reflected in the underlying neurophysi-
ology. The neural controller system actually splits into separate
subsystems in the brainstem [21], [34]: A slow subsystem re-
sponsible for SPEM, VOR, vergence and the slow phases of
OKN, and a fast subsystem for generating saccades and the
quick phases of OKN. Motivated by this distinction, we split
the neural controller into three subsystems: one for fast, one for
slow, and one for fixational eye movements. We denote these
the saccade, SPEM, and FEM controllers (Fig. 1).

The complete model consists of a physiological and a mea-
surement model (dashed boxes in Fig. 1). The physiological
model is composed of the three neural controller systems and
a mechanistic oculomotor plant for horizontal eye movements.
The model’s output Y Plant represents the noise-free eye posi-
tion. The signal Y Plant is fed into the measurement model that
accounts for measurement noise and blink artifacts. Each of
these subsystems is described by a linear state space model
(SSM) of the form

X
(m )
k = A(m )X

(m )
k−1 + B(m )U

(m )
k (1)

Y
(m )
k = C(m )X

(m )
k , (2)

with states X(m ) = (X(m )
1 , . . . , X

(m )
L ), inputs U (m ) =

(U (m )
1 , . . . , U

(m )
L ), outputs Y (m ) = (Y (m )

1 , . . . , Y
(m )
L ), and

m ∈ {Sacc, SPEM, FEM, Plant, Blink}. The length (in sam-
ples) of the eye position time series is denoted by L. The input
to the oculomotor plant is given by

UPlant
k = Y Sacc

k + Y SPEM
k + Y FEM

k , (3)

i.e., the superposition of the saccadic, SPEM and FEM neural
controller signals. The recorded eye position is

Yk = Y Plant
k + Y Blink

k + Zk , (4)

with Z
iid∼ N (0, σ2

Noise) being an independent and identically dis-
tributed (iid) Gaussian noise signal. The signal Y Blink accounts
for blink artifacts. Note that we follow the convention to denote
variables as uppercase when they are random quantities and low-
ercase when they are observed realizations. In the following, we
describe each subsystem in detail.



590 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 2, FEBRUARY 2020

Fig. 2. Oculomotor plant for horizontal eye movements from [20]. Jp is
the eye ball’s moment of inertia; r is the radius of the eye globe; Kse,
Klt, B1 , and B2 are spring and damping constants of the agonist and
antagonist muscles (lateral and medial recti); Kp and Bp are the lumped
spring and damping constants of the other eye muscles and supporting
tissues surrounding the eye ball; and τ is the time-constant of the first-
order lag system whose inputs are the neural controller signals Nag and
Nant, and whose outputs are the active state tensions Fag and Fant.

A. Oculomotor Plant for Horizontal Eye Movements

In our model we used the oculomotor plant for horizontal eye
movements from [20], shown in Fig. 2. This model is described
by the linear differential equations

...
θ (t) + R2 θ̈(t) + R1 θ̇(t) + R0θ(t)

= δ
(
B2 [Ḟag(t) − Ḟant(t)] + Kse[Fag(t) − Fant(t)]

)
(5)

Ḟag(t) = [Nag(t) − Fag(t)]/τ, (6)

Ḟant(t) = [Nant(t) − Fant(t)]/τ, (7)

where

θ(t) [◦], θ̇(t) [◦/s], θ̈(t) [◦/s2 ] (8)

are the one-dimensional angular eye position, velocity, and ac-
celeration, respectively, and

Fag(t) [N], Fant(t) [N], Nag(t) [N], Nant(t) [N] (9)

are the active state tensions and neural controller signals of the
agonist (ag) and antagonist (ant) muscles (measured in Newtons
[N] as in [18], [20]). The coefficients in (5)–(7) are

δ =
180

πrJp(B1 + B2)
, (10)

R0 =
2KltKse + (Kse + Klt)Kp

Jp(B1 + B2)
, (11)

R1 =
2B1Kse + 2KltB2 +(B1 + B2)Kp + (Kse + Klt)Bp

Jp(B1 + B2)
,

(12)

R2 =
Jp(Kse + Klt) + 2B1B2 + (B1 + B2)Bp

Jp(B1 + B2)
, (13)

where the parameters Jp, r, B1 ,Kse, . . . , are defined in Fig. 2.
Note that in (5)–(7) the agonist and antagonist forces and per-
taining neural controller signals appear only as differences.

Therefore, it is only possible to estimate ΔF � Fag − Fant and
ΔN � Nag − Nant from positional eye data. To express (5)–(7)
as a continuous-time SSM (see [19], Chapter 3.6.3) we define

XPlant(t) � (θ(t), θ̇(t), θ̈(t),ΔF (t))T (14)

UPlant(t) � ΔN(t). (15)

The resulting SSM matrices are

ÃPlant =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0

−R0 −R1 −R2 δ(Kse − B2
τ )

0 0 0 − 1
τ

⎤
⎥⎥⎦ (16)

B̃Plant =
[
0 0 B2

τ
1
τ

]T
(17)

C̃Plant =
[
1 0 0 0

]
. (18)

The corresponding discrete-time matrices APlant, BPlant and
CPlant used in the following computations are obtained by a
zero-order hold discretization with a data-dependent sampling
period Ts (see, e.g., [35]).

The proposed one-dimensional model does not capture the
complexity of vertical and in particular oblique eye movements,
which are determined by the interaction of the recti and oblique
muscles. As a first approximation, akin to [22], horizontal and
vertical eye movements can be treated independently and the
vertical component can be described with a one-dimensional
model as in Fig. 2, with possibly adapted model parameters.
In the case of vertical eye movements, Fag and Fant represent
the resulting aggregate agonist and antagonist vertical forces,
respectively. For signal separation and saccade detection such
simplified representation suffices (see Section V-D and Fig. S3
in the Online Supplementary Material). However, such aggrega-
tion would clearly not be sufficient for neural input estimation.
To capture the full complexity and to account for the fact that
horizontal and vertical saccades are not independent, 3D models
such as [21] could be used instead.

B. Saccade Controller

The saccadic neural controller signal

Y Sacc
k � ΔNSacc

k , (19)

with k = 1, . . . , L, is commonly approximated by a pulse-step
signal [17], [18]. Such pulse-step signals can be modeled by a
zero-order hold system with ASacc = BSacc = CSacc = 1, i.e.,

XSacc
k = XSacc

k−1 + USacc
k (20)

Y Sacc
k = XSacc

k , (21)

with USacc
k ,XSacc

k , Y Sacc
k ∈ R and USacc = (USacc

1 , . . . , USacc
L )

being a sparse input signal (i.e., USacc = 0 for most entries).
1) Modeling Sparse Inputs: In Bayesian estimation, sparse

inputs U = (U1 , . . . , UL ) with Uk ∈ R and k = 1, . . . , L, are
commonly modeled by iid sparsity-promoting priors p(uk ) as
described in the Appendix D. Sparse Bayesian learning [36]
relies on the hierarchical representation [37]

p(uk ) = sup
σk ≥0

N (uk |0, σ2
k )p(σk ), (22)
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with a suitable hyperprior p(σk ) (see Appendix D, (79)). Since
σ2

k is a variance, such representations have been called normal
with unknown variances (NUV) [24], [37]. Using this NUV
representation for USacc

k , for fixed σSacc
k , the sparse inputs be-

come Gaussian, i.e., USacc
k ∼ N (0, (σSacc

k )2). Inference in SSMs
driven by such Gaussian inputs can be carried out via Kalman
smoothing. However, the representation (22) requires an opti-
mization over the σk ’s. This can, e.g., be done by an expectation
maximization (EM) algorithm (Section IV-A2), which alternates
between a Gaussian message passing step with fixed σk ’s and
an update step for the σk ’s.

2) Modeling Group Sparse Inputs: Neural recordings
in non-human primates suggest that Y Sacc is more accurately
described by a pulse-slide-step rather than by a simple
pulse-step [20], [38]. In a pulse-slide-step, the initial upstroke
is followed by a transient exponential decay, before the
step concludes with (usually) a precipitous drop to baseline.
Figures 5(a) and 7 show examples of such pulse-slide-step con-
troller signals. To allow shapes of Y Sacc beyond pulse-steps, we
assume that the inputs USacc are group-sparse, i.e., the sparsity
pattern has temporal correlations. To obtain group sparsity, we
filter the estimated NUV parameters σSacc = (σSacc

1 , . . . , σSacc
L )

with the FIR filter

wk = c · kTs · e−kT s/τw , k = 1, . . . , D, (23)

where c is a normalizing constant and D the filter length, that
depends on the sampling rate Ts . Using our neural recordings,
we find that suitable values of the decay rate τw lie between 2
and 8 ms.

C. SPEM Controller

The smooth adaptation to the target velocity during the open-
loop phase of SPEM [39] suggests to model the neural SPEM
controller signal

Y SPEM
k � ΔNSPEM

k (24)

by a first-order hold system with smooth velocity changes. This
corresponds to a SSM of the form (1)–(2), with

ASPEM =
[

1 Ts

0 1

]
, BSPEM =

[
0√
Ts

]
, CSPEM =

[
1 0

]
,

(25)

with USPEM
k , Y SPEM

k ∈ R and XSPEM
k ∈ R2 , where the velocity

(second component of the state vector) is driven by a Gaussian

input USPEM iid∼ N (0, σ2
SPEM). This model is particularly useful

if the target motion is unknown.
In controlled experiments with a sinusoidal target velocity,

the neural controllers can instead be modeled by the SSM

ASPEM =

⎡
⎣

1 Ts 0
0 cos(2πfTargetTs) sin(2πfTargetTs)
0 − sin(2πfTargetTs) cos(2πfTargetTs)

⎤
⎦

BSPEM =

⎡
⎣

0 0√
Ts 0
0

√
Ts

⎤
⎦, CSPEM =

[
1 0 0

]
, (26)

where fTarget is the frequency of the target. This SSM is driven

by a two-dimensional input USPEM iid∼ N (0, σ2
SPEM · I2), where

I2 indicates a 2 × 2 identity matrix.

D. FEM Generator

FEM are small variations around the fixation target, which in
our model are generated by the neural signal

Y FEM
k � ΔNFEM

k . (27)

This signal is modeled by a first-order lag system with AFEM =
e−T s/τFEM , BFEM =

√
Ts, CFEM = 1, resulting in

XFEM
k = e−T s/τFEM · XFEM

k−1 +
√

Ts · UFEM
k (28)

Y FEM
k = XFEM

k , (29)

with UFEM
k ,XFEM

k , Y FEM
k ∈ R and UFEM iid∼ N (0, σ2

FEM).

E. Blink Artifact Model

The most common type of disturbance in eye movement
recordings are blinks. Depending on the recording technique,
these have different signatures. Here, we restrict ourselves to
blinks in VOG data, which are characterized by a signal drop
(Fig. 4(b)). We model the blink signal (affecting the measured
eye position) by a zero-order hold system

XBlink
k = XBlink

k−1 + UBlink
k (30)

Y Blink
k = XBlink

k , (31)

with ABlink = BBlink = CBlink = 1, UBlink
k ,XBlink

k , Y Blink
k ∈ R.

The inputs UBlink are sparse and are modeled (akin to the saccade
inputs in Section III-B) by NUVs.

F. Complete Model

The complete SSM that represents both the physiological
and measurement model (Fig. 1) obtained by cascading the
subsystems discussed above, is still a linear SSM of the form

Xk = AXk−1 + BUk (32)

Yk = CXk + Zk , (33)

with

Xk =

⎡
⎢⎢⎢⎢⎢⎢⎣

XBlink
k

XPlant
k

XSacc
k

XSPEM
k

XFEM
k

⎤
⎥⎥⎥⎥⎥⎥⎦

, Uk =

⎡
⎢⎢⎢⎣

UBlink
k

USacc
k

USPEM
k

UFEM
k

⎤
⎥⎥⎥⎦ (34)

A = diag

(
ABlink,

[
APlant BPlant · (CSacc, CSPEM, CFEM)

0 diag(ASacc, ASPEM, AFEM)

])

(35)

B =

⎡
⎣

BBlink 0
0 0
0 diag(BSacc, BSPEM, BFEM)

⎤
⎦ (36)

C = (CBlink, CPlant,0), (37)
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Fig. 3. Algorithmic components of the MBSDC framework.

where diag(A,B) denotes the block-diagonal concatenation of
the (possibly non-square) matrices A and B, and 0 is an all-zero
matrix of suitable dimensions. The covariance matrices of the
input Uk and the initial state X0 are

ΣUk
� diag((σBlink

k )2 , (σSacc
k )2 , σ2

SPEM · I, σ2
FEM) (38)

ΣX 0 � diag(ΣBlink
X 0

,ΣPlant
X 0

,ΣSacc
X 0

,ΣSPEM
X 0

,ΣFEM
X 0

). (39)

The goal now is to estimate the states and inputs (34) from
measured eye position data. This enables the recovery of kine-
matic and neural signals, and the separation of eye movements.

IV. ESTIMATION

After having introduced the model, we are now ready to de-
scribe the algorithmic components of the MBSDC framework
(Fig. 3). The main components are the state and input estimation
steps presented in Section IV-A. The physical signals (eye po-
sition, velocity, acceleration, force, and neural controllers) are
then extracted from the estimated states (Section IV-B1). These
physical signals are further used to detect saccades and blinks
(Sections IV-B2 and IV-B3), and for classifying the recordings
into different types of eye movements (Section IV-B5). De-
tails of the underlying estimation approach are provided in the
appendices.

A. State and Input Estimation

To describe state and input estimation, we adopt a proba-
bilistic view on SSMs. The joint density of the SSM (32)–(33)
factors according to

p(y, x, u) = p(x0)
L∏

k=1

p(yk |xk )p(xk |xk−1 , uk )p(uk ), (40)

where the factors are given explicitly in (58). The inputs driving
SPEM and FEM have iid Gaussian priors p(uSPEM) and p(uFEM),
respectively. By contrast, the inputs triggering saccades and

blinks, are equipped with sparsity-promoting priors p(uSacc)
and p(uBlink), represented via NUVs (22).

If all inputs were Gaussian, state and input estimation could
directly be performed via Gaussian message passing [23], a
generalization of Kalman smoothing (see Appendix B). How-
ever, due to the NUV representation of the sparsifying priors,
the unknown NUV parameters σSacc and σBlink have to be es-
timated first. The observation noise level σNoise is treated as
an additional unknown parameter that needs to be estimated.
Learning unknown parameters in SSMs can be performed via
the EM-algorithm (Appendix D), where the E-step boils down
to Kalman smoothing and the M-step has closed-form updates
for the unknown parameters as described below.

1) Kalman Smoothing: For fixed input variances, the pos-
terior distributions of the state Xk and the input Uk with
k = 1, . . . , L, given the data y = (y1 , . . . , yL ), are

p(xk |y) = N (xk |mXk
, VXk

) (41)

p(uk |y) = N (uk |mUk
, VUk

). (42)

The mean vectors (mXk
and mUk

) and covariance matrices (VXk

and VUk
) are recursively updated using the approach detailed

in Appendix B. The state and input trajectory estimates are
obtained from the respective means x̂ = mX and û = mU .

2) M-Step of the EM Algorithm: The unknown parameters

Θ = {σSacc
1 , . . . , σSacc

L , σBlink
1 , . . . , σBlink

L , σNoise}, (43)

are iteratively updated by an EM-algorithm. At each iteration
the NUV parameters σSacc and σBlink are updated according to

(σ̂(m ),new
k )2 =

E[(U (m )
k )2 |y, Θ̂old] + 2β(m )

2α(m ) + 1
, (44)

with k ∈ {1, . . . , L}, m ∈ {Sacc, Blink}. The second moments

E[(U (m )
k )2 |y, Θ̂old] = V

U
(m )
k

+ m2
U

(m )
k

(45)

are computed from the means and variances in (42). Ap-
pendices VII-D and VII-E discuss how the hyperparameters
α(m ) ≥ 0 and β(m ) ≥ 0 are chosen.

Similarly, at each EM-iteration, the observation noise level is
updated according to

(σ̂new
Noise)

2 =
1
L

∑L
k=1 E[Z2

k |y, Θ̂old]
2αNoise + 1

, (46)

where the second moment

E[Z2
k |y, Θ̂old] = y2

k − 2ykCmXk
+ C(VXk

+ mXk
mT

Xk
)CT,

(47)
is computed using the means and variances of the posterior
distribution (41). The choice of the hyperparameter αNoise ≥ 0
is described in Appendix E.

B. Postprocessing

Here we describe how to extract the physical signals from the
estimated states x̂ and how to use these for saccade detection
and for eye movement classification. In addition, we propose a
heuristic for improving the signal separation.
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Fig. 4. (a) Detection of saccade start/end, PSO-end and peak veloc-
ity locations, marked by ©, �, ♦, × , respectively, and (b) detection
of blink start/end locations, marked by �, 	. The estimated eye posi-
tion, velocity and acceleration profiles used for detection are shown in
gray. The respective detection thresholds BVel and BAcc are shown in
blue. In addition, the top plot shows the re-estimated eye positions after
(a) the separation heuristic described in Section IV-B4 and (b) the signal
interpolation described in Section IV-B3.

1) Extracting Physical Signals: The kinematic signals

θ̂,
̂̇
θ,
̂̈
θ, Δ̂F , (48)

the saccadic, SPEM and FEM neural controller signals

Δ̂NSacc, Δ̂NSPEM, Δ̂NFEM, (49)

and the estimated blink artifact signal ŷBlink can be read out
directly from the estimated state trajectory x̂ (Eqns. (14), (19),
(24), (27), (34)). The saccadic kinematic signals

θ̂Sacc,
̂̇
θSacc,

̂̈
θSacc, Δ̂F Sacc (50)

are obtained by simulating the state response of the oculomotor
plant to the estimated input Δ̂NSacc. Similarly, the separated
SPEM and FEM signals

θ̂SPEM,
̂̇
θSPEM,

̂̈
θSPEM, Δ̂F SPEM, (51)

θ̂FEM,
̂̇
θFEM,

̂̈
θFEM, Δ̂F FEM, (52)

are obtained by simulating the state response of the oculomotor
plant to the inputs Δ̂NSPEM and Δ̂NFEM, respectively.

2) Saccade Detection: Given the estimated saccadic ve-

locity ̂̇θSacc and acceleration profiles ̂̈θSacc, we are in a position
to detect saccade start/end, post-saccadic oscillation (PSO) end
as well as peak-velocities. This is done using an IVT-like ap-
proach based on fixed velocity (BVel) and acceleration (BAcc)
thresholds. For this, we proceed as follows (Fig. 4(a)): First, we

detect by a local search all peaks in ̂̇θSacc that have magnitudes
ranging from 20◦/s to 1000◦/s. These are candidate saccadic
peak velocities. Considering only time indices preceding a de-
tected peak, we define the corresponding saccade’s start point as

the sample closest to the peak location for which |̂̇θSacc| < BVel.
Similarly, considering only time indices following a detected

peak, we define the first index for which |̂̇θSacc| < BVel, as the

saccade’s end point. The first index for which |̂̇θSacc| < BVel and

|̂̈θSacc| < BAcc determines the PSO-end point. Note that there
are potentially multiple velocity peaks between the start of a
saccade and the PSO-end point. If this is the case, the saccade’s
peak velocity is chosen as the one with the largest magnitude.

3) Blink Detection and Interpolation: In VOG recordings,
blinks are typically characterized by either abrupt signal drops
(Fig. 4(b), top) or by velocities outside the physiological range,
e.g., velocities > 1000◦/s. Signal drops are captured by the
sparse input signal UBlink. In this case, blinks are located by
searching for non-zero entries in UBlink. Non-zero entries are
then assigned to the same blink if the velocity magnitude be-
tween these stays within a narrow band of 5◦/s. In contrast,
blinks that do not manifest themselves by an abrupt signal drop,
are located by searching for velocity magnitudes > 1000◦/s. In
both cases the final blink start and end points are determined
following the same procedure as for the detection of PSO-end
points, using fixed thresholds BVel and BAcc (Fig. 4(b), center
and bottom). After the blinks have been detected, the physical
signals are re-estimated with the observation noise level σNoise

set to some large value during the blink (Fig. 4(b), top). Eye
movements during blinks are thereby smoothly interpolated by
the physiological model.

4) Separation Heuristic and Re-Estimation: In SPEM-
free recordings, the eye position should not change between
a PSO-end point and the starting point of the following saccade.
In practice, however, we observe that these points are not always
aligned in our estimates. This suggests that the saccadic signals
in (50) contain some amount of SPEM. The described position
offsets are therefore corrected by adjusting the last non-zero
input of ûSacc in the affected saccades. Signal separation can
be further improved by setting to zero all entries of ûSacc, that
are not part of a saccade. Such spurious inputs can occur dur-
ing blinks, or in saccades whose peak velocity is smaller than
20◦/s (Section IV-B2). After these two post-processing steps,
states and inputs are re-estimated by Kalman smoothing (Sec-
tion IV-A1) with fixed inputs ûSacc, and the physical signals are
extracted anew (Section IV-B1), see Fig. 4(a) top.

5) Eye Movement Classification: First, we label all ‘Sac-
cades’, ‘PSOs’, and ‘Blinks’ in the recording using the detected
saccade and blink start/end points (Sections IV-B2 and IV-B3).
The remaining samples are classified as ‘SPEM’ if the SPEM

velocity |̂̇θSPEM| > 1◦/s, otherwise they are classified as ‘Fixa-
tions’. Note that with the estimated physical signals (48)–(52)
at hand, more sophisticated classification algorithms, e.g., with
adaptive thresholds [40] could be used.

V. RESULTS

We evaluated the MBSDC framework both qualitatively and
quantitatively on synthetic, human, and non-human primate
data. All data acquisition procedures followed the guidelines
set by the National Institutes of Health and national law, and
were approved by local ethics committees. In the following, we
give illustrative examples for the estimation of physical signals
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Fig. 5. (a) and (c) Simulated (Sim) eye position, velocity and neural controller signals, and corresponding estimates obtained from noisy horizontal
eye position data. The position and velocity estimates are obtained by group sparse estimation (Group) and by lowpass filtering and numerical
differentiation (Filt). The detected saccade start/end, PSO-end and peak velocity locations are marked by ©, �, ♦, and × . The bottom row shows
the recovered neural input using sparse (Sparse) and group sparse input estimation. The neural controller signals cannot be estimated with the
filtering approach. Note that the neural controller signal in (c) consists of two consecutive pulses, which are correctly recovered. (b) and (d) Real
saccades (during SPEM) with similar shapes to (a) and (c), together with estimated physical signals and pertaining saccade markers.

in simulated and real saccade data (Section V-A2), neural
controller signals in non-human primate data(Section V-B),
and SPEM in human data (Section V-C). We furthermore
quantitatively evaluate the MBSDC framework’s ability to
recover kinematic signals and detect saccades in simulated data
(Sections V-A3, V-A4, and V-A5) as well as its classification
performance using hand-labeled recordings (Section V-D).

A. Saccade Detection and Kinematic Signal Estimation

We simulated saccades with amplitudes of 0.6◦, 1.2◦, 2.5◦,
5◦, 10◦, and 20◦ using the oculomotor plant described in
Section III-A and synthetic pulse-slide-step neural controller
signals. The pulse-slide-steps were constructed using pulse
heights and widths for horizontal saccades reported in [20], that
were slightly adapted such that the simulated saccades followed
exactly the amplitude-velocity main sequence reported in [6].
For the quantitative evaluations in Sections V-A3, V-A4, and
V-A5, we simulated 100 saccades for each amplitude at a
sampling rate of 1 kHz and added white Gaussian noise with
varying noise levels to these signals.

1) Evaluation Setup: We recovered the physical signals
both with sparse (‘Sparse’) and group-sparse (‘Group’) input es-
timation of saccadic controller signals (Sections III-B1 and III-
B2). We used σSPEM = 0 N/s2 , σFEM = 0.2 N/s, αNoise = 0.5,
and αSacc = 0.4 (see Appendix E). To evaluate the estimation
performance of our approach, we also estimated the eye posi-
tion and velocity profiles by the traditional approach of lowpass
filtering and numerical differentiation (denoted by ‘Filt’). We
set the cutoff frequency and filter order following [8], where
these values are chosen such that the peak-velocity is optimally
recovered.

2) Estimation of Saccade Parameters: Figure 5(a) shows
a simulated horizontal 5◦ saccade and the estimated position,

TABLE I
ESTIMATION AND DETECTION ACCURACY OF SACCADES

Upper part: RMSE of estimated position and velocity profiles, averaged over all simulated
saccades (6 different amplitudes, 100 saccades per amplitude). Bold font marks the best-
performing method. Lower part: Precision (Prec.) and recall (Rec.) of saccade detection,
shown for each amplitude separately. To compare the algorithms, in the lowpass filtering
approach the peak velocity threshold for saccade detection was adapted to the noise level
to yield a precision of 1.

velocity, and neural controller signals and Fig. 5(b) shows a real
horizontal saccade with a similar morphology. We observe that
lowpass filtering flattens the steep rising flank of the saccade
and causes ringing artifacts around the saccades. These prob-
lems are not present in the MBSDC estimates. Figure 5(c) shows
a simulated saccade that we generated by two consecutive pulses
in the neural controller signal. The MBSDC approach is able
to correctly recover these two pulses and consequently the bi-
modal velocity shape is correctly reconstructed, whereas in the
filtering approach such details are easily lost. In our analysis,
the saccadic controller signal estimated from some experimental
saccade recordings consisted of two consecutive neural pulses
(Fig. 5(d) and Online Supplementary Material Fig. S1), which
resemble the “overlapping saccades” described in Bahill et al.
[41].

3) Estimation Accuracy on Simulated Data: Table I
shows the reconstruction accuracy of the MBSDC (‘Sparse’ and
‘Group’ sparse) and ‘Filt’ approaches in terms of the root mean
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Fig. 6. Amplitude vs peak-velocity main sequence. Estimated saccadic
peak velocities obtained from the MBSDC framework and by lowpass
filtering. Three different lowpass filters with cutoff frequencies of 80 Hz
(weak), 35 Hz (optimal), and 20 Hz (strong) were used. We simulated
saccades with six different amplitudes ranging from 0.6◦ to about 10◦ that
followed the main sequence characteristics described in [6], and added
observation noise with σ∗

Noise = 0.3◦. For estimated main sequences
(amplitude vs peak-velocity and amplitude vs duration) using real data,
see Online Supplementary Material Fig. S2.

squared error (RMSE) of the recovered position and velocity
signals. Position and, in particular, velocity profiles estimated
with the MBSDC framework have lower RMSEs compared to
the filtering approach. We observe that group sparse input esti-
mation achieves slightly lower RMSEs than regular sparse input
estimation.

4) Detection Performance: The lower part of Table I com-
pares the MBSDC and filtering approach with respect to

precision =
# correctly detected saccades

# detected saccades
, (53)

and

recall =
# correctly detected saccades

# simulated saccades
, (54)

for simulated saccades with 0.6◦, 1.2◦, 2.5◦ and 5◦ amplitudes.
For small observation noise (σ∗

Noise = 0.01◦), all saccades are
detected correctly. With increasing observation noise, small sac-
cades start being missed, resulting in lower recall values.

5) Peak-Velocity Accuracy: Fig. 6 shows the amplitude-
velocity main sequence extracted from simulated saccades (ob-
servation noise level σ∗

Noise = 0.3◦/s) using the MBSDC and
the lowpass filtering estimates. The accuracy of the MBSDC
framework is practically on par with lowpass filtering with
peak-velocity optimized parameters from [8]. Note that choos-
ing larger (or lower) cutoff frequencies of the lowpass filter re-
sults in overestimation (or underestimation) of the peak-velocity.
The accuracy of the MBSDC approach for very small saccades
is slightly worse than the optimal filter, which is due to some
small saccades being missed (Table I).

B. Estimation of Neural Controller Signals

We used saccade and neural data from [42] to evaluate the
quality of the estimated neural controller signals. This data

Fig. 7. Top: Eye movement data from a rhesus monkey performing
(a) a 10◦ saccade and (b) a 19◦ saccade, together with estimated position
and velocity profiles. Bottom: Neural firing rate measured in a single
abducens neuron, and estimated neural controller signals. Position and
neural recordings were averaged over 10 runs. The neural firing rate
recordings are shifted 4 ms to the right and scaled in amplitude to fit the
size of the estimated neural controller signal.

consists of synchronized recordings of horizontal eye positions
(search coil, sampling rate 1 kHz) and neural firing rates in sin-
gle abducens neurons recorded with tungsten microelectrodes in
rhesus monkeys. The neural controller signal ΔN was estimated
using the oculomotor plant parameters for rhesus monkeys re-
ported in [20]. As shown in Fig. 7 the shape of the estimated
neural controller signals coincide strikingly well with the neural
recordings.

C. Signal Separation in Sinusoidal SPEM Data

To evaluate the accuracy of the signal separation we used
eye position recordings from subjects observing a horizontally
moving dot with a sinusoidal velocity profile [43]. These record-
ings were obtained with a limbus tracker (Skalar IRIS, Skalar
Medical B.V., Delft, Netherlands) at a sampling rate of 1 kHz.
The physical signals were estimated using the first-order hold
model (25) with σSPEM = 1 N/s2 , σFEM = 0.2 N/s, αNoise = 0.5,
and αSacc = 0.5. The separated signals are shown in Fig. 8. As
an alternative to the first-order hold model, one can use the sinu-
soidal velocity model (26). This leads to comparable separation
results, but has the advantage that additional parameters such
as the amplitude and the phase of the estimated SPEM velocity
profile can easily be extracted (Fig. 9). These parameters might
be useful for assessing the SPEM performance of test subjects
which is indicative for certain neurological pathologies.

D. Classification Performance on Annotated Data

We used the annotated dataset described in [40] that was
employed as ground truth for the comparison of different eye
movement detection algorithms in [45]. The data were recorded
at 500 Hz using the iView X Hi-Speed 1250 eye tracker (Senso-
Motoric Instruments, Berlin, Germany). This dataset contains
both horizontal and vertical eye position recordings from test
subjects looking at images (‘Images’), vertically moving dots
(‘Dots’) with constant velocity profiles, and videos (‘Videos’).
Each recording is furthermore equipped with sample-by-sample
labels (‘Fixations’, ‘Saccades’, ‘PSOs’, ‘SPEM’, ‘Blinks’, and
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TABLE II
COHEN’S κ EVALUATED ON ANNOTATED EYE MOVEMENT DATA

Evaluation of different eye movement classification algorithms. ‘IVT’ with fixed threshold (evaluated in [45]); ‘LNS’: Adaptive threshold algorithm from [40] (evaluated in [45]);
‘NSLR-HMM’: Hidden Markov model approach using manually engineered features [12]; ‘IRF’: Supervised classification algorithm using random forests [13]; ‘Human’: Inter-rater
agreement between two eye movement experts [45]. Bold font marks the best-performing method. Entries are left empty if the evaluation is not provided in the corresponding
references and marked with a dash if the algorithm is not able to perform a specific classification task.

Fig. 8. Eye movement recording from a test subject tracking a horizon-
tally moving dot with a sinusoidal velocity profile, and estimated physical
signals. Note that the FEM signal is stronger during the fast SPEM
phases (around time = 1, 2, and 3 s), which hints to signal-dependent
noise affecting motor commands [44].

Fig. 9. Top: Estimated SPEM velocity profiles ̂̇θSPEM (using model (26))
of a trained (Subj. 1) and a naive (Subj. 2) subject both observing the
same moving target as in Fig. 8. Middle and bottom: Amplitude and
phase of the estimated SPEM velocity profiles. Note that the tracking
performance differs strongly between subjects.

‘Unknown’) annotated by two different eye movement experts.
We analyzed horizontal and vertical eye movements indepen-
dently. The physical signals in the horizontal eye movement
recordings are estimated using the first-order hold model (25)
with σSPEM = 0.5 N/s2 , σFEM = 0.8 N/s, αNoise = 0, and αSacc =
1. For vertical eye movements we used the same model as for
horizontal eye movements (see Section III-A and Online Sup-
plementary Material Fig. S3). After classifying each channel,
we merged the classification according to the following prioriti-
zation: 1. Blinks, 2. Saccades, 3. PSOs, 4. SPEM, 5. Fixations.
For example, if a sample in the horizontal channel is labeled as
a saccade and in the vertical as a fixation, the final class label is
‘Saccades’. As in [45], we compared the inter-rater agreement
of our classification with the manual annotations using Cohen’s
κ; see Table II.

VI. DISCUSSION

In the following, we discuss strengths and weaknesses of the
MBSDC approach as well as potential clinical use cases.

A. Signal Separation and Classification

A novelty of the MBSDC framework is its ability to sep-
arate multi-type eye movements into their components. This
allows for an independent analysis of saccades, SPEM, and
FEM, each of which can provide valuable biomarkers for a
number of neurological disorders [29]–[31]. For instance, the
proposed SPEM parameters, phase and amplitude (Fig. 9) can be
used to quantify SPEM performance, which is impaired in, e.g.,
schizophrenia [46]. The SPEM accuracy, often measured as gain
in the closed-loop phase, can now be measured instantaneously,
and the “time-to-target gain”, e.g., when the amplitude reaches
95% of the target amplitude, may provide an alternative la-
tency measure in SPEM trials. Neuromuscular disorders such as
Parkinson’s disease can manifest themselves via ocular
tremor [33]. Hence, the estimated FEM signal intensity could
serve as a quantitative digital biomarker to aid in differential di-
agnosis and tracking of disease progression. The estimated FEM
signal is furthermore interesting for the study of motor com-
mands. As observed in Fig. 8 the FEM component is stronger
during fast SPEM phases, which is in line with the observation
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that the noise affecting motor commands is dependent on the
neural signal intensity [44].

Eye movement classification with the MBSDC framework is
fully unsupervised and uses a very rudimentary classification
scheme (Section IV-B5). Nonetheless it is only slightly worse
than the random forest approach of [13] that is specifically
tailored to the evaluated data set.

B. Estimation of Kinematic and Neural Controller Signals

We observe that the kinematic signals estimated by the
MBSDC approach are more accurate than the ones obtained
with the conventional approach of lowpass filtering and numeri-
cal differentiation. In particular, in the filtering approach finding
a suitable cutoff frequency that does not affect the estimated
peak velocity, but still suppresses noise, is challenging [8]. In
addition, the overlap of SPEM and saccades in the frequency
domain further hampers frequency domain approaches. By con-
trast, the MBSDC approach is an adaptive filter with no inherent
cutoff frequency and is therefore able to restore high-frequency
details while suppressing noise (Section V-A3).

For estimation, saccadic neural controller signals have tradi-
tionally been described by a set of parameters (e.g., pulse start,
height, width and exponential decay rates) that are determined
from isolated saccades [17], [18], [20], [22]. By contrast, the
MBSDC framework does not use such strict modeling assump-
tions and is therefore capable of estimating complex saccadic
neural controller signal shapes and in particular double pulses
which have also been called “overlapping saccades” [41]. It re-
mains to be investigated if such consecutive neural pulses are
an artifact of our possibly underconstrained saccade model or
if such consecutive pulses are also present in the pertaining
neurophysiological recordings.

C. Limitations

The lack of constraints on the saccadic neural controller sig-
nals comes also with limitations: Prior knowledge on the positive
correlation between neural pulse-widths and pulse-heights [47]
during saccades is not encoded in our model. Encoding this
into our model would increase its physiological realism and in
addition might provide the necessary constraints for estimating
jointly the oculomotor plant parameters and the neural con-
troller signals, e.g., using suitable EM-updates for the model
parameters akin to the updates in Section IV-A2. Without con-
straints, we observe that due to the flexibility of the saccadic
neural controller signal such joint estimation does not provide
satisfactory results. Being able to estimate plant parameters,
however, would be desirable as the accuracy of the estimated
neural controller signals depends on the validity of the oculo-
motor plant parameters, which can be expected to vary to some
degree between subjects [22]. For successful signal separation
and estimation of the kinematic signals though, moderate model
mismatches are unproblematic as they are compensated by the
estimated neural controller signals. A further limitation is
that the MBSDC framework works with a one-dimensional
model and is currently specifically tailored to horizontal eye

movements. A promising extension would be to replace the
oculomotor plant for horizontal eye movements with a 2D [22]
or even a 3D [21] oculomotor model and estimate the neural
controller signals to the two or three muscle pairs jointly.

D. Computational Cost

The bulk of the computation is due to Kalman smoothing. The
analysis of a 10 s recording at 1 kHz lasted 20 s using MATLAB
2017a on a MacBook Pro with an Intel Core i5 processor.

VII. CONCLUSION

In this paper we have proposed a model-based eye movement
analysis framework. The framework builds on an established
physiological model for horizontal eye movements [20], that
we have extended by neural controller signals for saccades,
SPEM and FEM, and with a measurement model accounting
for disturbances such as blinks. To recover kinematic signals
(noise-free eye position, velocity and acceleration), instead of
using lowpass filters and numerical differentiation, we use state
and sparse-input estimation techniques in state space models. In
addition to outperforming traditional approaches, based on low-
pass filtering and numerical differentiation, the proposed frame-
work can estimate additional physical signals such as forces of
the oculomotor muscles and neural controller signals. By esti-
mating neural controller signals for saccades, SPEM and FEM,
a signal separation is performed in the neural domain. The
separated signals can then be analyzed independently, which
opens up the possibility of analyzing multi-type eye move-
ments as commonly encountered in free-viewing conditions.
By making the code open source, we hope that the MBSDC
framework will be useful for diverse eye movement analysis
tasks.

APPENDIX

Here, we provide the theoretical background of the MBSDC
framework. We cover state space models, inference algorithms
such as Kalman smoothing and its generalization Gaussian mes-
sage passing, as well as parameter learning algorithms, in par-
ticular the EM algorithm and its role in sparse input estimation.
To describe the models and algorithms we use a type of proba-
bilistic graphical model called a factor graph [23].

A. Probabilistic Formulation of State Space Models

We consider linear time-invariant SSMs of the form

Xk = AXk−1 + BUk + Wk (55)

Yk = CXk + Zk , (56)

with k = 1, . . . , L. For Gaussian inputs U , initial state X0 , and
state and observation noise, W and Z, the SSM (55)–(56) is
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Fig. 10. Factor graph of the SSM (55)–(56). Dashed box: Forward
mean −→mX ′

k
(65) and covariance

−→
VX ′

k
(66) of the Gaussian distribu-

tion p(x′
k |y1 , . . . , yk ) obtained by integrating over all variables inside

the dashed box [23]. The black square represents an observed variable.

linear Gaussian with a joint density that factorizes as

p(y, x, u) = p(x0)
L∏

k=1

p(yk |xk )p(xk |xk−1 , uk )p(uk ) (57)

= N (x0 |μX 0 ,ΣX 0 ) ·
(

L∏
k=1

N (yk |Cxk ,ΣZ )

· N (xk |Axk−1 +Buk ,ΣW ) · N (uk |μUk
,ΣUk

)

)
.

(58)

This density is represented by the factor graph in Fig. 10.

B. Inference in SSMs – Gaussian Message Passing

In linear Gaussian SSMs, inference, i.e., the computation of
the posterior distributions

p(xk |y) = N (xk |mXk
, VXk

) (59)

p(uk |y) = N (uk |mUk
, VUk

), (60)

amounts to the computation of the mean vectors and covariance
matrices of Xk and Uk . These can be obtained by Gaussian
message passing [23]. In the forward pass (Kalman filtering) we
compute the quantities

−→mXk
= A−→mX ′

k −1
+ BμUk

(61)

−→
VXk

= A
−→
VX ′

k −1
AT + BΣUk

BT + ΣW (62)

Gk = (ΣZ + C
−→
VXk

CT)−1 (63)

Fk = I −−→
VXk

CTGkC (64)

−→mX ′
k

= −→mXk
+
−→
VXk

CTGk (yk − C−→mXk
) (65)

−→
VX ′

k
= Fk

−→
VXk

, (66)

for k = 1, . . . , L, with initializations −→mX ′
0

= μX 0 and
−→
VX ′

0
=

ΣX 0 . The right-pointing arrows on top of the Gaussian mes-
sage parameters (mean vectors and covariance matrices) refer
to the fact that these are summary statistics from the left-side
of the factor graph in Fig. 10. In the backward pass (Kalman
smoothing) we compute [24]

ξ̃Xk
= F T

k ATξ̃Xk + 1 − CTGk (yk − C−→mXk
) (67)

W̃Xk
= F T

k ATW̃Xk + 1 AFk + CTGkC, (68)

for k = L, . . . , 0, with ξ̃XN + 1 and W̃XN + 1 initialized to all
zeros, F0 = I , and G0 = 0. The means and variances are

mXk
= −→mXk

−−→
VXk

ξ̃Xk
(69)

VXk
=

−→
VXk

(I − W̃Xk

−→
VXk

) (70)

mUk
= μUk

− ΣUk
BTξ̃Xk

(71)

VUk
= ΣUk

(I − BTW̃Xk
BΣUk

). (72)

Note that (67)–(70) correspond to the (Modified-Bryson-
Frazier) Kalman smoother updates, and (71)–(72) is an aug-
mentation of this smoother to input estimation [24].

C. Learning SSM Parameters With the EM Algorithm

Learning refers to the task of estimating unknown parameters
Θ, e.g., by the maximum a posteriori estimation

Θ̂ = argmax
Θ

p(Θ|y) = argmax
Θ

log(p(y|Θ)p(Θ)). (73)

In SSMs, this maximization can be performed with an EM
algorithm [48] with X and U as latent variables. The M-step of
the EM algorithm is

Θ̂new = argmax
Θ

E[log p(y,X,U |Θ)] + log p(Θ), (74)

where the expectation is taken w.r.t. the posterior over the latent
variables p(x, u|y, Θ̂old). Using (58) we obtain

E[log p(y,X,U |Θ)]

= −1
2

(
L∑

k=1

E

[
log |2πΣZ |+‖yk − CXk‖2

Σ−1
Z

+ log |2πΣW |

+ ‖Xk − AXk−1 − BUk‖2
Σ−1

W
+ log |2πΣUk

| + ‖Uk‖2
Σ−1

U k

])

− 1
2

(
E[‖X0‖2

Σ−1
X 0

] + log |2πΣX 0 |
)

(75)

where ‖x‖2
A � xTAx and |A| denotes the determinant of A.

The second moments of Xk and Uk in (75) are readily obtained
from the posterior means and variances (69)–(72). The second
moments in (44) and (46) are

E[U 2
k |y,Θ] = VUk

+ m2
Uk

(76)

E[Z2
k |y,Θ] = y2

k − 2ykCmXk
+ C(VXk

+ mXk
mT

Xk
)CT.

(77)
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D. Modeling and Estimation of Sparse Inputs

In a probabilistic setting, sparse variables U = (U1 , . . . , UL )
are modeled with sparsity-promoting priors

p(u) =
L∏

k=1

p(uk ), (78)

which in the sparse Bayesian learning (SBL) framework [36]
are represented via the hierarchical representation [37]

p(uk ) = sup
σk ≥0

N (uk |0, σ2
k )p(σk ), (79)

with a suitable hyperprior p(σk ). Note that essentially all spar-
sity promoting priors (Laplace, Student-t, ...) can be represented
this way [36]. In SBL, instead of estimating U = (U1 , . . . , UL )
directly, we first estimate σ = (σ1 , . . . , σN ) for marginalized-
out U , i.e.,

σ̂ = argmax
σ

p(σ|y), (80)

and then obtain an estimate of U by

û = E[U |y, σ̂]. (81)

Note that (80) is a learning problem of the form (73) and can be
solved by EM (Appendix C). In our MBSDC framework in (79)
we use the hyperprior

p(σk |α, β) ∝ σ−α
k exp(−β/σk ). (82)

In Appendix E we discuss how to choose the hyperparameters
α ≥ 0 and β ≥ 0.

E. Relevant Parameters in the MBSDC Framework

In the following we discuss the most relevant parameters.
1) Observation Noise Estimation: The observation noise

level σNoise controls the trade-off between model-fit and regular-
ization. The maximum a posteriori estimate of σNoise is obtained
by an EM-algorithm. The hyperparameter αNoise in (46) controls
the prior on σNoise, where αNoise = 0 corresponds to maximum-
likelihood estimation, and αNoise > 0 introduces a bias towards
smaller values of σNoise.

2) Sparse Input Estimation: The sparsity of USacc and
UBlink are controlled by αSacc and αBlink. Larger values of these
parameters result in sparser estimates. We used values between
0.3 and 1 for αSacc, and between 6 and 10 for αBlink. The pa-
rameters βSacc and βBlink control the number of EM-iterations
and are chosen to be small (e.g., βSacc = βBlink = 10−6). To
achieve true sparsity, we set all variances below 20 · βSacc (and
20 · βBlink, respectively) to zero.

3) SPEM Estimation: The variance σ2
SPEM of the Gaussian

prior on the SPEM input signal USPEM in (1) determines how
quickly the SPEM signal Y SPEM is allowed to change. We used
values between σSPEM = 0 N/s2 (no SPEM) and 1 N/s2 .

4) FEM Estimation: The FEM input variance σ2
FEM should

be adapted to the expected amount of FEM in the data. We used
values between σFEM = 0 N/s and 1 N/s. For too small values,
FEMs in the data might be explained by the saccade neural
controller signal and for too large values, small saccades might
be missed and explained by the FEM signal.
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