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Sparse EEG Source Localization Using LAPPS:
Least Absolute l-P (0<p<1) Penalized Solution
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Dezhong Yao , Feng Wan , and Peng Xu

Abstract—Objective: The electroencephalographic (EEG)
inverse problem is ill-posed owing to the electromagnetism
Helmholtz theorem and since there are fewer observations
than the unknown variables. Apart from the strong back-
ground activities (ongoing EEG), evoked EEG is also in-
evitably contaminated by strong outliers caused by head
movements or ocular movements during recordings. Meth-
ods: Considering the sparse activations during high cog-
nitive processing, we propose a novel robust EEG source
imaging algorithm, least absolute l-P (0<p<1) penalized
solution (LAPPS), which employs the l1 -loss for the resid-
ual error to alleviate the effect of outliers and another lp-
penalty norm (p = 0.5) to obtain sparse sources while sup-
pressing Gaussian noise in EEG recordings. The resulting
optimization problem is solved using a modified alternating
direction method of multipliers algorithm. Results: Simula-
tion study was performed to recover sparse signals of ran-
domly selected sources using LAPPS and various methods
commonly used for EEG source imaging including weighted
minimum norm estimate, l1 -norm, standardized low reso-
lution electromagnetic tomography and focal underdeter-
mined system solver solution. The simulation comparison
quantitatively demonstrates that LAPPS obtained the best
performances in all the conducted simulations for various
dipoles configurations under various signal-to-noise ratio
on a realistic head model. Moreover, in the localization
of brain neural generators in a real visual oddball experi-
ment, LAPPS obtained sparse activations consistent with
previous findings revealed by EEG and functional magnetic
resonance imaging. Conclusion: This study demonstrates

Manuscript received July 23, 2018; revised October 10, 2018 and
November 9, 2018; accepted November 9, 2018. Date of publication
November 14, 2018; date of current version June 21, 2019. This work
was supported in part by the National Natural Science Foundation
of China under Grants 61522105, 81330032, 61603344, 81401484,
and 81771925, in part by the Open Foundation of Henan Key Lab-
oratory of Brain Science and Brain-Computer Interface Technology
(HNBBL17001), and in part by the ChengDu’s HuiMin projects of sci-
ence and technology in 2013. (Corresponding author: Peng Xu.)

J. C. Bore, C. Yi, P. Li, F. Li, D. J. Harmah, and Y. Si are with the
Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for
Neuroinformation, University of Electronic Science and Technology of
China.

D. Guo and D. Yao are with the Clinical Hospital of Chengdu Brain
Science Institute, MOE Key Lab for Neuroinformation, School of Life
Science and Technology, Center for Information in Medicine, University
of Electronic Science and Technology of China.

F. Wan is with the Department of Electrical and Computer Engineering,
Faculty of Science and Technology, the University of Macau.

P. Xu is with the Clinical Hospital of Chengdu Brain Science Insti-
tute, MOE Key Lab for Neuroinformation, School of Life Science and
Technology, Center for Information in Medicine, University of Electronic
Science and Technology of China, Chengdu 611731, China (e-mail:,
xupeng@uestc.edu.cn).

Digital Object Identifier 10.1109/TBME.2018.2881092

a potentially useful sparse method for EEG source imaging,
creating a platform for investigating the brain neural gen-
erators. Significance: This method alleviates the effect of
noise and recovers sparse sources while maintaining a low
computational complexity due to the cheap matrix-vector
multiplication.

Index Terms—EEG inverse problem, ill-posed, outliers,
sparse sources, visual oddball.

I. INTRODUCTION

THE scalp electroencephalogram (EEG) represents electri-
cal activity produced by vast numbers of neurons firing

within the brain. This can be used to infer the location of the
current density sources that generate given EEG potentials, for
example epileptic spikes or somatosensory evoked potentials
[1], [2]; a similar problem is found in magnetoencephalogram
(MEG) [3]. The EEG inverse problem involves calculation of
the neural electric current sources locations and magnitudes
given a set of electric potentials measured on the scalp surface
and the associated positions of those measurements, and the
geometry and conductivity properties within the head. This is
an underdetermined problem as it lacks a unique solution due
to the infinite number of currents distributions inside the head
which are compatible with the measured recordings at the head
surface [4].

In order to convert data from the EEG recordings on the
scalp domain to the sensor domain, an EEG forward model is
generated [5]. Solving the EEG forward problem involves a lead
field matrix A ∈ Rm×n (m indicates the scalp electrodes while
n indicates the sources vectors) which signifies the propagation
of the electromagnetic field from the sources to the sensors. In
the EEG inverse problem, we aim to estimate the actual source
locations and orientations inside the brain based on recordings
of the electrical potential at the scalp of the head. In other
words we seek to recover the source vector x ∈ Rn×1 (produced
by neuronal generators) from a set of linear measurement y =
Ax where y ∈ Rm×1 is a measurement vector observed on the
mscalp electrodes and notably m < n as EEG inverse problem
is ill-posed. Considering the noisy nature of the EEG recordings,
the linear problem can be mathematically modeled as:

y = Ax + α (1)

and α ∈ Rm×1 is the measurement noise. Generally, x ∈
Rn×1 comprises of either dipoles [6]–[8], charges [9]–[11]
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or potential [12]. In this work, we employed the dipole
model.

EEG inverse problem is typically ill-posed according to the
electromagnetism Helmholtz theorem [13] and the inherent
characteristics of an underdetermined system. A number of
methods utilizing the regularization approach have been pro-
posed such as the L2-norm solution popularly known as Ridge
[14] which has led to the rise of other approaches such as
Minimum-Norm [15]–[16]. A major drawback of minimum
norm (MN) solution is that it favors a superficial source whereby
the estimated position of a deep source tends to be shallower
than the actual situation thus other methods such as the weighted
minimum norm estimate (WMNE) solutions, the standardized
low resolution electromagnetic tomography (sLORETA), focal
underdetermined system solver (FOCUSS) were developed as
an improvement to the previous methods [6], [16]–[19]. Never-
theless, several research efforts are still being made in an effort to
improve the spatial resolution of these methods. The mixed norm
constraints which employ the penalized approach have also been
developed and their advantages have been revealed [20], [21].
Besides from the penalized methods, other methods such as the
Recursively applied and projected-Multiple signal classifica-
tion (RAP-MUSIC) [22], Markov chain Monte Carlo (MCMC)
[23], [24], and the approaches based on the Bayesian framework
such as Variational Bayes (VB), Spatio-Temporally Regular-
ized Algorithm for M/EEG Patch Source imaging (STRAPS),
and Bayesian Electromagnetic Spatio-Temporal Imaging of Ex-
tended Sources (BESTIES) have been developed to solve EEG
inverse problem [25]–[27]. Motivated by the sparse activations
in the brain during high cognitive processing as revealed by
various recording techniques such as neural spiking, functional
magnetic resonance imaging (fMRI) and positron emission to-
mography (PET), some other methods have also been devel-
oped in efforts to obtain a sparse EEG source localization so-
lution such as the self-coherence enhancement algorithm [28],
Lp norm iterative sparse source (LPISS) [29], L1 norm solution
(i.e., the least absolute shrinkage selection operator (LASSO))
[30], and Solution Space Sparse Coding Optimization (3SCO)
[31]. However, these methods portray some instabilities due to
their sensitivities to noise including outliers, source configura-
tions and even the initial source distributions [19], [32]–[34].

In real-world applications, EEGs are usually inevitably con-
taminated by outliers due to eye blinks or head movements [35].
Theoretically, the popularly utilized L2-norm loss function has
a tendency of exaggerating the outlier effect due to the square
property of the L2 norm [36]–[38]. However, existing sparse
source localization approaches still use the L2-norm loss func-
tion and only impose sparse constraints on the objective func-
tions, while still omitting the possible effect of outliers on EEG
source estimation. Since the L1-loss function has been proven to
be less sensitive to outliers as compared to the quadratic function
[39]–[46], in this paper, we propose a novel robust and sparse
approach for EEG source imaging known as the Least Absolute
l-P (0<p<1) Penalized Solution (LAPPS) which simultane-
ously adopts an L1-loss function to measure the residual error
and an Lp-penalty term (p = 0.5) to constrain the EEG sources.
Our approach here adopts the alternating direction method of

multipliers (ADMM) approach to efficiently solve the optimiza-
tion problem [47]. Compared with other existing methods such
as l1-norm solution, sLORETA, the WMNE solution and FO-
CUSS, the proposed LAPPS shows its superiority for source
estimation in terms of sparsity and robustness when Gaussian
noise and outliers are included in the EEG recordings. In this
paper, we evaluated the algorithm based on simulated dataset
and by localizing the sources of a true P300 EEG dataset.

This paper is structured as follows: the method is intro-
duced is Section II. Section III gives the details for the adopted
head model and evaluation indexes. In Section IV, the pro-
posed approach was tested and compared with l1-norm solution,
sLORETA solution, WMNE solution and FOCUSS solution. Fi-
nally, we have our discussions and conclusions in Section V and
VI respectively.

II. METHODS

The use of penalized loss functions defines several types of
EEG inverse solutions. In this work, we explore the performance
of a subset of the methods mostly used for the EEG source es-
timation, which include sLORETA solution, WMNE solution,
l1-norm solution and FOCUSS solution. These existing meth-
ods are briefly introduced in the following Sections A to D
while the novel LAPPS method is introduced in Section E. In
practical applications, there are two ways of estimating EEG
sources: The first aspect is to assume that the sources (dipoles)
have fixed positions and directions, and only the magnitudes are
varied within certain periods, this is usually represented by the
dipole fitting [22], [26], [27]; another aspect involves estimating
sources for each time slice, and this approach can theoretically
find the instant sources when both positions and magnitude for
the concerned time window are varied, sLORETA, FOCUSS
and other minimum norm based methods can be divided into
this category [5], [6], [19], [29], [31]. Similar to the latter, in
current work, we mainly probe the performance of source esti-
mation for the individual time point.

A. Weighted Minimum Norm Estimate (WMNE) Solution

The WMNE solution for equation (1) is expressed as:

x WMNE = arg min
{‖ y − Ax ‖2

2 +λ ‖ Wx‖2
}

(2)

where λ ≥ 0 is a regularization parameter and W is a weighting
matrix. The solution for this minimization problem is:

x WMNE = AT (AAT + λW )−1y (3)

When W is the identity matrix, this solution is referred to as
the minimum norm estimate (MNE) but this solution is biased
by the fact that superficial dipoles tend to project more strongly
on the scalp. As for the weighted MNE (WMNE), this effect
is corrected by applying a set of weights to the dipoles so that
the influence of dipole depth is reduced [16]. Tikhonov regu-
larization is employed to further constrain the solution to find
the source vector which minimizes the residual as well as the
energy of the source solution [48]. This additional constraint is
represented by the second term in (2); the effect of the two terms
is balanced by the regularization parameter lambda.
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B. sLORETA Solution

The minimum norm estimate inverse solution is known for
its incapability of correct localization of deep point sources [5].
Consequently, sLORETA was developed as a step ahead. The
MNE solution for equation (1) is expressed as:

x MNE = arg min
{‖ y − Ax ‖2

2 +λ ‖ x‖2
}

(4)

where λ ≥ 0 is a regularization parameter. The solution for this
minimization problem is:

x MNE = Ty (5)

where T = AT [AAT + λH]+ , with H ∈ Rm×m as the iden-
tity matrix. In sLORETA, the resolution matrix is used to nor-
malize a coarse minimum norm estimate, thus standardizes
the x MNE solution in equation (5) above by estimation
of the variance due to the actual sources and due to noise. As
such, the variance of the electrical potential is expressed as:

Sy = ASxAT + SN oise
y = AAT + λH (6)

while the variance of the source vector is given by:

Sx M N E =TSyTT =T (AAT + λH)TT =AT [AAT +λH]+A
(7)

Eventually, the sLORETA solution [6] corresponds to the
estimation of standardized source vector power as,

x sLORETA = x MNET
ι {[Sx M N E ]ιι}−1x MNEι (8)

where x MNEι ∈ R3×1 is the source vector estimated at the
ιth voxel; and [Sx M N E ]ιι ∈ R3×3 is the ιth diagonal block of
matrix Sx M N E .

C. The l1-Norm Solution

The l1-norm solution also known as LASSO (Least Absolute
Shrinkage Selection Operator) induces the l1-norm penalty on
the coefficients thus forcing some coefficients to be shrunken to
zero, in order to obtain a sparse solution. As a solution to the
EEG linear system provided in equation (1), LASSO solves the
following optimization problem:

x l1 = arg min
{‖ y − Ax ‖2

2 +λ ‖ x‖1
}

(9)

where λ ≥ 0 is a regularization parameter. The above
equation (9) is a well-known convex optimization problem,
which can reach the globally optimal solution via the ‘least
angle regression’ method [49].

D. FOCUSS Solution

Apart from L1 norm solution, FOCUSS is another approach
that can obtain a sparse solution iteratively. To achieve FOCUSS
solution (x FOCUSS), a liner transform (x = Wq) is made
such that equation (1) is now expressed as:

min ‖ q ‖
s.t. : AWq = y (10)

where W is a n × n weighted matrix. Moreover, in its kth
iteration, Wk is a diagonal matrix constructed from the prior

iteration solution denoted as xk−1 . As such, FOCUSS solution
[19] can be briefly stated using three iterative steps:

Step 1 :Wk = (diag (xk−1))

Step 2 :qk = (AWk )+y

Step 3 :xk = Wkqk . (11)

E. Proposed LAPPS Framework of the
EEG Inverse Problem

In essence, both LASSO and FOCUSS impose sparsity con-
straints onto the sources. However, for EEG inverse problem,
though the desired sparse activities can be estimated through
the sparsity regularization term, artifacts induced in EEG due to
the head movement or eye blinks will inevitably influence the
final source estimation. As for the approaches for EEG source
estimation mentioned above, the fitting error is still measured
by the L2 norm, which exaggerates the effect of outliers. To ob-
tain the sparse EEG sources robustly under artifacts conditions,
we propose a Least Absolute l-P (0<p<1) Penalized Solution
(LAPPS) which is defined as follows:

x LAPPS = min
x

{
1
η
‖ Ax − y‖1+ ‖ x ‖p

p

}
(12)

where the fitting error is measured in the L1 norm space, the
l-P(0<p<1) norm regularization is imposed onto the sources,
and η > 0 is the regularization parameter. Theoretically, the first
term measures the error in L1 space thus can alleviate the ef-
fect of outliers and the second regularization term can guarantee
attainment of the sparse EEG sources. In this work, we solve
the formulation above based on a modified alternating direction
multiplier method (ADMM) framework [47] with non-convex
sparsity inducing penalty function. ADMM holds the advantage
that it can split some complex objective functions into simpler
sub-problems whose solutions can be easily obtained. Conse-
quently, LAPPS solution can be estimated by the following
steps:

Step 1: Rewrite the function in (12) as:

min
x,B

1
η
‖ B‖1+ ‖ x ‖p

p subject to Ax − y = B (13)

Step 2: Define the associated Lagrangian for the function
above

L(B, x, u) =
1
η
‖ B‖1+ ‖ x ‖p

p −〈u,Ax − y − B〉

+
λ

2
‖ Ax − y − B ‖2

2 (14)

where u ∈ Rm is the Lagrangian multiplier while λ > 0 is a
penalty parameter.

Step 3: Split the function into three simpler subproblems:
For x-subproblem,

xk+1 = arg min
x

(
‖ x ‖p

p +
λ

2
‖ Ax − y − Bk − uk

λ
‖2

2

)

(15)
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For B-subproblem,

Bk+1 =arg min
B

(
1
η
‖ B‖1 +

λ

2
‖ Axk+1 − y − B − uk

λ
‖2

2

)

(16)
Dual update:

uk+1 = uk − λ
(
Axk+1 − y − Bk+1) (17)

Therefore, we need to find the solutions for x- subproblem
and B - subproblem, respectively. Finally, based on the solutions
of these subproblems, we perform a dual update as indicated in
equation (17).

Step 4: x − subproblem
Solving the x-update actually obtains the least squares

solution. If we say, let ck = y + Bk + uk/λ and t1(xk ) =
AT (Axk − ck ) is the gradient obtained for the quadratic term
at point xk .xk − ρ1A

T (Axk − bk ).

1
2
‖ Axk − ck ‖2

2≈
1
2
‖ Axk − ck ‖2

2 +〈x − xk , t1(xk )〉

+
1

2r1
‖ x − xk ‖2

2 (18)

=
1
2
‖ Axk − ck ‖2

2 +
1

2r1
‖ x − xk + r1t1(xk ) ‖2

2

− r1

2
‖ t1(xk ) ‖2

2 (19)

where r1 > 0 is a proximal parameter. Consequently, xk+1 up-
date is computed from a proximal operator (sk ) [50] with

sk = xk − r1A
T (Axk − ck ). (20)

Step 5: B − subproblem
For the nonconvex problem with p < 1, a smoothing method

is employed such that problem (1) becomes:

min
x

1
η
‖ Ax − y‖1,ε+ ‖ x ‖p

p (21)

with the smoothed l1-norm given by:

‖B‖1,ε =
∑

i

(
b2
i + ε2) 1

2 (22)

where ε > 0 is an approximation parameter and we have
limε→0 ‖ B‖1,ε =‖ B‖1 , this means that with a sufficiently
small ε, ‖ B‖1,ε approximates the l1-norm of B. Obviously,
‖ B‖1,ε is strictly convex and its gradient is Lipschitz continu-
ous when ε > 0.

As such, problem (21) is reformulated as

min
x,B

(
1
η
‖ B‖1,ε+ ‖ x ‖p

p

)
subject to Ax − y = B (23)

with its Lagrangian given by:

Lε(B, x, u) =
1
η
‖ B‖1,ε+ ‖ x ‖p

p −〈u,Ax − y − B〉

+
λ

2
‖ Ax − y − B ‖2

2 (24)

B-subproblem is now redefined as:

Bk+1 =arg min
B

(
1
η
‖ B‖1,ε +

λ

2
‖ Axk+1 − y − B − uk

λ
‖2

2

)

(25)
Therefore, ‖B‖1,ε in (23) is approximated by

‖B‖1,ε ≈‖ Bk‖1,ε + 〈B − Bk , t2(Bk )〉 +
1

2r2
‖ B − Bk ‖2

2

(26)
where t2(Bk ) = ∇ ‖ Bk‖1,ε with t2(Bk )i = bi(b2

i + ε2)−
1
2 ,

and r2 > 0 is an approximation parameter. Finally, the update
for B-subproblem is given by

Bk+1 =
r2

ληr2 + 1

{
1
r2

Bk − t2
(
Bk

)

+ λη

(
Axk+1 − y − uk

λ

)}
. (27)

Based on the above iterative procedure, we obtain the solution
for LAPPS. Following the previous work in [45] which proved
that the nonconvex penalization with p = 0.5 attains good per-
formance for sparse analysis, we used 0.5 as p value for the
proposed equation (12) in current work.

III. HEAD MODEL AND EVALUATION INDEXES

A. Head Model

For this analysis, we employed a 3-shell realistic head model
derived from eConnectome software [51], [52] for EEG source
localization. A high-resolution cortical surface consisting of
41136 triangles was segmented and reconstructed from the
Montreal Neurological Institute (MNI) brain images for visu-
alization. For computational efficiency, the calculated source
space was formed by a down-sampled cortical surface with
7850 dipoles. Based on the three-shell conduction model with
conductivities of the scalp, skull, and inner cerebral tissues as-
signed in the ratio of 1:1/20:1 [53], [54], the lead field matrix was
calculated using a dipole model by boundary element method
(BEM) [55] for a 59 electrode system and its dimension was
59 × 7850. The current dipoles were evenly positioned over
the whole cortical surface with their orientations constrained
to be perpendicular to the local cortical surface. The strengths
of the dipole sources are estimated using the selected inverse
algorithm.

B. Evaluation Indexes

The source localization error, Elocalization
This describes the distance between the simulated source

and the source with the maximum power within the sphere
neighbouring the simulated source.

Elocalization = (‖ ptrue − p̂simu ‖) (28)

where p̂true and psimu denote the spatial positions of the true
and estimated sources, respectively.

The source energy error, Eenergy
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This index measures the ability to recover the source energy,
which is defined as,

Eenergy = (‖ ssimu − ŝmax ‖ / ‖ ssimu ‖) (29)

where ssimu is the strength of simulated source and ŝmax is
the strength of estimated source with maximum power within a
sphere centered at the original simulated source.

IV. RESULTS

A. Simulation Study

Based on the lead field calculated by BEM for the realis-
tic head model obtained from eConnectome software [51], we
obtained the simulated scalp EEG signal by using the EEG
forward problem. Considering that the signal-to-noise ratio
(SNR), source configurations and the spatial distance between
sources influence the performance of inverse methods, in cur-
rent work, we evaluated the performances under various SNRs
and randomly generated source configurations and distances
between sources. To simulate the actual EEG recordings, both
white Gaussian noise and artifacts are introduced into the sim-
ulated EEG signal y ∈ Rm×1 in equation (1) under −10 dB,
−5 dB, 0 dB, 5 dB and 10 dB SNRs. Different number of
sources with random positions, amplitudes and distances be-
tween sources across the entire brain are generated. Based on
the simulated EEG, the proposed LAPPS and other conventional
EEG source estimation approaches (i.e., WMNE, L1, FOCUSS
and sLORETA) are used to find the sources, which are then used
to calculate the corresponding evaluation indexes including po-
sition error and energy error using the simulated sources as the
ground truth.

To verify the stability of these methods, for each source con-
figuration under defined SNR, the simulation is repeated to gen-
erate 200 simulation data for each number of sources (2, 3, and
4) whereby in every run for each number of sources, the posi-
tions, amplitudes and distances between sources are randomly
generated and also varied noise with random outlier positions
and amplitudes are added, then the mean errors across the 200
runs are finally reported. Moreover, to model the typical EEG
scenario whereby in actual EEGs strong ocular artifacts are
usually observed close to the eyes, we further assume that any
three channels close to eye (located in the frontal areas) will
be influenced by the ocular artifacts, thus in the simulation,
three outliers will be generated and randomly distributed on the
channels in the frontal brain area close to eyes.

We add outliers to the simulated EEG signal, as follows: Set
the outlier strength in the range of 1.5 to 5 times the maximum
amplitude of the corresponding process, also set the outlier oc-
currence frequencies to 0.05%, occurrence frequency is defined
as the ratio between the number of outliers and the sample points.
In our work here, the contaminated channel indexes and the po-
sitions where the outliers are located are randomly decided. The
signal-to-noise ratio (SNR) is defined as:

SNR = 10log10

(
σ2(Ax0)
σ2(noise)

)
(30)

Here σ2(Ax0) is the variance of the original signal without
noise while σ2(noise) is the variance of the noise (both outliers
and Gaussian noise). Obviously, a lower SNR (for example
−5 dB) delineates a high ability for sources identification and
recovery.

Moreover, in the current work, under a defined SNR, we add
outliers and Gaussian noise together to the simulated EEG signal
as follows: Firstly, as described above we generated the outliers
from the Gaussian distribution N (μ + 10 σ2, σ2), where μ and
σ2 denoted the mean and variance of EEG across all channels
at the single time slice. Second, based on the predefined SNR,
the Gaussian noise with distribution N (0, σ21) will be further
added to the signal, where σ21 is the variance of Gaussian noise
that is adjusted according to the predefined SNR (signal to noise
ratio). Consequently, the mixture noise (Gaussian and outliers)
will be:

Noise =
n1

σ(n1)

[
10∧

(−SNR

20

)]
σ(Ax0) (31)

where n1 indicates the outliers noise, Ax0 denotes the true signal
without noise while σ stands for standard deviation.

The choice of regularization parameters has a large influence
on the final source estimation. We estimated the regularization
parameters for LASSO and sLORETA by cross-validation as
proposed in the related works [6]; [49], while that of WMNE
was evaluated by the L-curve similar to that utilized in the
eConnectome software [51]. As for the proposed LAPPS, we
follow the work in [42]; [45] and determine the regularization
parameter in terms of relative error of recovery, which is in
essence the Akaike Information Criterion (AIC) [56].

1) Simulation for Two Sources: In this experiment, we
evaluate the performances using simulated sparse EEG signals
contaminated by noise of various strengths. We simulated two
EEG sources, in which the positions and amplitudes of the two
dipole sources are both randomly selected in each of the 200
runs. Then following the simulation procedure, both Gaussian
noise and artifacts are added to the simulated EEG recording
y ∈ Rm×1 from equation (1) with different SNRs. Different ap-
proaches are adopted to recover the sources from the noisy EEG
recordingy ∈ Rm×1 . For each SNR, the simulation is repeated
for 200 times. Based on the 200 runs, the mean position error
and energy error are calculated and given in Table I at vari-
ous SNRs of −10 dB, −5 dB, 0 dB, 5 dB and 10 dB. Table I
clearly reveals that the different SNRs of noise actually influ-
ence the accurate estimation of sources, where the performance
gradually declines with the increase of noise contaminated in
EEG recordings. However, among the EEG source solutions
mentioned here, LAPPS consistently shows the smallest posi-
tion and energy errors for all the simulated SNRs. To provide a
more intuitive comparison of performances among those EEG
inverse solutions, we visually display the strength and spatial
distributions of true sources and recovered sources estimated
under −5 dB SNR for different approaches in Fig. 1(a) and (b),
where the source on the realistic head model (i.e., Fig. 1(b))
is exhibited with the normalized scale within 0∼1 by dividing
with the maximum source strength.
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TABLE I
ENERGY ERROR AND POSITION ERROR UNDER VARIOUS SNRS FOR 2 SOURCES IN THE PRESENCE OF GAUSSIAN NOISE AND OUTLIERS

Fig. 1. The inverse solutions for two source configurations under −5 dB SNR. (a) Sources in the indexed solution space. (b) Sources on the
realistic head model.

Specifically, Fig. 1(a) shows the solutions for two sources
under −5 dB SNR condition for WMNE, L1, LAPPS, FO-
CUSS and sLORETA in the indexed solution space. Moreover,
Fig. 1(b) shows the corresponding source mappings on a realistic
head model for the solutions obtained by the five methods.

Apparently, WMNE is too blurred to recover the simulated
sources (as expected for L2 norm based methods). sLORETA
obtains a better solution with greatly improved resolution than
WMNE because sLORETA standardizes the variance of min-
imum norm estimate to give a better estimation though still
blurred. The two sources can be clearly discerned as for FO-
CUSS and L1 solutions, but they could not obtain the pre-
cise strengths of the two sources and also some small spurious
sources were generated thus the result was also blurred. LAPPS
demonstrates its ability to reconstruct the two simultaneously
activated sources as shown in Fig. 1(a) in the indexed solution
space and Fig. 1(b) on the realistic head model. This is due to
the L1-loss function used which is less sensitive to outliers and
the non-convex penalty used to enforce sparsity.

To further reveal the different working mechanisms for those
methods, we analyzed the fitted signal after obtaining the inverse
solutions, based on which we estimate the recovered simulated
EEG signal by forward equation (1). Here we sought to re-
cover the measurement vector y ∈ Rm×1 having knowledge of
the lead field matrix and the source vector x ∈ Rn×1 obtained
from each the compared algorithm used in the recovery of two

random source vectors. Starting with the original measurement
vector (from the ‘EEG forward problem’) without noise added
to it, both Gaussian noise and artifacts are added to the sim-
ulated EEG recording y ∈ Rm×1 from equation (1) with dif-
ferent SNRs. Various algorithms are used to recover sources
(with random positions and energy) from the noisy EEG data
then using the estimated source vector and the lead field matrix
we recover the fitted signal by each method. We also computed
the mean bias in 200 runs for the signals recovered from each
method as compared to the original signal without noise. In
Fig. 2, the first subfigure shows the original simulated EEG
signal and the noised signal while the rest of the subfigures
show the original (cyan line) and noised (black line) signals as
well as the signals recovered by each method (magenta line) in
one of 200 runs. As we can see, LAPPS suppresses the noise
and recovers a signal similar to the original simulated EEG
signal (the magenta line almost overlaps with the cyan line)
and it also obtains the smallest bias as compared to the other
algorithms. The other methods have higher bias than LAPPS
and actually do fit the signal as well as the outliers because
the L2 norm based methods fail to suppress the outliers in the
signal.

2) Simulation for Three Sources: Similar to the procedure
for the two source configuration, in this section, we present the
solutions of WMNE, L1, LAPPS, FOCUSS and sLORETA for
three isolated sources under various SNRs. In this simulation,
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Fig. 2. The recovered EEG signals under −5 dB SNR for the two source configuration in 1 out of 200 runs. The cyan line shows the original signal
without noise, the black line shows the noised signal while the magenta line shows the signal predicted by each method. The first subfigure shows
the original and the noised signals only while the other subfigures also include the fitted signal predicted by each method.

TABLE II
ENERGY ERROR AND POSITION ERROR UNDER VARIOUS SNRS FOR 3 SOURCES IN THE PRESENCE OF GAUSSIAN NOISE AND OUTLIERS

Fig. 3. The inverse solutions for three source configurations under −5 dB SNR. (a) Sources in the indexed solution space. (b) Sources on the
realistic head model.

we generated three sparse EEG sources, in which the positions
and amplitudes of the three nonzero dipole sources are both
randomly selected in each of the 200 runs. The mean position
and energy errors under various SNRs are given in Table II for
the five approaches, and the specific source information recov-
ered under −5 dB is shown in Fig. 3. Evidently, in Table II and
Fig. 3, a similar pattern as that for two sources configuration

is observed whereby the source errors become larger with the
increasing noise power (i.e., smaller SNR) for all the methods,
but LAPPS still obtained the best performance giving the small-
est position and energy errors more closer to zero thus yielding
the highest spatial resolution. Specifically, we can observe from
Fig. 3(b) that WMNE, L1, FOCUSS and sLORETA do not
find sparse results for the simulated sources and some spurious
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sources are also generated such that the results are quite cloudy.
LAPPS produced the best localization here and the three focal
sources can be clearly seen.

3) Simulation for Four Sources: Here, we further tested
the inverse algorithms in the case of four focal sources local-
ization. We simulated four sparse EEG sources in which the
positions and amplitudes of the four nonzero dipole sources are
both randomly selected in each of the 200 runs. After these 200
repetitions for each SNR, the mean performances for the five
approaches are listed in Table III, where the specific position
and energy errors are included. The corresponding source infor-
mation in the indexed source space and on realistic head model
under −5 dB SNR is shown in Fig. 4.

Once again, though the errors are larger compared to those in
two and three sources configurations, LAPPS still attained the
highest spatial resolution having the least position and energy
errors among the five analyzed methods.

B. Simulation for Extended Sources

In the preceding simulations, we focused on a few isolated
sources whereby LAPPS proved to be a high resolution al-
gorithm that can accurately reconstruct focal sources. In this
section, we will evaluate the performance when sources are
extensively distributed not in the isolated pattern. We present
the results obtained from the localization of focally extended
sources using WMNE, L1, LAPPS, FOCUSS and sLORETA
algorithms in in the indexed solution space Fig. 5(a) while in
Fig. 5(b) we show the source mappings for all the algorithms
here on a realistic head for the extended source configuration.

In this simulation, the neighboring cortex patches enclosed in
a 20 mm-radius-sphere with the center at randomly selected po-
sitions and having varying strengths across the 200 repeated runs
were assumed to be the activated regions. The moment compo-
nent of each dipole was randomly varied within 0∼10 uv. Back-
ground noise including Gaussian noise and outliers are added at
−5 dB SNR. For the extended sources, we just simply evaluated
if the estimated sources are located in the activated areas be-
cause it is difficult to accurately define the position and energy
error as isolated sources. The corresponding sources patterns for
the true ground and recovered ones in 1 out of 200 runs by the
five approaches are given in Fig. 5. By comparing the ground
truth (original solution) with the recovered ones, we found that
for the noised extended sources, all the methods were unable
to precisely recover the sparse sources. Specifically, WMNE
estimated a source pattern with activation widely distributed
over the cortex; As for L1 norm and FOCUSS, besides from
recovering the activation close to the simulated position, other
pseudo-activations were also estimated; sLORETA showed its
good ability for estimation of the extended sources with most
sources located in the due positions; LAPPS achieved a very
sparse source pattern, which was located within the sphere en-
closing the simulated sources.

C. Real Data Test

We recruited and paid twenty-three postgraduate male sub-
jects (mean age 25.2 years; age range, 24–27 years) who

participated in this experiment. All the subjects were healthy
with no history of neurological or psychiatric disorder and they
all had normal or corrected-to-normal visual acuity. Each par-
ticipant gave an informed written consent to take part in this
study, and the experiment was approved by the review boards of
the University of Electronic, Science and Technology of China
(UESTC). The classical visual oddball task was utilized and this
was implemented through the E-prime 5.0 software.

In this task there were two types of stimuli: the standard
(upward-facing triangle consisting of a thin cross in its center,
the edge length of the triangle was 4° visual angle) and the
target (downward-facing triangle consisting of a thin cross in
its center, the edge length of the triangle was 4◦ visual angle).
The two types of stimuli were presented randomly with the
target having 0.20 (30 trials) occurrence probability while the
standard had 0.80 (120 trials) chance of occurring during each
session. The subjects were required to sit approximately 57 cm
from the computed monitor. The detailed procedure is illustrated
in Fig. 6(a), whereby three task sessions were used. Here, 4
minutes of resting state EEG data was followed by a 1 minute
break recording before the visual oddball task performance. In
the oddball task, participants were required to fixate their eyes
in the center of the screen as much as possible during which the
appearance of a bold cross signified the start of the experiment.
A thin cross appeared after 250 ms to signify the stimulus onset
and this was followed by a standard or target stimulus appearing
after 500 ms and its duration was a further 500 ms. The next trial
followed after a 1,000 ms break. Participants needed to count
the number of target stimuli while ignoring the standard stimuli
and reported their counted numbers at the end of the experiment
[57], [58].

Electroencephalographic activity was recorded from
64 Ag/AgCl electrodes placed on the scalp according to the
10–20 system. An online filter band of 0.01∼100 Hz (Brain
Products GmbH) was employed during the recording and EEG
was digitized with a sampling rate of 500 Hz. The reference
electrode utilized was FCz while the ground electrode was AFz.
Furthermore, two additional channels for vertical and horizontal
electrooculograms (EOGs) were placed in the right side of the
right eye and below the left eye to monitor the eye movements.

Based on the target and standard stimuli, the recorded EEG
was firstly averaged to achieve the two ERPs for each sub-
ject. The ERPs were then further averaged across subjects to
get the two grand averaged ERPs, i.e., P300 response versus
standard response. Fig. 6(c) shows the waveforms for P300 re-
sponse on all 64 channels, and Fig. 6(b) exhibits the topology of
P300 peak approximately at 300 ms after target onset stimulus.
Then, based on the topology, we used LAPPS and other EEG
inverse approaches to localize the sources accounting for P300
activities. Fig. 6(e) gives the source information estimated by
LAPPS, where the generators of the visual P300. Fig. 6(f) shows
the corresponding sources estimated by WMNE, L1, FOCUSS
and sLORETA, where though the similar source patterns as that
of LAPPS could be observed, these methods all result in the
blurred and unclear source mappings. These sources estimated
by various inverse approaches consistently indicated that dis-
tinct attention regions are involved in target stimuli processing,



BORE et al.: SPARSE EEG SOURCE LOCALIZATION USING LAPPS: LEAST ABSOLUTE l-P (0<P<1) PENALIZED SOLUTION 1935

TABLE III
ENERGY ERROR AND POSITION ERROR UNDER VARIOUS SNRS FOR 4 SOURCES IN THE PRESENCE OF GAUSSIAN NOISE AND OUTLIERS

Fig. 4. The inverse solutions for four source configurations under −5 dB SNR. (a) Sources in the indexed solution space. (b) Sources on the
realistic head model.

Fig. 5. The inverse solutions for extended sources under −5 dB SNR. (a) Sources in the indexed solution space. (b) Sources on the realistic head
mode.

generating the P300 component. To further reveal the activa-
tion strength for each paired source areas of the five localized
brain areas, we specifically give the detailed source strength for
the 10 P300 sources, where the source strength is the maxi-
mum strength of the source within the concerned brain areas.
Fig. 6(d) shows the strengths of P300 sources in left and
right hemispheres in various brain areas including the Superior
Temporal Sulcus (STS), Cuneus (Cun), Superior Temporal Lobe

(SPL), Precentral Gyrus (PreCG) and the Middle-Frontal Gyrus
(MFG) obtained by LAPPS solution.

V. DISCUSSION

Various studies based on fMRI, spikes and intracritinal EEG
have proven that brain is sparsely activated during task perfor-
mance. Therefore, it is reasonable to pursue the sparse solutions
for EEG inverse problem. The simulations in the different con-
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Fig. 6. Source analysis for visual P300 two oddball task. (a) Experimental protocol utilized in this study. (b) Topography distribution of the scalp
EEG recording. (c) The EEG waveform obtained from our visual two oddball experiment. (d) Strengths of P300 sources in left and right hemispheres
in various brain areas obtained by LAPPS solution. (e) Brain source mappings of the neural generators in the visual P300 two oddball experiment
for LAPPS solution. (f) Brain source mappings of the neural generators in the visual P300 two oddball experiment for WMNE solution, L1 solution,
FOCUSS solution and sLORETA solution.

ditions including distribution patterns and noise levels actually
reveal the different performances among the various EEG in-
verse solutions. When sources are sparsely distributed, from
Fig. 1 and 3∼5, we could observe that LAPPS produced rea-
sonable sparse solutions close to the ground truth, FOCUSS and
L1 somewhat depended on the noise level and source configu-
rations, while WMNE and sLORETA generated much blurred
results.

By specifically investigating Tables I–III, we could see the
influence of source patterns and noise powers on EEG inverse
solutions. When signal is corrupted with the increased noise
power (i.e., lower SNR), the corresponding performances in-
cluding position error and energy error for all the approaches
decrease, but LAPPS still shows its robustness to noise, still
having the smallest bias errors. Besides the noise level, it is also
noteworthy that the performance of all the algorithms declines
with the increased number of sources from two to three to four
active sources being localized as seen in Tables I–III. Though
performance is decreased, LAPPS stills performs better in all
the simulated source patterns.

The improvement of LAPPS compared with other meth-
ods is due to the adaptation of both L1-loss function and Lp-
penalty regularization, which can provide the benefits for source
estimation from two aspects: one is that L1-loss function is less

sensitive to outliers as compared to the quadratic function; an-
other is that the Lp-penalty regularization has been applied in
LAPPS to enforce sparsity. Therefore, the WMNE solution and
sLORETA which essentially use the minimum norm produce
blurred solutions. Though sparse penalty is imposed, FOCUSS
and L1 norm still use L2-loss function, obtaining the blurred
results in the presence of noise due to their sensitivity to the
noise especially the outlier artifacts.

The performance difference among those approaches is due
to the different objective functions used to find the solutions, and
the unique structure of objective function adopted by LAPPS
can guarantee its good performance even under the strong noise
background for the isolated sparse sources. In essence, the goal
of solving of the EEG inverse problem is to seek the source
distribution that can explain the scalp EEG well. When noise
especially artifacts usually characterized by large amplitude is
introduced to EEG, the widely used L2-loss function manages
to fit the outliers that have large contribution to the residu-
als while neglecting the intrinsic dynamics in EEG. To reveal
this difference, after obtaining the source vector estimates from
each method (i.e., WMNE, L1, LAPPS, sLORETA and FO-
CUSS), we further evaluated the performance of these methods
by analyzing the predicted signals from their solutions. In other
words, after we got the inverse solutions for the source vector
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x ∈ Rn , we then analyzed the fitted scalp EEG series y ∈ Rm

from equation (1) provided by each methods. Fig. 2 visually
shows the different fittings of EEG signals by different inverse
approaches when outliers are contained in simulated EEGs.

As shown in Fig. 2, when Gaussian noise with outliers (SNR
−5 dB) is added in the two sources simulation, the different
inverse approaches actually have different fitting performances.
Specifically, WMNE, L1, sLORETA and FOCUSS with the
L2-loss function unexpectedly have the outliers fitted to some
degree, while the original EEG is not well fitted. Nonetheless,
Fig. 2(f) clearly reveals that the predicted signal from LAPPS
(magenta line) overlaps with the original signal (cyan line)
well, which demonstrates that LAPPS can suppress the outlier
artifacts by emphasizing on the fitting of the original EEG, and
accounts for the reliable performance under the various levels
of SNRs.

In addition, in the simulation test for the focally extended
source distribution, strictly speaking, none of concerned inverse
approaches could accurately estimate the source patterns. Com-
bining the source patterns in the solution spaces and realistic
head model, we could find that these five approaches could esti-
mate a source distribution with the dominating sources closely
located within the simulated sphere area. Among the results of
WMNE, L1 and sLORETA, LAPPS and FOCUSS, source ac-
tivations localized by LAPPS were relatively more focal and
sparse than all the other methods. This simulation reveals that
LAPPS does not reconstruct the whole extent of the entire source
maps for extended sources, and LAPPS may converge to an
equivalent sparse one thus other methods may be more suitable
for the estimation of the extensive sources. The different source
patterns obtained by these approaches confirmed that for the
EEG inverse problem, different localization methods may result
in different equivalent sources, and for different actual prob-
lems, the difference among various localization methods should
be taken into account [31].

As P300 has been widely used as control signal in brain
computer interface [59]–[61], and also serves as an important
biomarker to indicate working memory [62], attention [63], etc.,
its sources have been reliably revealed by using fMRI or EEG
[64], [65], which may provide the truth in evaluating the pro-
posed approach when used for the actual EEG dataset. For the
real visual EEG data of P300, LAPPS localized the isolated
strong sparse activations were observed bilaterally in the supe-
rior parietal lobules and pre-central gyrus alongside the minor
sparse activations in the medial frontal gyrus, cuneus and su-
perior temporal sulcus as revealed in previous studies on the
functional roles of the brain areas [66]–[69].

Consistent with previous studies [70]–[72], our study on the
visual two-oddball P300 task particularly revealed predominant
activations of the bilateral Superior Parietal Lobules (SPL), a
region that has often been observed in paradigms that involve
classification of visual stimuli. The SPL involvement in target
processing suggests its role in attentional modulation of the
contents of working memory through visuo-motor integration.
Considering the oddball experiment where there is a high prob-
ability of repeated standard stimuli presentations with varied

non-target orientations thus the need for categorization and di-
rected attention and this results in higher activity in SPL source.

We also found activations in the middle frontal gyrus (part
of the prefrontal cortex) similar to previous studies on visual
target stimuli which also revealed a distributed network of neu-
ral sources in the middle frontal gyrus (part of the prefrontal
cortex) [64], [71]. In addition, previous studies that required
subjects to keep a silent count of rare targets without an overt
motor response reported the bilateral activation in the premo-
tor and supplementary motor area which may be attributed to
planning of an unexecuted motor orienting response or may
represent a possible attentional role in sensory processing. We
also detected activation of primary visual cortex (cuneus) has
been observed in many prior studies involving visual stimula-
tion [72]. Lastly, we also found minor activations in the Superior
Temporal Sulcus (STS). It has also been previously found that
STS plays a role during visual stimulus processing and partic-
ipates in target detection [64]. In another study [73] using a
visual oddball task, the right STS was shown to have increased
connectivity bilaterally with structures involved in memory op-
erations and evaluative processing related to decision making.
Besides from the related brain areas accounting for P300 gen-
eration, previous study has also reported that P300 amplitude
is asymmetric with stronger P300 in the right hemisphere [74].
The quantitative comparison of source strengths between the
left and right hemispheres revealed that the four source function
areas (superior parietal lobules, pre-central gyrus, medial frontal
gyrus and superior temporal sulcus) localized by LAPPS exhibit
the stronger activations in the right hemisphere. The domina-
tion of the four sources in the right hemisphere may generate
the stronger P300 amplitude observed in the right hemisphere
[75].

However, as a general EEG component accounting for such
high cognition processes like attention, working memory, de-
cision making, the sources of P300 may exhibit the different
distribution for the different stimuli. In [64], when the three
stimuli oddball task is used, the authors detected other brain
areas like Cingulate Gyrus (GC) involved in P300 generation.
The three stimuli oddball task enabled them to differentiate
the P3b component of the P300 (usually implicated target and
distractor detection) from P3a component (mainly evoked by
distractor events), whereas our paradigm only evokes P3b. In
another study [65] utilizing the same two stimuli oddball task
as ours, the source analysis reveals a close source pattern like
those revealed by LAPPS.

VI. CONCLUSION

In this paper we present a new robust EEG source imag-
ing method, the Least Absolute l-P (p<0<1) Penalized Solu-
tion (LAPPS) by simultaneously using the L1-loss function to
measure the residual error and the Lp-sparse constraints to en-
force sparse solution. The conducted simulation study proves
its superior performance against other existing methods such as
the WMNE, FOCUSS, LASSO, and sLORETA when sources
are sparsely distributed. The application of LAPPS to an ac-
tual P300 dataset also obtained the sparse distribution that is
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consistent with previous findings revealed by fMRI and EEG.
LAPPS is a potentially useful sparse method for EEG source
imaging which we hope will make a significant contribution in
the field of cognitive neuroscience and brain imaging and in
future enhance the work of clinicians.
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