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Abstract—Objective: Driver drowsiness detection is a key
technology that can prevent fatal car accidents caused
by drowsy driving. The present work proposes a driver
drowsiness detection algorithm based on heart rate vari-
ability (HRV) analysis and validates the proposed method by
comparing with electroencephalography (EEG)-based sleep
scoring. Methods: Changes in sleep condition affect the au-
tonomic nervous system and then HRV, which is defined
as an RR interval (RRI) fluctuation on an electrocardio-
gram trace. Eight HRV features are monitored for detecting
changes in HRV by using multivariate statistical process
control, which is a well known anomaly detection method.
Result: The performance of the proposed algorithm was
evaluated through an experiment using a driving simula-
tor. In this experiment, RRI data were measured from 34
participants during driving, and their sleep onsets were de-
termined based on the EEG data by a sleep specialist. The
validation result of the experimental data with the EEG data
showed that drowsiness was detected in 12 out of 13 pre-
N1 episodes prior to the sleep onsets, and the false posi-
tive rate was 1.7 times per hour. Conclusion: The present
work also demonstrates the usefulness of the framework of
HRV-based anomaly detection that was originally proposed
for epileptic seizure prediction. Significance: The proposed
method can contribute to preventing accidents caused by
drowsy driving.

Index Terms—Drowsy driving detection, heart rate vari-
ability analysis, electroencephalography, anomaly detec-
tion, multivariate statistical process control.

[. INTRODUCTION

HE risk of traffic accidents in drowsy drivers is estimated
to be four to six times higher than in awake drivers [1].
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According to a study by Gottlieb et al., the risk of traffic acci-
dent occurrence increases regardless of the drivers’ subjective
sleepiness when they have sleep apnea or their sleep duration is
insufficient [2]. In order to prevent accidents caused by drowsy
driving, a driver-assistance system that detects drowsy driving
and provides a warning would be effective.

In sleep medicine, electroencephalography (EEG) recording
is necessary for sleep scoring because sleep onsets and sleep
stages are defined based on EEG [3]. Although EEG-based
drowsiness detection methods have been developed [4]-[7], it
is difficult to record EEG accurately during driving since EEG
recording is intolerant to motion artifacts and puts significant re-
strictions on the body. Thus, various types of driver drowsiness
detection systems that do not use EEG have been developed [8].

Driver face image analysis and vehicle travel data analysis are
used for detecting driver drowsiness [9]-[14]; however, these
methods require installing special devices in a vehicle, such as
a camera for face image acquisition or a data logging device for
accessing vehicle travel data.

Instead of installing devices in a vehicle, physiological infor-
mation other than EEG can be used for drowsiness detection if
drivers agree to wear a sensor that measures their physiolog-
ical signals. Changes in sleep condition affect the autonomic
nervous system (ANS) as well as cardiac activities [15], and
cardiac signals can be used for drowsiness detection. Chui et al.
proposed a drowsiness detection method based on an electro-
cardiogram (ECG) taken from drivers [16]. In addition, some
researchers have analyzed photoplethysmography (PPG) signals
for detecting drowsy driving [17]. Although they reported that
their proposed methods were able to achieve good performance,
it is difficult to obtain good ECG or PPG signals stably due to
motion artifacts. Besides, these methods would require a heavy
computational load because the sampling rate of ECG is usually
more than several hundred Hz.

Heart rate variability (HRV), which is the RR interval (RRI)
fluctuation in an ECG, is a well-known physiological phe-
nomenon which reflects activities of ANS [18]. Fujiwara et al.
proposed an epileptic seizure prediction algorithm utilizing
HRYV analysis [19]. HRV changes before an epileptic seizure
because changes in cardiovascular regulation begin ten minutes
to several seconds before seizure onsets [20], [21]. In addition,
several studies have reported changes in HRV associated with
sleep stage transitions [22]-[24].
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In the present work, a new HRV-based driver drowsiness
detection algorithm is proposed by utilizing the framework of
HRV-based epileptic seizure prediction [19]. Abnormalities in
the HRV data of drivers are monitored by multivariate statis-
tical process control (MSPC), which is a well-known anomaly
detection algorithm used in manufacturing industries [25]—[27].
The proposed algorithm is simpler than previous HRV-based
methods [28]-[30] because the number of HRV features it uses
is just eight and MSPC is a linear method. Driving simulator
experiments were performed to validate the proposed method,
in which EEG-based sleep scoring by a sleep specialist was used
as a reference.

[I. RELATED WORKS

HRV-based drowsiness detection methods have been pro-
posed. Vicente et al. proposed a drowsiness detection method
that uses HRV analysis and linear discriminant analysis
(LDA) [28]; however, the method uses ECG-derived respiratory
information in addition to HRV, and ECG signal analysis is still
needed. Although Li ef al. proposed a drowsiness detection sys-
tem that utilizes the support vector machine (SVM), their system
utilizes driver face images as well as HRV [29]. A neural net-
work (NN)-based drowsiness detection model was developed
by Patel et al. which uses the power spectral density (PSD)
of RRI fluctuation as input variables of the NN model [30].
Their method would require a large amount of computational
resources because the NN model is complicated and its number
of input features is 900. A simple methodology for detecting
drowsy driving should be developed for realizing a wearable
drowsy driving detection system.

[ll. METHOD

Although EEG measurement is necessary for detecting sleep
onsets [3] in sleep medicine, it is difficult to measure EEG
during driving. The proposed algorithm adopts HRV instead of
EEG, and EEG-based sleep scoring is used as the reference for
the proposed algorithm. This section explains EEG-based sleep
scoring and HRV briefly and proposes an HRV-based drowsiness
detection algorithm.

A. EEG-Based Sleep Scoring

Sleep consists of REM (rapid eye movement sleep) and
NREM (non-REM sleep), which is categorized into three lev-
els: N1, N2, and N3 [3]. N1 is also called transitional sleep or
light sleep. According to the sleep scoring manual [31], sleep
stages are discriminated based on the 30-second epoch-based
EEG scoring method. The N1 onset (sleep onset) is defined by
the epoch in which a wave (8-13 Hz) activity is attenuated
and replaced by low-amplitude, mixed-frequency activities that
occupy more than 50% of the epoch.

Drivers may feel drowsiness shortly before N1, which causes
mild cognitive dysfunction, and some researchers have at-
tempted drowsy EEG identification [32]. On the other hand,
falling asleep directly contributes to traffic accidents. N1 usu-
ally occurs between wakefulness and deeper sleep stages.

During N1, the muscles are still active, the eyes open and close
moderately, and persons can be easily awakened by a sensory
stimulus. Thus, driver drowsiness should be detected prior to
the N1 onset (sleep onset), when a driver can be easily wakened
by a stimulus.

It is noteworthy that we cannot define a sleep onset with the
accuracy of less than 30 seconds because sleep scoring is based
on the 30-second EEG epoch-based method.

B. Heart Rate Variability Analysis

The R wave is the highest peak on an ECG, and the RR
interval (RRI) [ms] is defined as the interval between an R
wave and the next R wave. HRV is the fluctuation of RRI,
which is a physiological phenomenon reflecting ANS activities.
Thus, HRV analysis has been used for monitoring stress, and
cardiovascular disease [33], [34].

Although there are two types of HRV features—linear fea-
tures and nonlinear features—this work uses the former, simply
because the extraction of nonlinear features requires a long-
term RRI measurement for stable calculation [35], which is not
appropriate for real-time applications like drowsy driving de-
tection. The linear HRV features are classified into time domain
features and frequency domain features [18].

The following time domain features can be calculated from
the original RRI data [18].

e MeanNN: Mean of RRL

e SDNN: Standard deviation of RRI.

* RMSSD: Root means square of the difference of adjacent
RRI.

e Total Power (TP): Variance of RRI.

® NNS5O0: The number of pairs of adjacent RRI whose dif-
ference is more than 50 ms within a given length of mea-
surement time.

Frequency domain features cannot be extracted since the raw
RRI data are not sampled at equal intervals. Thus, the raw RRI
data are interpolated by using spline and resampled at equal
intervals. The following frequency domain features can be ob-
tained from the power spectrum density (PSD) of the resampled
RRI data, and the PSD can be calculated by using Fourier anal-
ysis or an autoregressive (AR) model [18].

e LF: Power of the low-frequency band (0.04 Hz-0.15 Hz)
in a PSD. LF reflects both the sympathetic and parasym-
pathetic nervous system activities.

e HF: Power of the high-frequency band (0.15 Hz-0.4 Hz)
in a PSD. HF reflects the parasympathetic nervous system
activity.

e LF/HF: Ratio of LF to HF. LF/HF expresses the balance
between the sympathetic nervous system activity with the
parasympathetic nervous system activity.

The guideline recommends that RRI is measured for two to
five minutes for HRV analysis, and the sampling rate of ECG
should be more than 200 Hz for precise R wave detection [18].

A precise RRI sensor is needed in order to realize an HRV-
based drowsy driving detection system. Although the Holter
monitor is generally used for measuring ECG outside hospi-
tals, its use in daily life is difficult since the Holter monitor
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requires operation skills. Many types of wearable devices such
as smartwatches have PPG sensors that can also be used for
pulse detection; however, it is notably difficult for PPG to de-
rive RRI precisely enough to carry out HRV analysis [36].
A wearable RRI sensor developed by Yamakawa et al. eas-
ily measures accurate RRI based on ECG. If an HRV-based
drowsy driving detection algorithm can be implemented in such
a device, a wearable drowsy driving detection system can be
realized.

Changes in HRV associated with sleep stage transitions have
been reported [22]-[24]. Bonnet and Arand reported that heart
rates vary depending on sleep latency [38]. Chua ef al. showed
that there is a correlation between changes in subjective sleepi-
ness and HRV through sleep deprivation experiments [39]. Since
HRYV alteration begins prior to a sleep onset [23], drowsy driving
may be detected by monitoring HRV.

C. Drowsy Driving Detection

In drowsy driving detection, the awake data and the drowsy
data are regarded as normal data and anomalous data, respec-
tively. To build an accurate discriminant model by using both
the awake data and the drowsy data, a sufficient amount of
drowsy data needs to be collected from drivers. However, in
practice, collecting such drowsy data is more difficult than the
awake data. Thus, drowsy driving detection is formulated as an
anomaly detection problem, in which a model is developed from
the awake data only.

Fujiwara et al. developed an epileptic seizure prediction algo-
rithm based on multivariate statistical process control (MSPC)
to detect abnormalities in HRV [19]. MSPC detects a sample
that does not follow the major trend in the modeling data as an
anomaly based on principal component analysis (PCA), which
has been widely used as fault detection and identification tech-
nique in multivariate processes [25]-[27]. Since drowsy driving
detection is a similar problem to epileptic seizure prediction, we
use MSPC.

The proposed algorithm discriminates between driver statuses
of ‘awake’ and ‘drowsy,” where ‘drowsy’ means that the driver
is close to or in N1. In the proposed method, eight HRV features
described in Section III-B are used and their abnormalities by
sleepiness are monitored using MSPC. The detail of MSPC is
explained in the Appendix.

For HRV feature extraction, a rectangular moving window
whose window size is three minutes is used. Li ef al. compared
the one-minute and the three-minutes windows in HRV extrac-
tion, and they reported that the latter was better for drowsiness
detection [29]. Time domain features are extracted from the raw
RRI data. For frequency domain feature extraction, the raw RRI
data need to be arranged at equal intervals. The raw RRI data are
interpolated by using the third-order spline, and the interpolated
RRI data are resampled at 4 Hz. An AR model of order 40 is
used to calculate the PSD [19].

The proposed drowsy driving detection algorithm is described
in Algorithm 1, in which y{i} is the awake RRI data recorded
from the ith driver and [ is the number of drivers. First, awake
HRV features are extracted from y!'} in Steps 1-3. In the

Algorithm 1: Drowsy Detection Preparation.
1: for all i suchthat1 <7 < I do

2:  Extract the ith driver awake HRV feature X ) from
the ith driver awake RRI data y1'}.

end for 0 ) ~

Merge matrixes X *,..., X into one matrix X.

Preprocess X , which is referred to as X .

Derive 3 and V i from X as Eq. (1)

for all s such that 1 <7 < I do
Define the control limits of the 7% and Q statistics for
the ith driver, 721} and Q{i}.

9: end for

PN AEW

proposed method, eight HRV features are adopted as input vari-
ables. The extracted HRV features are merged into one matrix
in Step 4. Then, in Step 5, the merged matrix X is preprocessed
for model construction. There are various preprocessing meth-
ods, and thus an appropriate method should be chosen by taking
account of the characteristics of the problem and the data. In
this work, each column of X is standardized so that each HRV
feature has zero mean and unit variance. In Step 6, the singular
value matrix 3 and the loading matrix V' i are derived from
the preprocessed HRV feature matrix X . In other words, PCA
is applied to X, and the correlations among eight HRV features
are modeled. In this step, the number of principal components
R has to be selected appropriately to realize precise drowsiness
detection. The next step is to calculate the 7% and () statistics
and to define their control limits.

There is considerable individual variability in HRV. Changes
in HRV are different for every person, which changes with age,
and the variation of the 72 and (Q statistics is also different for
every person. Hence, the control limits have to be determined for
each driver in Steps 7-9. The control limits can be determined
as the a% confidence of each driver.

Before driver drowsiness monitoring starts, the initial RRI
data of a driver have to be stored for more than the window
size W to calculate HRV features. After the initial RRI data
collection, driver drowsiness can be monitored by following
Algorithm 2. y[t] € R denotes the ¢th RRI and ¢ is the number of
sampling from the monitoring start. 7 is a time counter variable,
and C denotes the binary driver status C' = {A, D} where A
and D are ‘awake’ and ‘drowsy,” respectively. That is, = A =
D and vice versa. In Step 5, the extracted HRV feature & is
preprocessed in the same manner in Algorithm 1.

To realize accurate drowsy driving detection, it is crucial to
decrease false positives. In drowsy driving detection, false pos-
itives are mainly caused by ECG artifacts, which significantly
affect the 72 and (@ statistics. Hence, the driver status is de-
termined as ‘drowsy’ only when either the T or (Q statistic
continuously exceeds its control limit for more than the prede-
fined period 7. Conversely, to change the status from ‘drowsy’
to ‘awake,” both statistics have to continuously stay below their
control limits for more than 7. In Steps 7-14, the driver sta-
tus is discriminated. A warning is given to the driver when the
algorithm detects drowsiness, that is, C' = D.
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Algorithm 2: Drowsy Driving Detection.
1: set 7[0] «— 0, C[0] «— A.
2: while do
3:  Collect the newly measured ¢th RRI y[t].
Extract HRV feature Z[t].
Preprocess &|t], which is denoted as x[t].
Calculate the tth 72 and Q@ statistics, 7°[t] and Q[t]
from x[t] by using (4) and (3).
7o (T[] > T? Vv Q[t] > Q) A (C[t — 1] = A))
V(T2 < T A QI < Q) A (Clt — 1] = D))

AN

then

8: Tt = 7[t — 1] + y[t].

9: else
10: T[t] = 0.
11:  endif
12:  if 7[t] > T then
13: C[t] =—-C[t—1] and 7[t] = 0.
14:  end if

15:  Wait until the next RRI data y[t + 1] is measured.
16: end while

D. Participants

The inclusion criteria for the participants were non-
professional drivers, with a valid driving license. The exclusion
criterion was having a chronic illness that may affect HRV such
as cardiovascular disease, arrhythmia, epilepsy, or sleep disor-
ders. These experiments and analyses were approved by the Re-
search Ethics Committee of the Graduate School of Science and
Technology, Kumamoto University. Written informed consent
was obtained from each participant prior to the experiments.

V. RESuLT

This section evaluates the performance of the proposed
drowsy driving detection algorithm through an application of
real RRI data obtained from an experiment using a driving sim-
ulator.

A. Data Collection

The RRI data and the EEG data were collected from experi-
ment participants (drivers) while they drove a virtual vehicle on
a simulator. Participants A, ..., Z, a, ..., 6, 25 males and nine
females aged 18-36 years (mean 22.7 years) participated in this
experiment. In order to avoid effects on HRV, participants were
instructed not to take alcohol, caffeine or smoke for one night
before the experiments. Before the experiment, the participants’
driving careers, health statuses, mediations, and sleep habits
were checked by means of a questionnaire. The questionnaire
collects age, sex, weight, height, occupation, medical history
(hypertension, diabetes, cardiovascular disease, epilepsy, etc.),
meditation, and habits about breakfast, exercise, sleep, caffeine,
and smoke. In addition, we asked the sleep time of the previous
night. As a result, all participants were healthy and took enough
sleep (>6 hours), and there were no rejected participants.

Fig. 1. Electrode allocations for sleep scoring: EEG (left) and
EOG (left).

In this work, participants drove a driving simulator con-
structed based on a commercial racing simulator (GRAN
TURISMO 5, Sony Interactive Entertainment Inc.), which was
used in some researches of driving physiology [40]-[42]. The
simulator equips with an LCD display, a steering, an accelerator,
and a brake pedal. Thus, it can simulate driving operation.
Before experiments, we confirmed that EEG during driving
can be measured precisely enough for sleep scoring in this
simulator.

The participants drove twice on a course that simulated a
nighttime, monotonous highway loop line for 1.5 hours in a dark
room, resting and taking lunch for an hour between the two tri-
als. There were no other vehicles and it took about ten minutes
to cycle the loop line at 80 kilometers per hour. The first and
second trials started from around 11 am and after lunch, respec-
tively. This setting was determined in consideration of avoiding
participants’ excessive fatigue due to extended experiments as
well as with the expectation that the participants may become
drowsy.

The EEG data during driving were recorded for sleep scor-
ing using a digital EEG recording system (Grapevine, Ripple),
whose sampling frequency was 1,000 Hz. Although the Inter-
national 10-20 system is a standard scalp electrode allocation
of EEG recording, the number of electrodes was reduced in this
work with reference to polysomnography (PSG) tests performed
in sleep laboratories. Fig. 1 (left) shows the adopted electrode
allocation, in which Fp1, Fp2, C3, C4, O1, O2 were EEG elec-
trodes and earlobes A1 and A2 were for reference. This electrode
allocation is enough for sleep scoring. Electrooculogram (EOG)
was also recorded during driving for making sleep scoring easy.
The EOG electrode allocation is shown in Fig. I (right) and a left
earlobe A1l was for reference. The RRI data were obtained for
HRYV analysis by using a wearable RRI sensor [37]. In addition,
participant video during driving was recorded for confirming
participant behaviors after the experiments.

Since artifacts were generated when participants moved dur-
ing driving, data in which either the RRI data or the EEG
data were contaminated with strong artifacts were eliminated
before analysis. A sleep specialist certified by the Japanese
Society of Sleep Research determined sleep onsets of partic-
ipants by visual check of the EEG data based on the 30-second
epoch-based scoring method recommended in the sleep scoring
manual [31].

As a result of sleep scoring, 12 participants were scored in
N1 during driving. The data 15 minutes before and 5 minutes



FUJIWARA et al.: HEART RATE VARIABILITY-BASED DRIVER DROWSINESS DETECTION AND ITS VALIDATION WITH EEG

1773

TABLE |
PARTICIPANT DEMOGRAPHICS AND COLLECTED EPISODES

Participant Sex Age  Awake episodes  Pre-N1 episodes | Participant Sex Age  Awake episodes  Pre-N1 episodes
A male 22 Al, A2 Adl R male 24 R1, R2
B male 36 B1 - B3 Bdl S male 18 S1, S2
C male 23 Cl1, C2 Cd1 T male 19 Tl -T3 Td1
D female 34 D1 - D4 U male 23 Ul, U2 Udl
E male 22 El - E3 \Y% male 21 V1, V2
F male 19 F1 - F3 w male 21 W1 -W3
G male 22 Gl1, G2 X female 36 X1 - X6
H female 22 H1 - H3 Hd1 Y female 20 Y1 -Y3
1 female 21 11, I2 Z male 23 71,72 Zd1
J female 22 J1-1J3 « female 22 al — a3
K male 21 K1, K2 Kdl B female 21 B, B2 £d1
L male 21 L1, L2 Ldl 0% male 23 vl —~3
M male 22 MI, M2 4 male 24 41 — 65
N male 21 N1, N2 Nd1, Nd2 € male 19 el, €2
O male 20 01 - 04 ¢ female 22 ¢1-¢3
P male 22 P1, P2 Pdl n male 23 nl, n2
Q male 21 Ql - Q4 0 male 21 a1, 62
900 Awake RRI . 8501 Awake RRI
/
T W\ bt ol ke L g \W i m
£ 750 1 Hm \H” f ‘HW \\“‘."Uln‘ LA rm\l } h =7
W A I “\ i hi . W *"“i)w o Wikt \\l\ i MWIJM M‘ '/“(" e
/‘J ' \ | |
6005 300 600 900 1200 300 600 900 1200
Drowsy RRI Drowsy RRI
900 ‘ 850,
| b W
. 1\1 f M’ \ W mi w (\ . |
L q ] | L 1, il
E750M ‘}l %M ‘ “ M i\‘ 1M U ﬂ ‘JU‘ M - I' M J l 1 “ ” W J . W |)
600 300 “ 1_soo[ ] 900 1200 5809 300 L [ ] 1200

Fig. 2. RRI data of L2 (top) and Ld1 (bottom).

after sleep onset were stored as pre-N1 episodes, following the
report by Jurysta et al. on sleep stage transition that cardiac
activities precede 9—20 minutes (mean 12 minutes) before EEG
changes [23]. In addition, the data that were not scored as sleep
were clipped as awake episodes.

Consequently, we collected 13 pre-N1 episodes named Adl,
Bdl, ..., Zdl and 3 dl, and 91 awake episodes named Al,
A2, ...,0 1, and 6 2, which are shown in Table 1. Their total
lengths of awake and pre-N1 episodes were 66.8 and 4.3 hours,
respectively.

B. RRI Data and HRV Features

The raw RRI data of participants L and M in awake and
drowsy periods are shown in Figs. 2 and 3. In these figures, an
orange colored band denotes the N1 epoch. Eight HRV features
described in Section III-B were extracted. Figs. 4-7 are the
HRV features extracted from the RRI data shown in Figs. 2
and 3. Although frequency domain features seemed to change
before sleep onset in Figs. 5 and 7, a similar fluctuation is also
observed in the awake HRV features in Figs. 4 and 7.

These results show that it is difficult to detect drowsiness by
monitoring changes in respective HRV features, and suggest that
multiple HRV features should be monitored simultaneously.

Fig. 3. RRI data of N2 (top) and Nd2 (bottom).
900, meanNN 100 SDNN
750F T S~—— 50~ . N
— __ e .
600 300 600 900 1200 % 300 600 900 1200
5000 TotalPower 1 50¢ RMSSD N
2500 _ ~ 5. o
\ e N I —
N -
% 300 600 900 200 % 300 600 900 1200
10, NN50 2000 LF
5 1000 P
1 — ~ P e W A ¥ N
L e S R et o
0 300 600 900 120 % 300 600 900 1200
400 HE 1 20r LFHF .
20 [t U I N ° L por W, A
% 300 600 900 0 % w00 600 900 1200
Time [s] Time [s]
Fig. 4. HRV features derived from L2.

C. Drowsy Detection Preparation

Driver drowsiness detection was prepared according to
Algorithm 1. Table II shows 34 awake episodes used for mod-
eling. The total recorded length of the analyzed episodes was
26.7 hours.

All HRV features calculated in Section IV-B were used as
inputs. In MSPC, the number of retained principal components
R was determined so that the cumulative proportion reached
more than 90%, and R = 3. The control limits of the 7% and Q
statistics were defined for each participant so that they represent
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200. meanhN 100,
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600 00 1200 %
5000 . 50
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Fig. 5. HRV features derived from Ld1.
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Fig. 6. HRV features derived from N2.
800 meanNN 100 SDNN
700 e 0L TN
6005 300 600 900 200 % 300 600 900 1200
4000, TotalPower s0. RMSSD
2000~ p N ! 25— e
% 300 600 900 200 % 300 600 900 1200
P NN5O 2000, LF
20, V\A, S ™M o el 1000 g el ——f"ﬁ\w f'j/
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1000, HF A LFHF
500 e “N“\M_A e 2 i aaa’) o
e et NS
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Fig. 7. HRYV features derived from Nd2.
TABLE Il
AWAKE EPISODES USED FOR MODELING
Participant ~ Episode  Length [h] | Participant  Episode  Length [h]
A Al 0.92 R R1 1.50
B B1 0.87 S S1 1.50
C Cl1 0.30 T Tl 0.53
D D1 0.75 U Ul 0.73
E El 1.20 A\ V1 0.35
F F1 0.47 w W1 0.94
G Gl 0.85 X X1 0.12
H H1 0.25 Y Y1 0.55
1 11 0.32 Z Z1 1.45
J J1 0.85 o al 0.12
K K1 0.68 B 51 0.48
L L1 1.48 v 1 0.39
M Ml 1.50 1 41 0.28
N NI 0.95 € el 0.26
(0] o1 1.03 ¢ q! 0.98
P P1 0.57 n nl 1.46
Q Ql 0.63 0 01 1.47
Total 26.7

600 1200

Time [s]

Fig.8. Detectionresult of pre-N1 episode Ld1 (orange band: N1 epoch,
green band: detected drowsy period).
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Fig. 9. Detection result of pre-N1 episode Nd2.

the 90% confidence limits. Although the 99% or the 95% confi-
dence limits are usually adopted in MSPC for suppressing false
positives, this research used the 90% confidence limits because
it is important to prevent erroneous drowsiness detection from
the viewpoint of safety. The parameter 7 was determined as ten
seconds according to [19].

D. Drowsy Driving Detection Results

All of the drowsy and awake episodes that were not used
for modeling were monitored by Algorithm 2. The numbers of
validated awake and pre-N1 episodes were 57 and 13, respec-
tively. The total length of the validated awake episodes was 40.1
hours. Here, drowsiness detection success means that drowsi-
ness is detected from 15 minutes before to just before a sleep
onset.

From the pre-N1 episode results, the @) statistic detected 12
out of 13 pre-N1 episodes excluding episode Bd1. On the other
hand, the T2 statistic detected 8 out of 13 pre-N1 episodes
excluding episodes Adl, Ldl, Nd2, Pdl, and Zd1. As a result,
the sensitivity of the T and Q statistics are 62% and 92%,
and the mean and the standard deviation of the first drowsiness
detection time by the 72 and () statistics were 484 + 383 and
642 4 401 seconds before sleep onsets, respectively.

Detection results of pre-N1 episodes Ld1 and Nd2 are shown
inFigs. 8 and 9, in which horizontal dashed lines express the con-
trol limits of the 7% and ( statistics. Orange and green colored
bands denote the N1 epochs scored by the sleep specialist and
drowsy periods detected by the proposed method, respectively.
According to Algorithm 2, driver drowsiness is detected only
when either T2 or () statistic exceeds its control limit continu-
ously for more than 7 = 10 seconds. Although the T statistic
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Fig. 10. Detection result of awake episode L2.
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Fig. 11. Detection result of awake episode N2.

around 900 seconds in Fig. 8 exceeded its control limit; it was
not detected as drowsiness because it did not exceed its control
limit for more than ten seconds continuously. Figs. 10 and 11
show detection results of awake episodes L2 and N2. There were
no false positives in episode L2 while a false positive occurred
according to the 7' statistic in episode N2.

Table III summarizes the number of false positives (#FP) and
false positive (FP) rates, which are defined as #FP per hour. The
#FP in all awake periods (total 40.1 hours) by the 72 and Q
statistics were 105 and 70, and the FP rates were 2.6 and 1.7
times per hour, respectively.

V. DISCUSSION

In the experiment, we collected HRV data from a total of 34
participants, and drowsiness detection was based on the 7 and
(@ statistics. In order to confirm the validity of these statistics,
sample powers were calculated. The sample powers of the T2
and () statistics were 0.09 and 0.71, respectively. Thus, the
sample size was not insufficient for the T? statistic; however,
the sample size was adequate when the () statistic was used for
drowsiness detection. In fact, the drowsiness detection of the )
statistics was higher than the T'? statistic in the experiment.

The collected data in the experiment consist of a total of 66.8
hours of awake episodes and a total of 4.3 hours of pre-N1
episodes. This unbalanced ratio of awake to pre-N1 episodes
justifies the adoption of the anomaly detection framework of
MSPC, in which a drowsiness detection model is developed
from the awake episodes only.

One driving trial was limited to 1.5 hours, and there was
a one-hour rest including lunch between two trials, in consid-
eration of the burden of the participants. As a result, 12 out
of 34 participants were scored by N1 during driving. Ten out
of thirteen pre-N1 episodes were observed in the second trial,

TABLE IlI
FALSE POSITIVES
T2 Q

Participant ~ Length [h] | #FP  FP rate | #FP  FP rate
A 0.37 0 0 3 8.1
B 1.00 6 6.0 3 3.0
C 0.17 0 0 0 0
D 1.41 8 5.6 2 1.4
E 0.86 0 0 0 0
F 2.28 8 3.5 6 2.6
G 1.46 8 5.5 0 0
H 1.06 1 0.9 0 0
1 1.42 2 1.4 0 0
J 2.07 0 0 1 0.5
K 0.74 5 6.7 5 6.7
L 0.53 1 1.8 1 1.8
M 1.43 6 42 12 8.4
N 0.44 5 11.4 0 0
(6] 1.83 0 0 0 0
P 0.61 3 49 9 14.7
Q 2.18 2 1.0 5 2.3
R 1.11 0 0 1 0.9
S 1.51 4 2.6 1 0.6
T 0.60 3 5.0 0 0
U 0.81 6 7.4 2 2.4
\% 0.96 10 10.4 0 0
w 1.91 2 1.0 1 0.5
X 2.02 2 1.0 2 1.0
Y 2.26 4 1.8 0 0
Z 0.28 0 0 0 0
« 0.45 0 0 1 22
8 0.46 0 0 1 2.1
¥ 0.58 0 0 0 0
0 2.03 7 34 1 0.5
€ 0.37 1 2.7 1 2.7
¢ 1.93 2 1 1 0.5
n 1.44 6 4.2 4 2.8
(% 1.47 6 4.1 7 4.8
Total 40.1 105 2.6 70 1.7

which was performed after lunch. Although all participants in
the experiment were healthy, sleep loss and daytime sleepiness
in the Japanese adult population are common [43]. Thus, 1.5
hours of driving after lunch may have been sufficient to induce
drowsiness for some participants.

a waves, which indicate sleep-related brain activities, were
observed in correspondence with the increase of the () statistic.
Fig. 12 shows o waves recorded during the awake period, which
corresponded to a false positive by the () statistic in episode
X6. According to EOG of this period, the participant repeatedly
blinked. Such awake ae waves associated with the increase of the
(@ statistic were observed in episodes J2, M2, P2, §4 as well as
X6. These correspondences between changes in the () statistic
and o wave appearance support the validity of the proposed
method.

Microsleep, which is sudden short sleep lasting for a fraction
of a second or up to 30 seconds, is a well-known phenomenon
in sleep science [44]. Persons with microsleep often remain un-
aware of it. Its causes are, for example, sleep apnea syndrome,
narcolepsy, mental fatigue, and insufficient sleep. Many mi-
crosleep identification methods have been proposed, and there
is little agreement on which is the best for use at this time [44].
It is possible that the awake o« wave appearance associated with
an increase of the () statistic was microsleep, although this is
difficult to confirm.
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The occurrence of microsleep may be dangerous particularly
in situations that demand constant alertness, such as driving
or working with heavy machinery. Microsleep decreases the
capability for task execution, which is equivalent to a mild cog-
nitive dysfunction; however, falling asleep directly contributes
to the occurrence of traffic accidents, since N1 sleep is equiv-
alent to complete cognitive dysfunction. In fact, the multiple
sleep latency test (MSLT), which measures the elapsed time
from wakefulness to N1 onset, is correlated to the risk of traffic
accidents [45], [46]. Thus, the target of the proposed algorithm
is the N1 onset instead of microsleep. Future studies are needed
to evaluate whether the proposed methodology for detecting the
N1 onset is also applicable to microsleep detection.

According to an evaluation of the EEG data and videos, most
false positives occurred in correspondence with participant’s
motion. The drowsy driving detection model was constructed by
using HRV data collected during driving in which participants
sat in a seat and rarely moved. Because few HRV data with
body motion were contained in the modeling data, fluctuations
of HRV caused by body motion in the validation data were
detected as false positives. For example, there were eight false
positives of the T? statistic in participant F, seven of which
occurred when his EEG was contaminated with electromyogram
(EMQG) artifacts caused by body motion.

Xaio et al. developed an HRV-based sleep stage scoring
method using random forest (RF), which is an ensemble learn-
ing technique using multiple decision trees [47]. Their method
classifies sleep condition into awake, REM, and NREM and
the accuracy of their method was 72%—-88%, even though it
uses a total of 41 HRV features consisting of nonlinear fea-
tures, time domain features, and frequency domain features as
input variables [48]. It is difficult to compare their sleep stage
scoring method with the proposed drowsiness detection algo-
rithm from the viewpoint of performance, because the purpose
of their method is to discriminate sleep stages, while that of the
proposed method is to detect drowsiness prior to the N1 onset;
however, the proposed drowsiness detection method is much
simpler than their method since the proposed algorithm uses
only eight HRV features and a linear model. This indicates that
the framework of HRV-based anomaly detection by MSPC is
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The awake o waves associated with a false positive by the () statistic in episode X6.

useful for drowsiness detection, although it cannot be used for
sleep stage scoring.

The sensitivity of the proposed method achieved almost the
same level as conventional camera-based drowsiness detection
methods [8]; however, most of the latter use facial expression
evaluation by referees or subjective evaluation by questionnaires
instead of EEG-based sleep scoring for driver sleepiness eval-
uation. Because it is impossible to detect precise N1 onsets,
microsleep, and awake « waves by facial expression evalua-
tion and questionnaires, there is a possibility that previous re-
searchers overlooked such sleep-related phenomena.

It is concluded that the proposed HRV-based drowsy driving
detection algorithm is more promising than other conventional
methods with respect to accuracy as well as practical use.

VI. CONCLUSION AND FUTURE WORK

A driver drowsiness detection method was proposed utilizing
the framework of epileptic seizure prediction, by which multi-
ple HRV features are extracted from the RRI data and MSPC
monitors abnormalities in the extracted HRV features. The ex-
perimental result showed that 12 out of 13 pre-N1 episodes were
detected prior to sleep onsets, and the false positive rate was
about 1.7 times per hour. The experimental result was discussed
from the viewpoint of sleep science. This work demonstrated
the usefulness of the framework of HRV-based anomaly detec-
tion because it can be applied to driver drowsiness detection as
well as epileptic seizure prediction.

Limitations of the study include the properties of the col-
lected experimental data, such as a highly controlled laboratory
environment, the limited number of participants, and the fact
that all participants were young Japanese persons. Accordingly,
more studies are required to confirm our results by using well-
matched groups of participants in a real driving environment.

The proposed method requires drivers to put some elec-
trodes on the skin before driving, because precise RRI mea-
surement based on ECG is needed for HRV analysis. Since it
is burdensome for drivers to attach electrodes before driving, a
new type of electrode that is easy to use should be developed.
Tsukada et al. developed a new wearable textile electrode using a
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Fig. 13.  Schematic diagram of MSPC.

conductive fiber [49], and a smart shirt woven with textile elec-
trodes has been developed for ECG measurement. Therefore, it
will be easy for drivers to use the proposed HRV-based drowsy
driving detection method when the smart shirt becomes avail-
able. In addition, the proposed algorithm can be easily imple-
mented into mobile computers, such as a smartphone, since the
computational load of the proposed method is much lighter than
the camera-based methods that use real-time video analysis.

In future works, additional experimental data must be col-
lected to improve the drowsiness detection performance, and
the system under development will be tested in a real driving
environment.

APPENDIX
MULTIVARIATE STATISTICAL PROCESS CONTROL (MSPC)

The appendix explains multivariate statistical process control
(MSPC) used in the drowsiness detection algorithm.

The proposed drowsiness detection algorithm described in
Section III-C detects driver drowsiness as anomalies in HRV.
The simplest way of detecting anomalies is to check whether
or not all variables are within their upper and lower bounds.
This simple method is called univariate statistical process con-
trol (USPC); it is also known as control charts and Shewhart
charts. When multiple variables are monitored simultaneously,
the nominal region of USPC becomes rectangular as shown in
Fig. 13(a). USPC is intuitive and easy-to-use, and therefore has
been widely used in various fields including the manufacturing
industry. However, it cannot detect an anomaly that does not
satisfy normal correlation among variables. In Fig. 13(a), for
example, USPC cannot detect the anomaly Y%, which does not
follow a positive correlation between variables 1 and 2, because
it is located within the normal rectangular area of USPC. If the
normal ellipsoid area defined by the dashed line is used instead
of the normal rectangular area, the anomaly Yy can be detected.
This example demonstrates that the correlation among variables

should be taken into account for detecting anomalies that do not
follow the major trend in the data.

In MSPC, the correlation among variables is modeled by
using principal component analysis (PCA) [50], which finds
linear combinations of variables that describe major trends in
a dataset as shown in Fig. 13(b). Let us assume a normal data
matrix X € RY*M whose nth row is the nth sample x,, € RV,
wherein samples are mean-centered and scaled appropriately,
and M and N denote the number of variables and samples,
respectively. Such a matrix X can be factorized by singular
value decomposition (SVD) as follows:

X =Uxv"

YR

— [Ur U] (Ve Vo]" @

X0

where U, X, and V are the left singular matrix, the diagonal
matrix whose diagonal elements are singular values, and the
right singular matrix, respectively. Using Eq. (1), the matrix
factorization of X by PCA is defined as:

X =TRpVL+E 2

where Tp € RV *F is the score matrix and Tpr =UX. E
€ RV*M s an error matrix. The column of Vi spans the
subspace II which expresses the correlation among variables
as shown in Fig. 13(c). R(< M) is the number of principal
components retained in the PCA model.

The T2 statistic is used for monitoring anomalies in II,
which is defined as follows:

=2 V¥ Viz A3)

where 0, denotes the standard deviation of the rth score ¢, and
x is anewly measured sample. Since the 7" statistic is the Maha-
lanobis distance, which is defined as the distance normalized by
the standard deviations of the scores, it defines a circular nomi-
nal region as shown in Fig. 13(d). Hence, the sample is close to
the mean of the modeling data when the T statistic is small.

The @ statistic is defined as the squared distance between the
sample and II as

M M
Q = Z egn, = Z (xm - j:m)Z
m=1 m=1
=2'(I-VzVh)z. “4)

The normal operating condition (NOC) is defined using the
T? and the () statistics [51]. Fig. 13(c) shows the image of NOC
in MSPC. Since the monitored subspaces by two statistics are
orthogonal to each other, NOC can be considered as a cylinder
and the control limits of the 72 and @ statistics correspond to
its diameter and height, respectively. MSPC usually detects an
anomaly when either the 72 or () statistic exceeds the prede-
fined control limit. Thus, the control limits of the 7% and Q
statistics have to be determined carefully, which can be set as
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a% confidence limits, and usually, the 99% or 95% confidence
limits are adopted.

In order to detect anomalies by MSPC, the number of prin-
cipal components R also has to be appropriately determined.
The number of principal components R can be determined so
that the cumulative proportion of principal components reaches
a predefined value, such as 80% or 90%.
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