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Representing Medical Images With
Encoded Local Projections
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Abstract—This paper introduces the “encoded local pro-
jections” (ELP) as a new dense-sampling image descrip-
tor for search and classification problems. The gradient
changes of multiple projections in local windows of gray-
level images are encoded to build a histogram that cap-
tures spatial projection patterns. Using projections is a
conventional technique in both medical imaging and com-
puter vision. Furthermore, powerful dense-sampling meth-
ods, such as local binary patterns and the histogram of
oriented gradients, are widely used for image classification
and recognition. Inspired by many achievements of such ex-
isting descriptors, we explore the design of a new class of
histogram-based descriptors with particular applications in
medical imaging. We experiment with three public datasets
(IRMA, Kimia Path24, and CT Emphysema) to comparatively
evaluate the performance of ELP histograms. In light of the
tremendous success of deep architectures, we also com-
pare the results with deep features generated by pretrained
networks. The results are quite encouraging as the ELP de-
scriptor can surpass both conventional and deep descrip-
tors in performance in several experimental settings.

Index Terms—Deep features, histopathology images,
image classification, image retrieval, LBP, medical image
retrieval, projections, radon transform.

I. INTRODUCTION

D ESPITE a large number of descriptors being available, the
immensely diverse nature of digital images and different

requirements of each application field necessitate continuous
innovation and extension of existing search and recognition al-
gorithms. One of the domains witnessing such extensive innova-
tions is medical imaging in which search and classification have
many applications [1]–[3]. While most well-known descriptors
are based on robust local information in small windows, medi-
cal images require other operations in local windows to capture
relevant anatomical primitives. Projection-based descriptors, for
instance, may result in a higher level of discrimination if they are
measured and encoded properly. The design of such descriptors
becomes even more relevant when we recognize the fact that
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trainable feature extraction methods such as deep networks that
may surpass handcrafted descriptors such as scale-invariant fea-
ture transform (SIFT) and local binary patterns (LBP) might not
always be feasible. This is because we cannot always provide a
balanced and large set of labeled images in the medical field [4].
However, using pre-trained deep networks as feature extractors
is perhaps a more viable option in many applications including
medical imaging, where, generally, only small to medium size
data is available.

In this study, Encoded Local Projections (ELP), a new im-
age descriptor, was developed based on projections that capture
spatial patterns by encoding local changes in the shapes of spe-
cific projections of gray-level images. Our design process was
motivated by the challenges that the research community had
experienced in retrieving medical images using keypoint-based
approaches compared to dense-sampling algorithms [5]–[7].
Specifically, we could not duplicate the same level of success
for medical images that one generally expects from applying
commonly used descriptors for face, scene, and object recogni-
tion. Moreover, we realized that one may combine the essential
traits of existing powerful descriptors to design a new descriptor
that may be more suitable for medical images.

From the application perspective, the focus of this study is on
image search and classification to verify the expressiveness of
the proposed ELP descriptor. Based on the literature on the ef-
fectiveness of such methods [6], we investigate dense-sampling
and histogram-based descriptors of short length that can be em-
ployed for tagging big image data. We compare our proposed
descriptor with LBP and histogram of oriented gradients (HOG).
In addition, we experiment with deep features in light of their
immense success for non-medical cases although deep features
are, unlike LBP and HOG, not handcrafted and are generally
high-dimensional. Three publicly available image datasets (x-
rays, CT, and histopathology) were used to validate the per-
formance of the proposed ELP descriptor. The results confirm
the potential of the ELP to be a consistently accurate image
descriptor.

II. RELATED LITERATURE

A. Image Descriptors

Conventional or handcrafted descriptors have been used for
quite some time [8], [9]. A major group is “keypoint”-based de-
scriptors [10]. SIFT and speeded-up robust features (SURF)
[11], [12] belong to the most commonly used keypoint de-
tectors and feature descriptors for various applications [13],
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[14]. While most keypoint detection schemes extract real-valued
feature vectors, algorithms such as binary robust invariant scal-
able keypoints (BRISK) [15] use binary feature descriptors for
which image search queries need to be performed within a short
time [16].

A second group of handcrafted image descriptors is the
“histogram”-based operators that generally extract a compact
image representation in the form of a histogram assembled by
counting local patterns or gradient directions. LBP [17], [18] and
HOG [19]–[21] are perhaps the most prominent among these.
LBP was designed with texture classification in mind, whereas
HOG originally targeted human recognition, particularly pedes-
trians. Different versions of LBP histograms have demonstrated
extremely high power of discrimination for a range of appli-
cations [22]–[24]. The most recent extension of LBP, median
robust extended LBP (MRELBP), delivers very impressive re-
sults on texture patterns [25].

Employing deep features as image descriptors is a rather re-
cent development, predominantly based on convolutional neural
networks (CNNs), which are trained from scratch or used after
training for classification to extract high-dimensional vectors
embedded in the pooling or fully connected layers [26]–[28].
CNNs and other discriminative deep architectures require a large
volume of labeled (and balanced) data to be optimally trained
without the drawback of overfitting [29]–[31].

In this paper, we propose a projection-oriented and histogram-
based scheme that operates in local windows of gray-level
images. Therefore, we also examine the literature on Radon
transform.

B. Radon Transform

In order to capture the patterns in an image I as a 2D function
f (x, y), one can project f (x, y) along a number of parallel
projections (in contrast to fan beam projections) at different
angles θ . A projection is the sum (integral) of f (x, y) values
along the parallel lines constituted by each angle θ to create
a new image R(ρ, θ ) with ρ = x cos θ + y sin θ . The Radon
transform can be given as

R(ρ, θ ) =
∫ +∞

−∞

∫ +∞

−∞
f (x, y)δ(ρ − x cos θ − y sin θ )dxdy,

(1)
where δ(·) represents the Dirac delta function.

Radon transform can generally be used for reconstructing ob-
jects/scenes from parallel projections. However, there are many
other applications reported in literature [32]–[34]. Radon com-
posite features have been used to transform binary shapes into
1D representations for feature calculation [35]. Tabbone et al.
proposed a histogram of the Radon transform invariant to ge-
ometrical transformations [36]. However, the histogram was
restricted to counting the length of binary shapes. Daras et al.
generalized the Radon transform to radial and spherical inte-
gration to search for 3D models of diverse shapes [37]. Trace
transform is also a generalization of Radon transform [38] for
invariant features using tracing lines applied on shapes with
complex textures on a uniform background to detect change.
Heutte et al. used the projections of binary images for charac-

ter recognition [39]. A different usage of parallel projections,
the variance of Radon projections, has been applied to register
texture images to subsequently extract wavelet features [40].
The idea of Radon barcodes was introduced recently to bina-
rize all projections (lines) in individual directions using either
a “local” threshold for that angle, or based on the rise and
fall of the projection amplitude (called the MinMax method)
[41]–[43].

Obviously, most Radon-based approaches have been applied
to binary images (i.e., binary shapes). However, we need to
extract features from gray-level images. The latest developments
using projections as descriptors have been restricted to “global”
projections (applied to the entire image) incapable of recording
the spatial patterns. One needs to zoom into image details to
capture rich features.

The novelty of the descriptor proposed in this study is its
ability to capture local projections in gray-level images in the
form of a descriptive histogram. The challenge, hence, is to
apply projections on gray-level images to local neighborhoods
and generate short-length descriptors by counting the frequency
of a suitable quantity.

III. ENCODED LOCAL PROJECTIONS – ELP

Many different local descriptors have used the method of
spatial binning and stacking of local histograms [44], [45]. The
phrase “histogram of projections” has already been used in lit-
erature [39]. However, it has always meant to count some sort of
black and white frequencies when examining binarized shapes,
without any systematic relationship to binning any type of lo-
cal gray-level patterns and gradients. Applying projections in
small local windows followed by counting a meaningful quan-
tity to assemble a histogram is a challenge that we address in
this section.

By examining an image I, based on projections pθ , extracted
using Radon transform R(θ, ρ) along parallel lines ρ and at
certain angles θ , we aim to generate a histogram h that cap-
tures significant image attributes in (small) local neighborhoods
Wi j .

First, we establish that a maximum of 180 projections are
sufficient for our purpose as pθ = flip(pθ+π ). Second, we know
that every projection pθ captures a pattern arrangement along
ρ at a certain angle θ ∈ {0◦, 1◦, . . . , 179◦}. Third, it must be
obvious that to efficiently create a histogram h of projections,
we must select a relatively small number of projections in each
neighborhood Wi j . Fourth, not all spatial windows may have
something to offer (because of reasons such as the image back-
ground). Hence, one may need to skip homogenous windows.
Finally, gradient information of some sort must be collected
and used during this process to capture the change in projection
shapes.

Based on the aforementioned elaborations and thoughts, we
must find specific projections that can uniquely describe the
gradient of patterns (i.e., projections) in local neighborhoods.
Intuitively, we know that flat or homogenous projections may be
of less interest to us as they do not contain significant primitives
such as edges and corners. Hence, we calculate the homogeneity
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Fig. 1. The steps to extract the ELP histogram: 1) Local windows are selected, 2) 180 projections of each window are calculated (this is called a
sinogram), 3) the anchor projection θ∗ is located using maximum amplitude detection, 4) anchored projections θ∗ + α◦

1 , θ∗ + α◦
2 , θ∗ + α◦

3 are isolated
(x-axes depict ρ, and y-axes depict R(ρ, θ ) in (1)), 5) the derivatives of projections are calculated (x axes depict ρ, and y axes depict ∂

∂ρ
R(ρ, θ )), 6)

projection gradients are encoded (see Fig. 2), and 7) binary numbers are converted to integers and counted to construct a histogram.

of each window Wi j according to [46]

H = 1 − 1

2nbits

√∑
i

∑
j

(Wi j − m)2, (2)

where m = mediani, j Wi j and nbits denote the number of bits
used to encode the image (e.g., nbits = 8, 12, 16). Only win-
dows with sufficient heterogeneity will be processed. We are in-
terested in finding projections that capture a significant change
(assuming that impulsive noise does not play a dominant role,
which can be easily ascertained by pre-filtering the image, or
by downsampling). Therefore, we must find a special angle θ∗

with respect to its gradient ∂
∂ρ

R(ρi , θ
∗) across parallel lines ρi .

Hence, we can find θ∗ using

θ∗ = argmax
i

∫
j

∂

∂ρ
R(ρ j , θi ). (3)

The sum of gradient values of a projection can be used as a
measure of how much change that projection is representing.
Discretely, we get:

θ∗ = argmax
i

∑
j

[
R(ρ j+s, θi ) − R(ρ j , θi )

]
, (4)

where s ∈ 1, 2, 3, . . . is a proper (small) step. One may, as a more
efficient compromise, simply search for the angle θ∗, whose
projection, p, has the maximum amplitude:

θ∗ = argmax
i

max[R(ρ1, θi ), . . . , R(ρ|p|, θi )]. (5)

We call the projection pθ∗ at θ∗ the anchor projection. Obvi-
ously, the anchor projection gives us a certain level of robustness
against rotation because, regardless of the orientation of the lo-
cal window, we would find the same projection based on its
amplitude. However, we must extract more information from
the anchor projection obtain have sufficient quantities to count
for forming a histogram h. For instance, we can allow a small
number of anchored equidistant projections starting at θ∗.

For n × n neighborhoods W, we have |p| = n, provided we
neglect zero-padding for diagonal projections, which is equiv-
alent to projecting only within a circle inscribed in the im-
age/window. Subsequently, we need some type of encoding to
facilitate meaningful and efficient frequency recording. For this
purpose, we employ “MinMax” encoding [42] but we apply it
on the gradient of the anchored projections. Given the projec-
tion vector p of size n and its derivative p′ = ∂

∂ρ
p, the binary

encoding b, ∀i ∈ {1, 2, . . . , n−1}, can be given as

b(i) =
{

1 if p′(i + 1) > p′(i),

0 otherwise.
(6)

Each spatial window W can produce several binary vectors b if
we anchor equidistant projections at θ∗. For four anchored pro-
jections, for instance, that can be counted after conversion into
decimal numbers, we receive four integers to count. Fig. 1 illus-
trates all major steps involved in generating the ELP descriptor.
Fig. 2 illustrates how the MinMax scheme works.

After binary encoding of the derivative of the anchor pro-
jection p′

θ∗ , we convert b to an integer d, such that we
can increment h(d). To collect more information, we obtain
three additional projections anchored to pθ∗ (starting at θ∗):
�={θ∗, θ∗ + α1, θ

∗ + α2, θ
∗ + α3}. These could be equidis-

tant projections: �={θ∗, θ∗ + π/4, θ∗ + π/2, θ∗ + 3π/4}. All
projections are encoded, converted, and counted in the same
manner.

The counting to generate the histogram h can occur in two
different ways: 1) Merged histogram (counts the decimals of
all binarized derivatives of projections of � in one histogram
with |h| = 2|p|), 2) Detached histogram (counts the decimals of
each binarized derivative of projections in a separate histogram
and then concatenates them into one longer histogram h with
|h| = |�| × 2|p|). The detached version of the ELP descriptor
has a slightly higher discrimination power as we will report
in the results section. The histogram is L2 normalized at the
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Fig. 2. Encoding the derivative of a projection p of length n using (6) to
create a binary code of length n−1. Converted to decimals, a histogram
can then be constructed.

Fig. 3. Visualization of ELP descriptor. Top row: original image with
its merged (normalized) ELP histogram (all patterns counted together).
Middle row: ELP features for θ∗ and its (unnormalized) histogram. Bottom
row: ELP features for θ∗ + 90◦ and its (unnormalized) histogram.

end. As the ELP descriptor counts local changes of projections
anchored at a characteristic projection (namely, the maximum
projection θ∗), the ELP descriptor can be invariant to rotation.
Algorithm 1 summarizes all the steps carried out to extract
the ELP descriptor from an image. One can display the ELP
descriptor by visualizing the decimal values (converted from
binary patterns) as pixel values (see Fig. 3).

On Intuition Behind the ELP Histogram – Why should ELP
work? We know that generally projections are very useful. They
can provide directional silhouettes of scenes, objects, and in

our case, organs. Examining several projections from different
directions can help assemble a “complete picture”, which is
how computed tomography works. However, global projections
(applied across the entire image) are arguably of little use as fea-
tures because they smash many regions and boundaries together
to the limit of indiscriminability, especially if the image is rich in
details and only a few directions are used for projection. Hence,
it must be obvious-based on the empirical evidence obtained
from computer vision- that if there is any discrimination power
in projections for gray-level images, it has to be sought in small
spatial windows. However, when a descriptor zooms into the
details of an image (around key points or randomly), it has to
either provide a large number of features (like SIFT and SURF),
or it has to encode local information in a suitable manner in or-
der to count patterns and assemble a histogram (like LBP and
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HOG). The latter is apparently more desirable considering that,
anticipating big image data, we desire to keep our descriptors
compact (i.e., of short length). Therefore, we need to ascertain
the quantity to count in spatial windows when we are using pro-
jections. Each projection is simply a function. One can quantify
the changes in these functions using gradient calculations. Flat
regions will have no change in their projections and edges and
corners will be reflected in some slope changes of the projec-
tion. Derivative calculation, hence, can expectedly capture the
change. From here, all we need is to (somehow) encode (bi-
narize) this change, convert it to a decimal (as many existing
techniques do), and assemble a histogram. Such a descriptor
will capture the local projection change into a histogram and
is expected to demonstrate a reasonable level of identification
capability.

IV. EXPERIMENTS

For the validation of the proposed ELP descriptor, we focus
on image search and classification tasks and use three image
datasets: a collection of 14,400 x-ray images (IRMA), a set
of 168 CT patches (CT Emphysema), and a set of more than
28,000 histopathology images (KIMIA Path24). Our target is to
measure the discrimination power of ELP, in comparison with
other dense sampling histograms. As techniques like LBP have
been successfully used in conjunction with powerful learning
algorithms to deliver the best results for medical image search,
(e.g., for IRMA [47]), it is expected that their standalone usage
should also provide competitive results. LBP’s discrimination
power is being increasingly applied for medical image analysis
[48], [49].

Sections IV-A, IV-B and IV-C describe the three image
datasets that we have used. Section IV-D provides an overview of
the comparison with other algorithms. Section IV-E discusses
the parameter settings for all experiments. Subsequently, we
run two series of experiments: 1) We test image retrieval using
distance measurements and analyze the results for all datasets
(Sections IV-F, and IV-G) 2) We test image classification using
SVM and analyze the results for the largest dataset (Sections
IV-H and IV-I). A note on pre-trained versus fine-tuned deep
networks is provided in Section IV-J.

A. IRMA X-Ray Dataset

IRMA is a collection of several datasets. We use one of them,
which is a collection of 14,410 x-ray images specifically col-
lected and marked for CBIR tasks. It has been created from
clinical cases at the Department of Diagnostic Radiology of the
RWTH Aachen University [50].1 Each image in the dataset is
tagged with an IRMA code comprised of four mono-hierarchical
axes with three to four positions each: the technical code (T) for
imaging modality, directional code (D) for body orientations,
anatomical code (A) for the body region being imaged, and bio-
logical code (B) for the biological system examined. The IRMA
code, therefore, is a string of 13 characters TTTT-DDD-AAA-

1To download the IRMA dataset, visit https://ganymed.imib.rwth-
aachen.de/irma/datasets_en.php

Fig. 4. Sample images from IRMA dataset (14,400 x-ray images with
their IRMA codes).

BBB, each in {0, 1, . . . , 9; a, b, . . . , z} [50]. The IRMA error is
defined as [51]

error =
nchar∑
i=1

1

bi

1

i
g(li , l̂i ), (7)

where li is the code of the query image, l̂i the code of the retrieved
image, bi the number of possible states for each position, nchar

is the number of characters on the axis, and g(·) is a function
that delivers a number in [0, 1] for correct/wrong matchings
(hence, the error is a partial value and not Boolean). The total
error E is then calculated over all axes and accumulated over
all 1,733 test images. The errors are subsequently normalized;
completely wrong axis decisions are assigned an error of 0.25
and a correct axis an error of 0. Thus, an image in which all
positions in all axes are wrong has an error count of 1, and an
image in which all positions in all axes are correct has an error
count of 0. The accuracy for IRMA retrieval can be calculated
with:

AIRMA = 1 − 1

1733

nchar∑
i=1

1

bi

1

i
g(li , l̂i ). (8)

We used the Python implementation provided by Image-
CLEFmed09 to compute the errors based on the aforemen-
tioned definitions.2 Fig. 4 shows some sample images along
with their corresponding IRMA codes. We resized the images
to 200 × 200 for all methods.

B. Kimia Path24 Dataset

The Kimia Path24 dataset has been created from 350 whole
scan images (WSIs) depicting diverse body parts [52]. As re-
ported in the initial paper, the images have been captured by
TissueScope LE 1.03 in the bright field using a 0.75 NA lens. A
total of 24 WSIs have been selected based on visual distinction
for non-clinical experts. This means that a subset of the WSIs,

2http://www.imageclef.org/
3http://www.hurondigitalpathology.com/
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Fig. 5. Sample images from KIMIA Path24 dataset (more than 28,000
images with their classes).

chosen from the 350 scans, has been selected so that the images
clearly represent different texture patterns [52].

The patches extracted from the scans are 1000 × 1000 pixels
that correspond to 0.5 mm × 0.5 mm. Background pixels are
ignored by analyzing the homogeneity and the gradient change
for each patch and a threshold is used to exclude background
patches (which are widely homogenous and do not exhibit sig-
nificant gradient information). A total of 1,325 patches have
been manually selected to make sure that the patches are rep-
resenting the dominant WSI textures. Each selected patch has
been removed from the scan and saved separately as a testing
patch. The remaining parts of the WSI can be used to construct
a training dataset. We ensured that no overlap occurred and
extracted 27,050 training patches of size 1000 × 1000.

The dataset has a total of 1,325 patches P j
s that be-

long to 24 sets 	s = {Pi
s |s ∈ S, i = 1, 2 . . . , n	s } with s =

0, 1, 2, . . . , 23. Looking at the set of retrieved images R for
any experiment, the patch-to-scan accuracy can be given as:

Accuracypatch-to-scan = 1

1325

∑
s∈S

|R ∩ 	s |. (9)

We calculate the whole-scan accuracy using the following
equation:

Accuracywhole-scan = 1

24

∑
s∈S

|R ∩ 	s |
n	s

. (10)

Hence, the total accuracy ηtotal can be defined to take into ac-
count both patch-to-scan and whole-scan accuracies: ηtotal =
Accuracypatch-to-scan × Accuracywhole-scan. The dataset and the
code for accuracy calculations can be downloaded from the
web.4 Fig. 5 shows sample patches from the KIMIA Path24
dataset obtained from different scans. We resized the images to
250 × 250 for all methods, except deep networks, for which
the images were kept slightly smaller.

4http://kimia.uwaterloo.ca/

Fig. 6. Sample images from CT Emphysema dataset (168 patches with
their classifications).

C. CT Emphysema Dataset

For this study, we also used the “Computed Tomography
Emphysema Database“ [53].5 The database contains 115 high-
resolution CT slices with 168 square patches that have been
manually annotated in a subset of the slices with an in-plane
resolution of 0.78 × 0.78 mm2, slice thickness of 1.25 mm, a
tube voltage of 140 kV, and a tube current of 200 mAs. The
512 × 512 pixel slices depict the upper, middle, and lower
part of the lung of each patient. The 168 patches, of size 61 ×
61 pixels, are from three different classes, NT (normal tissue,
59 observations), CLE (centrilobular emphysema, 50 observa-
tions), and PSE (paraseptal emphysema, 59 observations). The
NT patches were annotated in never smokers, and the CLE and
PSE ROIs were annotated in healthy smokers and smokers with
COPD (chronic obstructive pulmonary disease) in areas of the
leading pattern. Fig. 6 shows examples for NT, CLE and PSE
classes from the CT Emphysema dataset. Given the set of cor-
rectly classified images C, the accuracy ACT can be calculated
as

ACT = |C|
168

. (11)

D. Comparisons

Because we have been focusing on histogram-based descrip-
tors emerging from “dense sampling”, we will compare our re-
sults with LBP and HOG as two very successful representatives
of such descriptors. As LBP turns out to be the most powerful
histogram-based descriptor in many cases, we also conducted
experiments with one of its most recent extensions, MRELBP.
However, the results were not competitive, which is why we did
not report them. Instead, we downloaded the MRELBP from
CMVS website.6 To demonstrate this, we only report the best
MRELBP results for the IRMA dataset (8 neighbors, radius
8, radial differences).We used the following MATLAB 2016b

5http://image.diku.dk/emphysema_database/
6http://www.oulu.fi/cmvs/node/33019
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implementations of LBP and HOG, and a self-implementation
of ELP.7

Although our focus was on compact (short-length) descrip-
tors, our recent success cases with deep learning encouraged
us to generate deep features using a pre-trained VGG8 network
with 16 layers trained using the ImageNet database [29], [54],
[55] (also see Section IV-J). The usage of such networks as fea-
ture extractors has become quite common, specially when there
is not enough data to properly train a network from scratch.
We also examined “transfer learning” [28], [56] to fine-tune
the pre-trained VGG network for KIMIA Path24 images. It is
argued in literature that this may increase accuracy [57]. After
many additional hours of retraining the outer (classifying) lay-
ers, however, the results were on par with VGG net without any
fine-tuning. Moreover, AlexNet was tested but could not surpass
the VGG results.

Given two histograms h1 and h2, with |h1| = |h2| = n, we
can measure their dissimilarity through dL1 , dL2 , and dχ2 by
using L1 and L2 norms, as well as χ2 (Chi-squared) distance
and cosine similarity. For classification, we used SVM.

Our focus in comparative experiments will be mainly on ac-
curacy. However, we know that algorithms such as ELP and LBP
have quadratic upper bounds, O(n2), as they use nested loops.
Such bounds are more difficult to establish for neural networks
because they depend on several factors such as number of hidden
layers, number of neurons, and the type of activation function
[58]. Generally, neural networks may show exponential time
complexity for training but deliver results in O(1).

E. Parameter Settings

For ELP, we run some experiments on the IRMA dataset and
set most of the parameters for all other datasets. We use one
pixel stride to shift local windows. We experimented with many
different window sizes and found that small window sizes gen-
erally deliver good results. Therefore, we tested all methods
for all datasets for windows sizes 8 × 8, 9 × 9, and 10 × 10.
Based on these experiments, the size of spatial windows was
set to 9 × 9 for IRMA and 10 × 10 for other datasets. Addi-
tionally, α = {θ∗, θ∗ + 45◦, θ∗ + 90◦, θ∗ + 125◦} was used for
all datasets (we ran a set of experiments and found that the
slight deviation from equidistant projections, 125◦ instead of
135◦, improved the results). For the IRMA dataset, we used
nine sub-images. For other datasets, the entire image was pro-
cessed. For Kimia Path24, the selection of θ∗ through maximum
detection obtained from the sinogram was replaced by gradient
calculation of the window to save time. ELP results are reported
as ELP(w,t),D where w is the window size, t is the histogram
type (m for merged and d for detached), and D is the dis-
tance measure. For the normalization of detached histograms,
we experimented with two schemes: we normalized individual
histograms and then concatenated them, and we concatenated
them first and then normalized the compound histogram. The
latter approach provides better results.

7The ELP MATLAB code is available at kimia.uwaterloo.ca
8Visual Geometry Group, University of Oxford

TABLE I
EFFECT OF WINDOW SIZE ON RETRIEVAL ERROR FOR IRMA DATASET FOR

DIFFERENT DISTANCE MEASURES (NO SUB-IMAGES)

L2 L1 χ2

ELP[7,m] 73.87% 75.70% 76.67%
ELP[8,m] 75.68% 77.77% 78.56%
ELP[9,m] 76.11% 78.52% 79.46%

We ran initial experiments on the IRMA dataset to find
out which window sizes are suitable. We expected the pro-
jections in the local neighborhood to deliver better results
compared to global projections (applied on entire image) or
localized projections (applied on sub-images). We found out
that a large number of projections may not be possible in
commonly used window sizes such as 3 × 3, or 5 × 5 but
we needed enough projection directions to detect a meaning-
ful “anchor” projection. We tested the smallest windows sizes
(7 × 7, 8 × 8, 9 × 9) for which we could still project mean-
ingfully and found out that 9 × 9 was a good choice (see
Table I). Slightly larger windows may provide better result for a
given image category; however, the computational expense also
increases.

For LBP and HOG, we ran exhaustive experiments for each
dataset to find the best results. For LBP, we tried all combi-
nations of radii r = {1, 2, 3}, number of neighbors (8, 12, 16,
20, and 24), rotation invariance versions rotinv = {yes, no}, and
number of sub-images nsub-images = {1, 4, 9, 16}. LBP results are
reported as LBP(n,r),D where n is the number of neighbors, r is
the radius, and D is the distance measure.

For HOG, we tried all combinations of block size b =
{1, 2, 3}, number of sub-images nsub-images = {4, 9, 16, . . . }, and
number of bins (= 6, 9, 12, 18, 21, etc.) as long as |h| =
nsub-images × number of bins < 1500.

Deep features, extracted from the pre-trained network, had
no parameter to adjust. As mentioned earlier, neither trying a
different network (VGG versus AlexNet) nor fine-tuning by
slight re-training was able to significantly improve the results.

F. Results Obtained From Distance Calculations

We generated descriptors using LBP, HOG, ELP and
a pre-trained VGG net for all images of all datasets. Our
experiments started with investigations into LBP and ELP with
respect to the effect of descriptor length on the classification
accuracy. As Fig. 7 shows, the retrieval error for the IRMA
dataset decreases as the descriptor length increases. This was
the motivation for us to examine the concatenation of the
histograms of multiple sub-images. We confirmed that for
all handcrafted descriptors, the concatenation of several his-
tograms of sub-images does in fact increase the discrimination
power of the descriptor (HOG intrinsically looks at local
blocks).

The purpose of the experiments was to compare the perfor-
mance of all descriptors for different image categories using
direct similarity measurements using distance calculations. We
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Fig. 7. Both LBP and ELP deliver accurate results when we increase
the descriptor length and the motivation to concatenate histograms of
multiple sub-images.

TABLE II
BEST RESULTS FOR ALL DATASETS AND DESCRIPTORS WHEN CITY BLOCK
(L1), EUCLIDEAN (L2), CHI-SQUARED (χ2) AND COSINE (cos) DISTANCES

ARE USED FOR DIRECT SIMILARITY MEASUREMENTS

IRMA Dataset

(12,677 images for indexing and 1,733 images for testing)

Method AIRMA |h| nsub-images

LBPu
(8,2),χ2 85.91% 531 3 × 3 = 9

ELP∗
(9,m),L1

85.20% 576 3 × 3 = 9
ELP(9,m),L1 85.10% 1152 3 × 3 = 9
HOGL1 84.66% 900 6 × 6 = 36
VGG16-FC7L1 84.58% 4096 1 × 1 = 1
MRELBPχ2 75.26% 200 1 × 1 = 1

CT Emphysema Dataset

(168 images for indexing/testing)

Method ACT |h| nsub-images
ELP(10,m),L1 80.95% 256 1 × 1 = 1
LBPuri

(12,3),χ2 80.36% 18 1 × 1 = 1
VGG16-FC7L2 69.64% 4096 1 × 1 = 1
HOGL2 65.47% 1215 9 × 9 = 81

Kimia Path24 Dataset

(27,000 images for indexing and 1,325 images for testing)

Method Accuracy |h| nsub-images
ELP(10,d),χ2 {71.16%, 68.05%} 1024 1 × 1 = 1
ELP(10,m),χ2 {70.70%, 67.93%} 256 1 × 1 = 1
VGG16-FC7cos {70.11%, 68.13%} 4096 1 × 1 = 1
LBPu

(24,2),L1
{65.55%, 62.56%} 555 1 × 1 = 1

HOGL1 {17.58%, 16.76%} 648 6 × 6 = 36

For LBP and HOG, the best results were achieved for each dataset using an
exhaustive parameter search. For Kimia Path24, we provide both patch-to-scan
and whole-scan accuracies in this order.

did not attempt to beat state-of-the-art benchmarks for these
datasets, although we achieved this for the largest one, namely,
KIMIA Path24.

Table II shows the results for all three datasets. Over and
above the accuracies for each dataset, we also report the length
of the descriptor |h| and the number of sub-images nsub-images.

G. Analysis of Distance-Based Results

Results for IRMA Dataset – As the upper section of Table II
shows, although LBP (in uniform version with 8 neighbors and
a radius of 2) delivers the highest accuracy, other descriptors
are quite close, delivering comparable numbers. ELP (merged
histograms) is, with an accuracy of 85.10%, very close to LBP.
Reducing the length of ELP by eliminating least-frequent bins,
resulting in ELP∗ improves the results further. LBP achieved its
best results with χ2 whereas all other descriptors achieved their
highest accuracies with L1. One may point out that the perfor-
mance of deep features, considering their length (|h| = 4096),
may be regarded as being rather low. A critical observation was
that in many cases, although LBP and ELP had the same IRMA
error, ELP was delivering more consistent results with higher se-
mantic matching. Figs. 8 and 9 show two examples of such cases.

Results for CT Emphysema Dataset – For CT patches, both
LBP and ELP provided identically high accuracy levels. How-
ever, this time, ELP was found to be the most accurate descriptor
with the LBP histogram having almost the same accuracy but
14 times shorter than ELP (18 versus 256). The performance
of both deep features and HOG considerably dropped for CT
patches. HOG’s poor performance is perhaps due to the fact
that there is no compact object(s) in the images. As for deep
features, the patches depict a small part of a large CT scan with
large (almost) flat regions so that the image primitives learned
through training by ImageNet may not be enough.

Results for KIMIA Path24 Dataset – For histopathology im-
ages, both ELP and deep features provide the highest accuracies
whereas ELP is, being the shorter descriptor, the better choice.
As we may regard histopathology patterns, at least at some res-
olutions, as anatomical textures, and as LBP has been designed
for texture recognition, the drop in accuracy of LBP for this
dataset is quite surprising. HOG, perhaps expectedly, delivered
extremely poor results (there is no regular gradient pattern to
capture in pathology images).

Summary of Distance-Based Results – While the performance
of LBP, HOG and deep features was subject to fluctuations when
applied to different image categories, ELP consistently emerged
as one of the best methods across the three different datasets.
Additionally, visual inspections revealed that the ELP histogram
was capable of providing anatomically more meaningful results
for x-ray images, an advantage that is not captured by the com-
mon error calculations of public datasets. Moreover, the fact that
ELP is not only shorter but also more accurate than deep features
for histopathology images is an encouraging observation.

H. Results Obtained Through SVM Classification

In a second round of experiments, we examined the effect of
classifying the images using a sophisticated classification algo-
rithm like SVM. The IRMA dataset is a typical retrieval dataset
in which every retrieval task is assigned a number between 0
and 1. Hence, classifying the descriptors for IRMA images may
not necessarily provide any insight into the expressiveness of
the descriptors. The CT Emphysema dataset is not large enough
to draw any reliable conclusions. Hence, we focused on the last
dataset (which is also the largest one) to repeat the experiments
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Fig. 8. Although the IRMA errors for ELP and LBP are the same but ELP results are anatomically more consistent. Left: Query, top row: ELP
results, bottom row: LBP results.

Fig. 9. IRMA errors for ELP and LBP are the same but the ELP descriptor recognizes that the query image is a part of a chest x-ray. Left: Query,
top row: ELP results, bottom row: LBP results.

TABLE III
SVM CLASSIFICATION, SORTED BASED ON PATCH-TO-SCAN ACCURACY, OF

ELP, DEEP FEATURES, AND LBP IN COMPARISON WITH RESULTS
REPORTED FOR KIMIA PATH24 DATASET IN [52] (THE LATTER

REPORTED IN THE LAST THREE ROWS)

Accuracy
Method {patch-to-scan, whole-scan} |h|

ELPSVM
(10,d) {82.7%, 79.9%} 1024

ELPSVM
(10,m) {82.3%, 79.3%} 256

VGGSVM
FC7 {79.5%, 76.9%} 4096

LBPSVM
(24,2) {77.8%, 73.3%} 555

VGGSVM
Pool5 {72.5%, 67.2%} 6272

LBP(24,3) [52] {66.1%, 62.5%} 555

CNN [52] {65.0%, 64.8%} n.a.

BoVW [52] {65.0%, 61.0%} n.a.

with SVM classification of all descriptors instead of using dis-
tance calculations.

Table III shows the results for SVM classification of LBP,
ELP, and deep features. SVM results for HOG were still found
to be quite poor and have not been reported anymore. We exper-
imented with all layers of the VGG network. The best result for

a fully connected layer (FC7) was 79.5% for the patch-to-scan
accuracy. The best result for a pooling layer (Pool5) was 72.5%.
The number of features for Pool5 was 25088 elements and we
resampled it to 6272 elements by taking an average of four con-
sequent features. Several SVM configurations failed to generate
satisfactory results. Only the linear SVM delivered reasonable
results for Pool5.

We also list the benchmark results on Kimia Path24 dataset
using CNN, LBP and BoVW (the lower part of Table III high-
lighted in gray) for comparison. These numbers are reported
in [52], which uses a CNN consisting of 3 convolutional lay-
ers with 3 × 3 kernels, each with 2 × 2 max-pooling with
64, 128, and 256 filters, respectively. The output from the last
convolution layer is fed into a fully-connected layer with 1,024
neurons and subsequently to 24 units with softmax activation
for classification.

I. Analysis of the SVM Results

A CNN trained from scratch, an LBP with 24 neighbors in
a radius of 3 pixels, and a trained BoVW, all deliver accu-
racies ≈65% for the KIMIA Path24 images [52]. SVM-ELP
showed the highest patch-to-scan accuracy (≈83%) followed by
SVM-Deep with a pitch-to-scan accuracy of ≈80%. SVM-LBP
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(with 24 neighbors in a radius of 2 pixels) results in an accu-
racy of ≈78%. ELP descriptor achieves the highest values for
both sensitivity (84% ± 14%) and precision (84% ± 14%) with
|h| = 1024. Deep features exhibit a sensitivity of 80% ± 10%
and a precision of 77% ± 16% with |h| = 4096. Again, it is
quite encouraging that ELP is not only 3% more accurate than
deep features but also has a much shorter length.

J. A Note on Pre-Training vs. Fine-Tuning

Deep networks are quite powerful tools. A practical way of
using them in medical image classification is to employ “pre-
trained” networks as we have reported. This eliminates the chal-
lenge of not having a large, labelled and balanced image dataset.
However, one may also “fine-tune” a pre-trained network in
order to better adjust the weights to medical images (e.g., to
compensate for lack of color information in our images in a
VGG network that has been trained with natural color images).
Kieffer et al. [57] recently reported that the fine-tuning of the
VGG network for the Kimia Path24 actually reduces the patch-
to-scan accuracy but slightly increases the whole-scan accuracy.
Tajbakhsh et al. [4] examine the same question and conclude
that this may be an application-based choice.

V. SUMMARY AND CONCLUSIONS

A new dense-sampling descriptor using parallel projections
was introduced in this study. The histogram of Encoded Local
Projections (also called ELP descriptor) is extracted from local
neighborhoods when an anchor projection (i.e., with maximum
amplitude) is detected, to which three equidistant projections are
anchored. The gradient of these four characteristic projections
in each neighborhood is then encoded using the MinMax pro-
cedure. We then count the frequency of these encodings when
converted to integers. Every projection in small neighborhoods
records multiple local (parallel) patterns. Moreover, it bases its
discrimination on gradient information to examine how these
patterns change.

Experiments on three publicly available datasets demon-
strated that ELP has the potential to retrieve medical images
with reliable accuracy. In our experiments, ELP, with an almost
constant setting, consistently delivered the best results although
we exhaustively fine-tuned the competing descriptors LBP and
HOG for each dataset separately, and bearing in mind that deep
features are the result of extensive training and optimization.
Strikingly, we also observed that the ELP descriptor delivered
semantically better matches (at least for one dataset), an effect
that needs further validation in practice as public datasets do not
provide any quantification schemes to capture this benefit for
any descriptor.
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