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A Versatile Noise Performance Metric for
Electrical Impedance Tomography Algorithms

Fabian Braun∗, Martin Proença, Josep Solà, Jean-Philippe Thiran, and Andy Adler

Abstract—Electrical impedance tomography (EIT) is an
emerging technology for real-time monitoring of patients
under mechanical ventilation. EIT has the potential to offer
continuous medical monitoring while being noninvasive,
radiation free, and low cost. Due to their ill-posedness,
image reconstruction typically uses regularization, which
implies a hyperparameter controlling the tradeoff between
noise rejection and resolution or other accuracies. In order
to compare reconstruction algorithms, it is common to
choose hyperparameter values such that the reconstructed
images have equal noise performance (NP), i.e., the amount
of measurement noise reflected in the images. For EIT many
methods have been suggested, but none work well when the
data originate from different measurement setups, such as
for different electrode positions or measurement patterns.
To address this issue, we propose a new NP metric based on
the average signal-to-noise ratio in the image domain. The
approach is validated for EIT using simulation experiments
on a human thorax model and measurements on a resistor
phantom. Results show that the approach is robust to the
measurement configuration (i.e., number and position of
electrodes, skip pattern) and the reconstruction algorithm
used. We propose this novel approach as a way to select
optimized measurement configurations and algorithms.

Index Terms—Cross validation, EIT, hyperparameter se-
lection, L-curve, noise figure, noise performance, SNR.

I. INTRODUCTION

M ECHANICAL ventilation provides life-saving support
for patients in intensive care units, but – if not applied

properly – can also lead to severe complications. Those can be
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reduced by continuous monitoring of regional ventilation at the
bedside, as recently made possible with electrical impedance
tomography (EIT) [1], a radiation-free medical imaging modal-
ity [2]. Apart from ventilation, chest EIT has also been sug-
gested for assessing haemodynamics such as pulmonary perfu-
sion, stroke volume or blood pressure [3].

EIT uses current stimulation and voltage measurements at
body surface electrodes to reconstruct tomographic images,
which represent an estimate of a body’s internal electrical con-
ductivity. In EIT and other soft field tomographies, the physics
of the probing energy is diffusive, resulting in wide variations
of sensitivity across the body, i.e. EIT is much more sensitive to
conductivity changes near its electrodes than to changes deeper
in the body. Consequently, the reconstruction formulation is ill-
conditioned. For a given finite element model of the body, sen-
sitivity is typically represented as a Jacobian matrix, J , where
the (i, j)th element J i,j = ∂Fi(m)/∂mj , is the sensitivity of
the ith surface voltage measurement vi = Fi(m) to a conduc-
tivity change in the jth model element mj . The operator F (·)
represents the forward model transforming the conductivity dis-
tribution m into a surface voltage measurement v. The large
sensitivity variations of EIT is reflected in an ill-conditioned
J [2].

Reconstruction of such tomographic images uses inverse
problem techniques, which introduce additional constraints to
stabilize the estimated images, and to make them more robust to
interference and noise [2], [4]. Regularized algorithms estimate
a conductivity distribution m̂ = R(v, λ) using algorithm R(·, ·)
with data v and hyperparameter λ. In particular, Tikhonov-type
regularization seeks an estimate, m̂, which minimizes the norm
‖v − F (m̂)‖ + λP (m̂), where P (·) is a function which pe-
nalizes noisy images. Such regularization implies an impact on
various measures of image accuracy, such as resolution. Most
regularized schemes define a hyperparameter (here λ) which
controls the amount of regularization, and can be seen as a
trade-off parameter between image robustness and accuracy. In
many cases, this choice can be described as a “resolution-noise
performance trade-off”.

In using regularization techniques, a key decision is the se-
lection of an appropriate (or “best”) value of the hyperparam-
eter λ. From the various λ selection approaches which have
been proposed [5], [6], we review three commonly used in EIT.
A key challenge with all these approaches is that they work
within a given measurement configuration (electrode number
and position, and stimulation and measurement pattern). They
thus offer little guidance in scenarios in which measurement
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Fig. 1. Three hyperparameter selection approaches commonly used
in EIT: (a) L-curve with (i) a classical form and (ii) a form often observed
for higher data noise; (b) generalized cross-validation (GCV); (c) noise
figure (NF).

configurations need to be compared, for example when optimiz-
ing an EIT configuration for a specific experimental or clinical
application. To address this requirement, this paper proposes
and evaluates a novel noise performance metric.

A. State of the Art in Hyperparameter Selection

We review three state-of-the-art techniques to select regular-
ization hyperparameters.

The most widely cited is the L-curve technique, proposed by
Hansen [7]. It is based on finding a best compromise between the
data mismatch, D(m̂) = ‖v − F (m̂)‖ and the regularization
penalty P (m̂). The classical form of the L-curve is shown in
Fig. 1(a)-i; values are obtained by calculating the solution over
the full range of λ values and plotting each point. Point L is the
L-curve point, which represents “best” compromise between
D(·) and P (·), in the sense that changes in λ from L increase
one penalty without improving the other (L can be precisely
defined in terms of the curvature). In region A, as λ → 0, the
image becomes increasingly noisy, and P (·) increases without
significant improvement in D(·). Conversely, in region B, as
λ increases, D(·) increases without significant improvement in
P (·). Finally, for large λ, the best choice is simply to choose the
values which minimizes P (·) without considering the data at
all (region C). Thus, the L-curve can be thought of as having a
“chair” shape. While the L region is well defined when the noise
levels are low, in many applications with higher data noise the
curve appears more like Fig. 1(a)-ii, and point L can be difficult
to calculate robustly [5].

Another approach is to use a cross-validation scheme, such as
generalized cross validation (GCV) [8]. These are motivated by
searching for a solution which is best able to predict measured
values. The concept of GCV is illustrated in Fig. 1(b). A solution
is calculated without each data value in turn, and the prediction
error due to each missing data value is then evaluated. The best λ
predicts data with the lowest cross-validation error, represented
by the minimum of the GCV-function G(λ). GCV estimates

have not seen much use in EIT; a common claim has been
that the GCV tends to underestimate λ, i.e. to provide under-
regularized solutions [5].

The third approach, the noise figure (NF), is illustrated in
Fig. 1(c). It is defined as the ratio of signal-to-noise ratio
(SNR) of the input (raw data v) to that of the output (recon-
structed image m̂) [9]; NF = SNR[v]/SNR[m̂]. Here, SNR
is defined in terms of image amplitude rather than energy, as
SNR[x] = mean[x]/std[x]. NF is a useful parameter to com-
pare algorithms using the same measurement configuration (for
example, to compare to the original Sheffield backprojection
algorithm, an EIT algorithm is recommended to have NF = 0.5
[10]). Limitations of the NF are mentioned at the end of the next
section.

B. Practical Aspects and Limitations of the State of
the Art

A common limitation associated with the L-curve, GCV and
other approaches from the mathematical inverse problem litera-
ture is that the optimal λ is defined for each data measurement.
From an engineering point of view this is not practical. Instead,
the value would be set either when an algorithm or system is
designed or manufactured, or perhaps when a system is tuned
for a specific application. Thus λ should be best for an expected
range of data, rather than for one specific set of measurements.
Another consideration is that in practice, a “best” algorithm is
defined in terms of user-level performance parameters, such as
SNR, resolution, position accuracy (e.g. [10]). It is not clear
how, for example, the L-curve optimal point relates to the user-
level performance. One further application requirement is the
need to compare the performance of different measurement sys-
tem configurations. If we wish to compare different hardware
settings, electrode placements, or stimulation and measurement
patterns, then the measured data will necessarily differ. It is not
possible to simply use the same numeric value of λ between the
different configurations. In order for the comparison between
the configurations to be meaningful, the setting of a given per-
formance parameter must be the same, so that other figures of
merit can be compared fairly. Most commonly, this means set-
ting approaches to have equal noise performance (NP), i.e. the
amount of measurement noise (present at the input) reflected in
the images (the output of reconstruction).

One common parameter of this type has been the NF. Un-
fortunately, as shown later in the present work, NF does not
work well for the comparison of different measurement config-
urations , such as for example a larger skip (separation between
stimulation and measurement electrodes).

C. Proposed Approach

We are faced with the challenge of defining a hyperparameter
selection strategy which is appropriate for: 1) choosing a suitable
λ for a measurement system and a given application, and 2)
fairly comparing different systems or different configurations
of the same system. In the present work we primarily focus on
2) driven by the motivation of possible scenarios encountered in
practice: having a 32 electrode EIT system with the capability to
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Fig. 2. Block diagram of the proposed framework evaluating the signal-to-noise ratio (SNR) of nt likely conductivity targets leading to the averaged
SNR.

use different stimulation and measurement patterns, we would
like to know which one is the best pattern e.g. to image the
lungs or the heart. In a next step, we might want to compare the
performance of the first device to a second device with only 16
electrodes. Once an equal NP is established for all algorithms of
these diverse configurations, the image quality can be compared
in terms of resolution, position errors, or other figures of merit.

To this end we develop a NP metric called SNR which de-
scribes the expected image noise. This noise parameter is cal-
culated for a given measurement system configuration which is
defined to include: the stimulation and measurement patterns
and the electrode positions.

D. Image Reconstruction for Difference EIT

In this paper we focus on difference EIT, as typically used
in clinical applications for stability reasons. In difference EIT a
reference voltage vr is subtracted from the voltage measurement
v yielding the difference data d. The result of reconstruction m̂
thus represents the change in conductivity relative to a reference
state. For small changes in conductivity the problem may be
linearised as follows:

m̂ = R(λ)d = R(λ)(v − vr ) (1)

where R(λ) represents the reconstruction matrix which depends
on the hyperparameter λ. Such linearised one-step difference
algorithms are commonly used in clinical EIT and many ap-
proaches exist to derive R(λ).

This paper is structured as follows: In the methods section
we first present the SNR approach from the theory to its im-
plementation. Then, we describe the simulation and practical
experiments performed to validate our approach. In the results,
we compare the state of the art (L-curve, GCV, NF) to the pro-
posed method. In the discussion we consider some additional
observations of this work, followed by a conclusion.

II. METHODS

A. SNR Framework

We first explain the general concept of the proposed SNR
approach in Section II-A1. Then we present its specific solution

for linearised one-step reconstruction (Section II-A2), followed
by its algorithmic implementation (Section II-A3).

1) General Concept: The suggested SNR measures the
average signal-to-noise ratio in the image domain for several
objects of interest – hereafter referred to as targets. To do so
the signal strength of each target is compared to the amount of
noise present in the images within the vicinity of each target.
Algorithms with equal SNR are thus defined to have equal noise
performance (NP).

As illustrated in Fig. 2 we evaluate the individual SNRs
from nt likely targets distributed inside a given region of in-
terest (ROI) of our model. The approach requires a model of
likely noise n, which is incorporated into the difference EIT
data (d = F (m,n)) prior to reconstruction (m̂ = R (d, λ)).
F (·, ·) represents the forward model transforming the conduc-
tivity change m into the (noisy) difference voltage d, and R(·, ·)
the reconstruction of d into the EIT image m̂ (i.e. the estimated
conductivity change) while being controlled by the hyperpa-
rameter λ. For each of the nt targets, we estimate the expected
signal and noise level in a target-specific evaluation zone (TEZ).
To this end, within the TEZ of a given target, we compute the
signal level S as the average of a noise-free image m̂s and the
noise level N as the expected root mean square (RMS) am-
plitude of a pure noise image m̂d . By design, the signal level
estimation should be independent of both the spatial resolution
(i.e. amount of blurring), and the possible position errors of the
reconstruction. Thus, the TEZ is adapted to each target, and is
defined as the pixels which exceed one-fourth of the maximum
amplitude of m̂s , as suggested by [10]; the TEZ thus includes
most of the visually significant image contributions. In this way,
the estimate S always captures a comparable portion of the tar-
get response in m̂s , independent of the spatial resolution of the
reconstruction. The signal estimate S is further scaled with a
factor k = VTEZ/Vt which corrects for the ratio of blurring, i.e.
the size of the target response in the image domain VTEZ versus
the effective target size Vt . This correction factor k makes the
signal estimate independent of the spatial resolution of recon-
struction (i.e. size of the TEZ) and the size of the target and thus
allows a fair comparison between estimates of different targets
and/or algorithms.
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The final NP metric SNR is expressed as the average SNR of
all nt targets which leads to the generalized equation:

SNR = Et

⎡
⎣ k

∑np

i=1[z]i [m̂s ]i√
En

[∑np

i=1[z]i [m̂d ]2i
]

⎤
⎦ (2)

where En [·] denotes the expected value of the noise model
(stochastic domain) and Et [·] the expected value calculated over
the finite set of nt targets. The target-specific vector z weighing
each of the np image elements by its area times its contribution
to the TEZ (i.e. zi = 0 if image element i is outside the TEZ) is
further defined in the next section.

As mentioned before, most clinical EIT applications use one-
step linearised reconstruction. We therefore focus on this type of
reconstruction and present a particular solution for (2) hereafter.

2) Solution for Linearised Reconstruction: When
using a linear model and assuming n as additive noise (char-
acterized by a covariance Σn ), we have ds = Jms , and
dn = Jms + n, where ds ,dn ∈ Rnd are the difference EIT
measurements and J ∈ Rnd ×ne is the Jacobian matrix (with nd

as the number of EIT voltage measurements and ne the number
of finite elements in the forward model). The two images of
interest, m̂s , m̂d are thus calculated using (1):

m̂s = Rds = RJms (3)

m̂d = R(ds − dn ) = Rn. (4)

From these images we estimate the signal level S from m̂s and
noise level N from m̂d , with the analysis being restricted to the
TEZ. To this end, we make use of the normalized weighting
vector z ∈ Rnp which contains, for each image element i (e.g.
pixel), its area ai multiplied by a binary number ci (equals 0/1
if outside/inside the TEZ), yielding zi ∝ aici , with

∑
zi = 1.

For the sake of simplicity, the following equations are limited to
one single target but extended to multiple targets at the end of
this section. The signal level S is defined as the average of m̂s

within the TEZ:

S = k

np∑
i=1

[z]i [m̂s ]i = k ztm̂s = z̃tRJms , (5)

where z̃ = kz = (VTEZ/Vt)z with VTEZ =
∑

aici , i.e. the total
area of all image elements within the TEZ, and Vt the volume
of the conductivity target. The squared noise level N2 is defined
as the weighted mean square amplitude of m̂d :

E
[
N2] = E

[ np∑
i=1

[z]i [m̂d ]2i

]
= E

[||Dm̂d ||2
]

(6)

where D is a diagonal matrix with [D]ii =
√

zi yielding:

E
[
N2] = E

[
tr

[
Dm̂dm̂

T
d DT

]]
= E

[
tr

[
DT Dm̂dm̂

T
d

]]

= E

[ np∑
i=1

[D]2ii[m̂dm̂
T
d ]ii

]
= E

[ np∑
i=1

[z]i[m̂dm̂
T
d ]ii

]

= E
[
zt diag (m̂dm̂

T
d )

]
= E

[
zt diag (RnntRt)

]

= zt diag (RΣnRt). (7)

The choice of calculating the noise from the diagonal en-
tries of RΣnRt rather than from the full covariance matrix
stems from the fact that we are estimating N as the RMS am-
plitude along the spatial dimension (i.e. for each image ele-
ment). If the full covariance matrix were used, noise would
be estimated as the RMS amplitude (along the stochastic di-
mension) of a conductivity change spatially averaged over the
TEZ (E

[
(ztm̂d)2

]
= ztRΣnRtz), and would sum over the

off-diagonal entries in the covariance matrix. In this case, off-
diagonal entries with opposite sign would reduce the estimated
noise within the TEZ. This would lead to an overestimated SNR,
especially in reconstruction algorithms with high spatial reso-
lution when compared to lower resolution algorithms.

Combining (5) and (7) leads to the SNR of one single target:

SNR =
S√
N2

=
z̃tRJms√

zt diag (RΣnRt)
. (8)

We further extend this to multiple targets with their changes
in conductivity M ∈ Rne ×nt and the corresponding evaluation
zones Z, Z̃ ∈ Rnp ×nt , where each column in M contains the
conductivity change of one target (e.g. ms), Z the TEZ of this
target (e.g. z) and Z̃ its scaled version (e.g. z̃). This leads a
vector of nt SNRs:

SNR = diag
(
Z̃

t
RJM

)
�

√
Zt diag (RΣnRt) (9)

where � denotes the Hadamard division (element-wise divi-
sion). For uncorrelated and uniform noise, where Σn is a diag-
onal matrix with Σn = σ2

nI , this can be simplified to:

SNR = diag
(
Z̃

t
RJM

)
�

(
σn

√
Zt diag (RRt)

)
. (10)

The final SNR is then calculated as the mean of all targets
SNR = 1

nt

∑nt

i=1 [SNR]i , in order to obtain the average NP in-
side the ROI. The expressions in (9) and (10) are comparable
to the SNRout defined by Adler et al. [9] but evaluated in a
restricted region of the image – the TEZ – and averaged over
multiple targets.

3) Algorithm Implementation: For a given application
including a model of the likely body shape, the Jacobian J and –
provided a given λ – the reconstruction matrix R(λ) are known.
With (9) and (10) the SNR is then calculated by the following
steps.

1) In the region where the conductivity changes of inter-
est are to be observed (ROI) we distribute nt targets of
desired size and amplitude in our model, leading to M .
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Fig. 3. Overview of the simulation experiments: (a) 3D model of human thorax with lungs (blue) and heart (red) and (b) its corresponding 2D model
in medical orientation (with ROI for SNR calculation as dashed black line). The difference voltages dr obtained after forward solving are affected by
nf realizations of additive white Gaussian noise N (0, 1E-5) and then reconstructed to nf noisy EIT images Δσ. The noise level in the reconstructed
images is illustrated by one single noisy EIT image and further analyzed by the temporal root mean square of all noisy EIT images as described
in the following. (c) Example EIT image with positive/negative conductivity change in left lung and heart, respectively. The green rectangles depict
the EIT electrodes. (d) Pixel-wise, temporal root mean squared amplitude (tRMSA) of the nf noisy EIT image. This image shows the square root of
the signal and noise power. The region delineated in blue is used to generate (e) the tRMSA cross section showing a transversal cut through the
tRMSA image with the region outside the ROI shaded grey. It shows the ratio of noise-affected signal level SN (left lung) versus noise level N (right
lung) and allows to estimate an approximative SNR ≈ SN−N

N . In the above example with SN = 0.94 and N = 0.42 we estimate SNR ≈ 1.24. Note that
(c), (d), and (e) are normalized to maximal tRMSA.

2) For each target, we reconstruct an image m̂s of which we
determine the one-fourth amplitude pixels. These pixels
define the evaluation zone (TEZ) in the image domain,
leading to nt TEZs contained in Z and Z̃.

3) Depending on the desired noise characteristics we com-
pute SNR using (9) or (10) and average to obtain SNR.

B. Validation Experiments

To validate the approach proposed, a number of simulation
experiments were performed on a human thorax model. To this
end, the aforementioned algorithm was implemented in Matlab
using the open-source EIT toolbox EIDORS [11] and will be
freely available upon its next release. To illustrate the approach
on measured data, a commercial EIT system was used to perform
measurements on a resistor phantom. Finally, a simulation on an
open geometry model was carried out to evaluate the potential
of the SNR approach for other fields of EIT such as geophysics.

1) Algorithm Parameters: For the implementation of
the proposed method in thoracic EIT applications, we recom-
mend an ROI extending to 50% of the distance from the center
of mass to the boundary as illustrated in Fig. 3(b). The therein
contained nt = 200 uniformly distributed spherical targets are
positioned at the level of the electrodes and have a relative radius
rt of 5% of the medium radius Rm . Moreover, SNR was calcu-
lated using (10) with σn = 1. The choice of these parameters is
justified in the discussion section.

In order to tune an EIT reconstruction algorithm to a desired
SNR i.e. selecting the hyperparameter λ of R(λ), a bisection
search technique was applied [5].

2) Image Reconstruction: In the present work we use
two reconstruction algorithms widely used for thoracic EIT:
GREIT with the recommended settings [10] and one-step Gauss-
Newton (GN) with a Laplace-prior [2], [4].

3) Simulation Experiments: The simulation experi-
ments are illustrated in Fig. 3 and described hereafter. A 3D
extruded model of a human thorax [shown in Fig. 3(a)] was used
with realistic conductivities (σBackground = 0.20 S/m, σLungs =
0.13 S/m, σHeart = 0.55 S/m) [12]. A set of representative differ-
ence EIT voltages dr was generated by changing the conductiv-
ity of the left lung and the heart by 10% and −5%, respectively.
The right lung was left unchanged. An example of a recon-
structed EIT image is shown in Fig. 3(c). To mimic a realistic
scenario, additive white Gaussian noise N (0, 1E-5) was added
to the difference data simulated, with which nf = 10000 real-
izations of a noisy EIT voltages dn were generated. These EIT
data were reconstructed with various algorithms R(λ) whose
hyperparameter λ was selected based on different strategies:
(a) a given SNR, (b) a given noise figure (NF) [5], [9], (c)
the L-curve criterion (LCC) [7], [13], or (d) the generalized
cross-validation (GCV) [13]. The latter two were implemented
in EIDORS using Hansen’s Regularization Tools [14] and λ

was selected as the median value of nf hyperparameters result-
ing from applying the LCC or GCV to each of the noisy EIT
voltages individually.

Additionally, the reliability of the different hyperparameter
selection approaches was investigated for various scenarios by
changing (a) the number and (b) position of electrodes, (c)
the skip of the bipolar stimulation pattern (number of inactive
electrodes in between the two ones actively measuring volt-
age/injecting current), (d) the image resolution (i.e. number of
pixels) or (e) the reconstruction algorithm (GREIT or GN). Un-
less otherwise noted, per default, data from 16 equidistantly
spaced electrodes and bipolar stimulation with skip 0 (adjacent
stimulation pattern) were reconstructed using GN onto an image
of 32 × 32 pixels.

For each of the scenarios simulated the NP is analysed visu-
ally, either on the so-called temporal RMS amplitude (tRMSA)
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Fig. 4. Noise performance of GN reconstructions for four examples of skip pattern (i)–(iv), and five approaches for hyperparameter selection,
each shown in one row: (a) fixed noise figure (NF = 0.5), (b) generalized cross-validation (GCV), (c) L-curve criterion (LCC), (d) fixed SNR of
SNR1 = 2.20E-5 (corresponds to NF = 0.5 at skip 0), and (e) fixed SNR of SNR2 = 2 · SNR1 = 4.41E-5. For each approach and skip we show (1)
one single EIT image (all with identical noise), (2) the temporal RMS amplitude (tRMSA) images, and (3) their cross sections along the transverse
axis of the zone delineated in the corresponding tRMSA image. All images are normalized to their maximal tRMS amplitude as described in Fig. 3.

Fig. 5. Noise performance of GREIT reconstructions (with fixed SNR = 2.20E-5) for four examples of skip pattern (i)–(iv). For each skip we show
(1) one single EIT image (all with identical noise), (2) the temporal RMS amplitude (tRMSA) images, and (3) their cross sections along the transverse
axis of the zone delineated in the corresponding tRMSA image. All images are normalized to their maximal tRMS amplitude as described in Fig. 3.

image or its resulting cross section plot described in the fol-
lowing. The tRMSA image [see Fig. 3(d)] is calculated as the
pixel-wise RMS amplitude (in the temporal domain) from the
nf reconstructed noisy EIT images Δσ. The tRMSA image and
the corresponding cross section plot Fig. 3(e) show the ratio of
noise-affected signal (left lung) vs. noise (right lung) and thus
allow a visual analysis of the NP and its spatial distribution as
further detailed in Fig. 3.

4) Practical Experiments: In a laboratory experiment a
resistor phantom (Swisstom Mesh Phantom 32-HG) was con-
nected to the 32-electrode EIT belt of the Swisstom PioneerSet
(Swisstom, Landquart, Switzerland). The mesh phantom con-
tains 160 resistors in a star-like arrangement of which four can
be short-circuited by a pushbutton resulting in local conductiv-
ity perturbations [15]. The four pushbuttons A, B, C and D are
located close to electrode 1, 9, 17 and 25 and lead to a local
increase in conductivity at the top, right, bottom or left of the
reconstructed image, respectively. Five measurements were per-
formed, each with a different skip pattern: 0, 3, 4, 7 and 8. Data

were recorded using the Swisstom STEMLab software (Version
2.3.2 rev 749). At the beginning of each measurement four local
changes in conductivity were generated by consecutively press-
ing each of the pushbuttons (A, B, C, D) of the resistor phantom
during 5 s. Then the phantom was left untouched while the
recording continued for 2.5 min, enabling the estimation of the
device-specific noise characteristics.

5) Open Geometry Example: The previous experi-
ments concentrate on the application of thoracic EIT where
electrodes are placed on a closed geometry. However, there are
other uses of EIT, such as geophysics, where the electrodes can
be placed on an open geometry. In order to evaluate the potential
applicability of the SNR approach for such cases, simulations
with 27 electrodes placed inside a circular hole of a 2D model
were performed. Two conductivity contrasts shown in Fig. 11(i)
were reconstructed for three different skips using the GN algo-
rithm with identical SNR. The computation of SNR was based
on 40 targets placed in the close vicinity around the electrodes
as shown by red dots in Fig. 11(i).
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Fig. 6. Noise performance of GN reconstructions (with fixed SNR =
2.20E-5 and a skip of 3) for three examples of image resolution ((i) 48 ×
48, (ii) 56 × 56, (iii) 64 × 64). For each resolution we show one single EIT
image (all with identical noise), and the corresponding cross sections of
the tRMSA images on the right. All images are normalized as described
in Fig. 3.

Fig. 7. Noise performance of GN reconstructions (with fixed SNR =
2.20E-5 and a skip of 5) for three examples of varying electrode position
and number, where (i) and (ii) have 16 and (iii) 24 non-equidistantly
spaced electrodes. For each scenario we show one single EIT image
(all with identical noise), and the corresponding cross sections of the
tRMSA images on the right. All images are normalized as described in
Fig. 3.

Fig. 8. Noise performance of GN reconstructions (with fixed SNR =
2.20E-5) for three examples of varying electrode position and number,
and skip pattern: (i) 32 electrodes with skip 3, (ii) 24 electrodes distributed
more ventrally with skip 5 and (iii) 24 electrodes distributed more dorsal
with skip 7. For each scenario we show one single EIT image (all with
identical noise), and the corresponding cross sections of the tRMSA
images on the right. All images are normalized as described in Fig. 3.

III. RESULTS

A. Simulation Experiments

Figs. 4–8 show the noise performance of different scenar-
ios and hyperparameter selection approaches resulting from the
simulation experiments illustrated in Fig. 3.

Fig. 4 shows the noise performance of GN reconstructions for
four examples of skip patterns and for different hyperparameter
selection approaches: (a) a fixed noise figure (NF = 0.5), (b)
GCV, (c) LCC, (d) a fixed SNR of SNR1 = 2.20E-5, and (e) a
two-fold higher SNR2 = 4.41E-5.

Similar figures are shown for an identical SNR1 to depict how
the noise performance as influenced by: (a) the use of the GREIT
– instead of GN – reconstruction algorithm (see Fig. 5), (b) dif-
ferent image resolutions (Fig. 6), (c) varying electrode position
and number (see Fig. 7), and finally, (d) different skips combined
with varying electrode position and number (see Fig. 8).

Fig. 9. Conductivity changes Δσ measured on a resistor phantom for
five different skip patterns and reconstructed using GREIT with a fixed
noise figure (NF = 0.5). Pressing button B on the phantom leads to a
local conductivity perturbation close to electrode 9 (right of image). This
perturbation is identical for all skip patterns, such that differences in the
resulting images can be attributed to differences in image reconstruction.
All images are normalized identically to the maximal absolute amplitude
of all five images.

Fig. 10. Conductivity changes Δσ measured on a resistor phantom
for five different skip patterns. Pressing button B and C on the phantom
leads to a local conductivity perturbation close to electrode 9 (right of
image) and electrode 17 (bottom of image), respectively. The images
were reconstructed using GREIT with a fixed SNR of (a) SNR1 = 3.22E-6
or (b) SNR2 = 5.16E-3, both corresponding to a NF = 0.5 at skip 0. The
difference in SNR between (a) and (b) is due to the different noise co-
variances used: (a) Σn = I or (b) Σn = ΣEst. The green dotted ellipses
highlight the zone where differences in image artefacts are observed. All
images in one row are normalized identically to the maximal absolute
amplitude of all five images.

All images in Figs. 4–8 are normalized to the maximal tRMSA
(as illustrated in Fig. 3). The reason behind this normalization
is that – independent of differences in amplitude response of re-
construction – we would like to display and analyze differences
in NP and thus the ratio of signal level at each pixel relative to
the maximal noise-affected signal level.

B. Practical Experiments

Fig. 9 depicts EIT images of an identical conductivity change
measured on a resistor phantom for five different skip patterns
and reconstructed using a n algorithm with a fixed NF.

Similar images reconstructed with a fixed SNR are shown
in Fig. 10(a). As per default, the calculation of SNR for
these images is based on (10) with σn = 1. In contrast, im-
ages in Fig. 10(b) show the effect of taking into account the
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Fig. 11. Example of 27 electrodes placed inside an open geometry. (i) Shows the nt = 40 targets used to calculate the SNR (red dots) and the two
conductivity changes simulated (bluish elements) which were reconstructed with GN algorithms having an identical SNR for three different skips:
(ii) 1, (iii) 2 and (iv) 7. The images of the reconstructed conductivity changes Δσ in (ii)–(iv) are normalized to the maximal absolute amplitude of all
three images.

device-inherent noise characteristics (SNR calculation is based
on (9), with Σn equal to the estimated noise covariance ΣEst).

C. Open Geometry Example

Fig. 11 (ii)–(iv) shows images of the open geometry conduc-
tivity change reconstructed for three different skip patterns with
identical SNR and noise.

IV. DISCUSSION

In this paper we suggest a novel noise performance (NP)
metric which allows for a fair comparison of EIT reconstruction
algorithms with different measurement configurations (i.e. skip
pattern, number and position of electrodes, etc.). We validated
its applicability based on three experiments: 1) simulations on
a human thorax model, 2) practical measurements on a resistor
phantom, and 3) simulation of an open geometry example. The
results obtained are discussed in detail hereafter.

A. Simulation Experiments

Fig. 4(a) reveals that the NF approach leads to a very inhomo-
geneous NP, as the noise level decreases with increasing skip. It
thus cannot be used to achieve a similar NP between algorithms
with unequal measurement configurations (e.g. different skips).
The higher the skip, the more regularized and thus smoothed the
result is, when aiming for the same NF. On the other hand, for
the GCV [see Fig. 4(b)] a similar NP can be observed among
all four skips, with the exception of skip 0 (i) where the noise
level is increased by roughly 50%. This is improved with the
LCC [see Fig. 4(c)] which shows a more homogeneous NP be-
tween all skips. Furthermore one can observe that GCV tends to
regularize less (smaller λ, higher noise level), which is a known
characteristic [16]. However, the latter two approaches (1) re-
quire actual data including noise and (2) can only be applied
to reconstruction algorithms using Tikhonov-type regulariza-
tion, i.e. GN but not GREIT. This is why both do not fulfil our
requirements of a versatile NP metric.

In contrast, the selection of λ with the SNR approach results
in a comparable NP for both SNR1 = 2.20E-5 [see Fig. 4(d)] or
a two-fold higher SNR2 = 4.41E-5 [see Fig. 4(e)]. This shows
that for the same scenario, the SNR is a robust way to obtain
comparable NP between the varying skips. Besides, the NP in
the image domain can be flexibly adapted as demonstrated by

the two-fold increase in SNR from (d) SNR1 to (e) SNR2 which
results in an approximate two-fold increase in NP.

The use of GREIT instead of GN for reconstructing with a
fixed SNR1 is shown in Fig. 5 and reveals a spatial distribution
of noise different to that of GN [see Fig. 4(d)]. An attenuation
of noise close to the model border can be observed for images
reconstructed using GREIT, which is known as an inherent prop-
erty of this algorithm [10]. Nonetheless, the noise level in the
ROI - the region in which we evaluate our NP - is closely com-
parable. This demonstrates the versatility of our approach by
its independence on those two commonly used reconstruction
algorithms.

Furthermore, the use of different image sizes as shown in
Fig. 6 confirms the immunity of the SNR approach to changes in
image resolution. In addition, it seems to be robust to differences
in electrode placement and number. This is shown in Fig. 7
which depicts the use of non-equidistantly spaced electrodes
and a variation in their number for a constant skip of 5. This is
extended in Fig. 8 where not only the electrode placement and
number, but also the skip is varied. The slightly lower noise level
especially for case (i) is a desired behaviour and can be explained
by a higher spatial resolution achieved with 32 electrodes, i.e.
the same portion of conductivity change is concentrated into a
smaller area. As the resulting sum of the normalized impedance
change in the TEZ (the signal level S) is lower for 32 electrodes,
we also have a lower noise level to achieve the same SNR.

The tRMSA cross section plots confirm that the NP of the
different scenarios shown in Fig. 4(d) and Figs. 5–8 closely
resemble each other. These simulation results highlight the flex-
ibility of the SNR approach in the example of thoracic EIT and
corroborate the use of SNR as valuable NP metric by fulfill-
ing the requirements of being insensitive to the 1) measurement
configuration (skip, electrode number and position), 2) image
resolution and 3) reconstruction algorithm.

B. Practical Experiments

The aforementioned problems with a fixed NF, are confirmed
in experimental measurements as shown in Fig. 9. These im-
ages show an increase in spatial blurring and a corresponding
decrease in noise level with increasing skip. Besides, one can
observe a decrease in conductivity change which is due to an
increase in regularization with increasing skip. A possible solu-
tion is given by the SNR approach as depicted in Fig. 10(a),
where, independent of the skip, a similar NP is achieved.
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However, for a conductivity change at the right of the image
(button B), artefacts can be observed (green dotted zone). These
are present for a skip other than 0 and primarily located at the
top of the images, which corresponds to the vicinity of electrode
1. We presume that these specific artefacts are an inherent prop-
erty of the device used, as it was already reported previously in
[17]. When considering the device-specific noise characteristics
ΣEst by using (9) for the SNR calculation, these artefacts are
reduced and the images in Fig. 10(b) still show a comparable
NP. This points out that real EIT data are very likely to not have
purely uniform noise among all channels [18]. At the same time
these results underline the versatility of the SNR approach to
incorporate the device-specific noise characteristics in order to
calculate more realistic NPs.

In practice, for thoracic EIT measurements, we may prede-
termine the noise characteristics of our device in the lab (e.g.
on a resistor phantom) and later include this information to tune
the algorithm before applying it to image living beings.

C. Open Geometry Example

The images of the open geometry example [see Fig. 11
(ii)–(iv)] show a visually comparable NP. This simple exam-
ple lets us assume that our approach has the potential to be used
for such applications of EIT. However, further investigations in
this particular field are required, e.g. regarding the selection of
application-specific algorithm parameters (ROI, target size and
position, etc.).

D. Algorithm Parameter Selection

The SNR calculation depends on several parameters (ROI,
nt , rt , Σn ) which are discussed and justified in the following.

1) ROI: In thoracic EIT we are primarily interested in
respiration- or cardiovascular-induced conductivity changes. It
thus makes sense to have an ROI in the centre which covers
big parts of the lungs and heart as also shown in Fig. 3(b). De-
pending on the application, this ROI should be moved to the
region(s) where conductivity changes of interest are most likely
to be observed and analysed.

2) Targets: The number of targets nt uniformly dis-
tributed inside the ROI is chosen high enough to achieve a
homogeneous estimate of NP over the entire region. However,
a higher nt leads to increased computation time which explains
the suggested value of nt = 200 as compromise. The relative
target radius rt with 5% of the model diameter is justified with
being inferior to the inherent spatial resolution of EIT with 32
electrodes [19], [20].

3) The Ideal SNR Value: Even tough the SNR value al-
lows a fair comparison between different measurement config-
urations, its absolute value still is related to the noise character-
istic (Σn ) and thus depends on factors influencing the voltage
amplitude such as drive current, amplification gain, etc. There-
fore we cannot recommend a specific range of SNR values as
ideal for clinical EIT applications. Nevertheless, we suggest to
set SNR such that it corresponds to a NF in the range of 0.5–2
(necessarily calculated for 16 equidistantly spaced electrodes
with adjacent stimulation, i.e. skip 0) as suggested in [5].

E. Limitations and Future Work

In the present study we only consider the use of one-step lin-
earised reconstruction algorithms. Nevertheless, the approach
could be extended for other reconstructions – by estimating
the noise response of the algorithm by means of Monte Carlo
simulations – with the drawback of significantly increased com-
putation time.

Furthermore, we restrict the induced disturbances to additive
noise, even though there is evidence that this is not always
appropriate for real EIT data [18], [21]. This choice is mainly
justified to facilitate statistical computations and allow for an
analytic and thus computationally efficient solution. Moreover,
this does not represent a drawback from the current state of the
art, as the NF relies on the same assumption. However, more
sophisticated noise models could be taken into account when
using Monte Carlo simulations.

Despite the three dimensional nature of the EIT problem
and the consequent need for 3D reconstruction [22], almost all
clinical chest EIT is measured and reconstructed in 2D [3]. For
this reason the analysis in this paper was also restricted to 2D
EIT imaging. However, the SNR approach could be used for
3D EIT without significant modifications. In this case, the TEZ
would automatically be adapted – via the one-fourth amplitude
threshold – to a spherically-shaped region containing the voxels
of interest.

Moreover, the current implementation estimates the SNR
from spherical targets with uniform conductivity change. How-
ever, the lung, the heart or other (parts of) anatomical structures
representing more realistic conductivity changes might be better
suited targets and therefore explored in the future. The introduc-
tion of targets with different shapes and conductivity changes
should not be an issue. The only modification necessary would
be to normalize each signal estimate S by a correction factor in-
corporating the relative change in conductivity Δσ/σr of each
target [10].

V. CONCLUSION

In summary, this paper has developed a new measure of
noise performance (SNR), which permits comparison of EIT
reconstruction performance across different measurement con-
figurations. Results are validated by simulations and phantom
measurements. This measure offers advantages over current ap-
proaches (NF, LCC, GCV), as it is independent of 1) measure-
ment configuration (skip, electrode number and position), 2)
image resolution and 3) reconstruction algorithm.
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