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Abstract—Objective: Rapid advances of high-throughput
technologies and wide adoption of electronic health records
(EHRs) have led to fast accumulation of —omic and EHR
data. These voluminous complex data contain abundant in-
formation for precision medicine, and big data analytics can
extract such knowledge to improve the quality of healthcare.
Methods: In this paper, we present —omic and EHR data
characteristics, associated challenges, and data analytics
including data preprocessing, mining, and modeling. Re-
sults: To demonstrate how big data analytics enables preci-
sion medicine, we provide two case studies, including iden-
tifying disease biomarkers from multi-omic data and incor-
porating —omic information into EHR. Conclusion: Big data
analytics is able to address —omic and EHR data challenges
for paradigm shift toward precision medicine. Significance:
Big data analytics makes sense of —omic and EHR data to
improve healthcare outcome. It has long lasting societal im-
pact.

Index Terms—Big data analytics, bioinformatics, elec-
tronic health records (EHRs), health informatics, —omic
data, precision medicine.

[. INTRODUCTION

O ACHIEVE the best care for patients, many models have
been proposed over the years to improve the healthcare
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Fig. 1. Key types of biomedical big data for precision medicine.

system. The goal of the early “personalized medicine” model is
to customize healthcare delivery for each individual and to max-
imize the effectiveness of each patient’s treatment [1]. In 2009,
Hood and Friend propose the “personalized, predictive, preven-
tive, and participatory medicine” (a.k.a. P4 medicine) model
that aims to transform current reactive care to future proactive
medicine, and ultimately to reduce healthcare expenditure and
improve patients’ health outcome [2]. Recently, the new “preci-
sion medicine” model is proposed to precisely classify patients
into subgroups sharing a common biological basis of diseases
for more effective treatment and improved care outcome [3], [4].
Precision medicine requires data utility ranging from collection
and management (i.e., data storage, sharing, and privacy) to
analytics (i.e., data mining, integration, and visualization) [5].
Because of rapid advances in biotechnologies, highly complex
biomedical data are becoming available in huge volumes [6].
To make sense of these heterogeneous data, big data analytics,
including data quality control, analysis, modeling, interpreta-
tion, and validation, is needed to cover application areas such
as bioinformatics [7]—[9], health informatics [10]-[12], imaging
informatics [13], [14], and sensor informatics [15], [16].

As presented in 2015 U.S. Precision Medicine Initiative [17],
incorporating -omic data and knowledge into electronic health
record (EHR) (see Fig. 1) is viewed as a necessary step for
delivering precision medicine [3], [5], [17], [18]. Thus, this
paper reviews big —omic and EHR data analytics for preci-
sion medicine with key terms summarized in Tables I and II.
Section II presents —omic and EHR data characteristics, chal-
lenges, and big data analytics; Section IIl uses two case studies to
illustrate the impact of big data analytics in precision medicine;
Section IV enumerates several well-known biomedical big data
initiatives; Section V discusses current opportunities in big data
analytics for precision medicine; and finally, Section VI con-
cludes this paper.
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TABLE |
BIOMEDICAL BIG DATA KEYWORDS

Topics Keywords

—Omic Data Genomics, transcriptomics, epigenomics, proteomics,
metabolomics, etc.

EHR Data Big data in EHR, next-generation EHR, clinical data
management, medical coding systems, etc.

Data Challenges Biomedical big data challenges, —omic data challenges,

EHR data challenges, etc.

NGS sequence mapping, NGS variant detection, RNA-seq

computation, ChIP-seq computation, MS preprocessing,

NGS biomarker identification, NGS differential analysis,

—omic network analysis, —omic dynamic modeling, etc.

Temporal medical data mining, irregular time series analysis

in EHR, clinical decision support, unsupervised/ supervised

learning in EHR, waveform analysis in EHR, etc.

Big Data Analytics Enablers Big data harmonization, big data platform, big data
framework

—Omic Data Analytics

EHR Data Analytics

TABLE Il
—OwmiCc AND EHR DATA CONCEPT GLOSSARY

Term Definition Ref.

Genome “An organism’s complete set of DNA” [20]

Transcriptome “A collection of all the gene readouts present in an [20]
organism’s cell”

Epigenome “A multitude of chemical compounds that can tell [20]
the genome what to do”

Proteome “An entire set of proteins encoded by the genome” [21]

Metabolome “A comprehensive catalogue of metabolites in an [21]
organism’s cell”

—Omics “The study of the -ome” [21]

Single Nucleotide “A variation at a single position in a DNA sequence [22]

Polymorphism among individuals”

Frameshift Mutation “A genetic mutation caused by a deletion or [22]

(Indels) insertion in a DNA sequence that shifts the way the
sequence is read”

Copy Number Variation “The number of copies of a particular genetic [22]
sequence differs between individuals”

Structural Variation “Genomic alterations that involve segments of [23]

DNA that are larger than 1 kb, and can be
microscopic or submicroscopic”

Fusion Gene “A new gene formed by the breakage and [24]
re-joining of two different genes”

Spanning Read Pair “paired reads that harbor a fusion boundary in the [25]
insert sequence”

Split Read “A read that harbors a fusion boundary in the read [25]
itself ”

Alternative Splicing A process that includes or excludes certain exons [26]
when forming mature mRNAs

Protein-DNA Binding A segment of DNA sequences where targeted [27]

Site proteins may bind

Histone Modification “A covalent post-translational modification to [27]
histone proteins that can impact gene expression”

“The addition of methyl (CH3 ) group to DNA that [27]
modifies the function of the genes”

DNA Methylation

Antecedent (Ant.) in A set of conditions which the outcome variable [28]
ARL depends on

Consequent (Cons.) in A set of conditions serving as the outcome variable [28]
ARL

Confidence in ARL Con fidence (Ant. = Cons.) = % [28]
Fast Healthcare FHIR uses standardized “Resources” (i.e., [29]
Interoperability predefined data formats and elements) to exchange

Resources (FHIR) EHR data.

[I. BiGg DATA FOR PRECISION MEDICINE

The invention of high-throughput —omic assays such as next-
generation sequencing (NGS) and mass spectrometry (MS) has
led to fast accumulation of —omic data. Likewise, the wide

adoption of EHR for the entire population provides a foun-
dation for studying healthcare efficiency and safety [19]. -Omic
data analytics often aims at finding biomarkers by cleaning up
raw data generated by NGS or MS, extracting molecular pro-
files, identifying statistically significant molecules, constructing
models describing molecular interactions or temporal system
behavior, and validating putative biomarkers. EHR data analyt-
ics typically aims at predicting future outcome based on pop-
ulation and individual longitudinal data. The analytics has a
similar process such as data cleaning, clinical features identifi-
cation, predictive model construction, and clinical validation.

A. Biomedical Big Data

1) Big —Omic Data: -Omic data contain a comprehen-
sive catalog of molecular profiles (e.g., genomic, transcrip-
tomic, epigenomic, proteomic, and metabolomic as explained
in Table II) in biological samples that provide a basis for
precision medicine [17]. The genome, transcriptome, and
epigenome are upstream of the proteome and metabolome.
A genome is unique and mostly invariant over time with
its knowledge embedded in single nucleotide polymorphisms
(SNPs), frameshift mutations (insertions or deletions; or in-
dels), copy number variations (CNVs), and other struc-
tural variations (SVs) [30], [31]; transcriptomic knowl-
edge is contained in gene expression, transcript expression,
gene fusion, and alternative splicing [32], [33]; epigenomic
knowledge is carried in protein-DNA binding sites, histone
modification patterns, and DNA methylation patterns [34]; pro-
teomic knowledge is reflected by protein expression, post-
translational modification, and protein—protein interactions
[35]; and metabolomic knowledge is shown in the abundance
of metabolites [36]. Because epigenomic information impacts
transcriptomic, proteomic, and metabolomic profiles [37], and
the proteome and metabolome are directly responsible for the
establishment of phenotypes, uncovering interactions among the
proteome, metabolome, and upstream processes is a key toward
precision medicine.

2) Big EHR Data: EHR data can be unstructured (e.g.,
clinical notes) or structured (e.g., ICD-9 diagnosis codes, ad-
ministrative data, chart, and medication) [38]. Written or dic-
tated clinical notes describe the patient’s condition and are the
most efficient and human-intuitive way for clinical documen-
tation. However, they are the most challenging for computer
analysis because of unstructured and heterogeneous data for-
mats; abundant typing and spelling errors; violation of natu-
ral language grammar; and rich domain-specific abbreviations,
acronyms, and idiosyncrasies [39]. Structured EHR data can be
categorized into two classes [40]. Administrative data include
those remain unchanged during the entire course of a clinical
encounter (e.g., demographic data), and those keep updating
over time (e.g., diagnoses and procedures) [41]. Ancillary clini-
cal data are frequently recorded during a clinical encounter that
can be discrete (e.g., physiological measures, medication, and
lab tests), or continuous (e.g., respiration, blood pressure, pulse
oximetry, and electrocardiography waveforms captured by sen-
sors, either through bedside monitoring devices or ambulatory,
implanted, or wearable devices) [40].
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B. Challenges Associated With -Omic and EHR Data

—Omic and EHR big data analytics is challenging due to data
frequency, quality, dimensionality, and heterogeneity.

1) Diverse Data Collection Frequency: First, differ-
ent data modalities have different data collection frequency. For
example, in —omic data, a genome is invariant over a long pe-
riod of time, and often only needs a one-time data acquisition,
while other types of —omic data vary with environment, tissue
types, and time that require multitime-point acquisition. In EHR,
bedside monitoring data are captured at very high frequency,
while lab tests may be taken a few times a day. In addi-
tion, data generation frequency may be influenced by cost
(e.g., proteomic/metabolomic data generated by MS versus ge-
nomic/transcriptomic/epigenomic data generated by NGS). Sec-
ond, data collection frequency can be irregular. For example, in
EHR, most clinical variables have irregular sampling frequen-
cies, depending on the criticality of a patient and the easiness of
a measurement.

2) Inherent Data Quality Issues: In—omic data, quality
issues are caused by a combination of biological, instrumental,
and environmental factors such as sample contamination [42],
[43], batch effects [44], [45], and low signal-to-noise ratios [46],
[47]. In EHR data, quality issues include missing data because
recorded clinical variables vary with each clinical encounter and
depend on clinical team’s assessment of the patient’s condition
[48], and erroneous data entries happening due to data entry
mistakes or misinterpretation of original documents when en-
tering [49]. For high-resolution waveform data, common quality
issues include random noise, gaps in the waveform, and artifacts
(e.g., patient’s motion) [50]. These data quality issues may lead
to wrong conclusion, but correcting these remains challenging.

3) High Dimensionality: Abig challenge in either —omic
or EHR data mining is the “curse of dimensionality” associated
with high-dimensional data [51]. -Omic data often have many
dimensions or features (may be more than 10*) much larger than
the number of samples available, while EHR data may contain
a large sample size of high-dimensional data but with each
individual sample only sparsely populated. Making sense of
these data with statistical significance presents to be challenging.

4) Heterogeneous Data Types: In —omics, using un-
derlying molecular fingerprints to characterize disease subtypes
may require heterogeneous multi-omic data. For example, the
integrative personal omics profile project has integrated multi-
ple molecular expression profiles to uncover dynamic molecular
changes between healthy and diseased states [52]. However, in-
tegrating multi-omic data is challenging because of variations
in represented biological processes, technical and biological
noise levels, identification accuracy, spatiotemporal resolution,
and many other confounding factors [53]. In EHR, the data are
inherently heterogeneous. To accomplish precision medicine,
it is necessary and critical to make sense of heterogeneous
data.

C. Big Data Analytics for Precision Medicine

1) General Analytics for Biomedical Big Data: Most
—omic and EHR are high-dimensional data that not only require
longer computational time but also affect the accuracy of analy-
sis. Thus, we try to reduce data dimensionality by identifying a

TABLE IlI
SELECTED METHODS FOR DIMENSIONALITY REDUCTION

Method Advantages Limitations

Feature extraction: PCA, Reduces dimensionality;
SVD, tensor-based relatively immune to noise
approaches™ [54]
Feature selection:
filter-based (MRMR),
wrapper-based
(sequential feature
selection)* [55]

Performance usually inferior to
supervised approaches; difficult
to interpret results

Reduces dimensionality; easy Sometimes affected by noisy

to interpret data

“Highly impactful method with more than 50 000 relevant papers.

subset of variables or latent factors that preserve as much of the
characteristics of the original data as possible with two strate-
gies (see Table III): 1) feature selection that aims to select an
optimal subset of existing features; and 2) feature extraction that
aims to transform existing features into a more compact set of
dimensions [56].

Feature selection techniques consist of filtering, wrapper,
or embedded methods. Filtering methods limit the number
of features by calculating a score designed to estimate the
usefulness of each feature. Thus, they are generally faster and
do not require explicit class labeling. The minimum redundancy
maximum relevance (MRMR) method is a filtering method that
iteratively selects features sharing the most mutual information
(relevance) with the least redundancy [57]. In contrast, wrap-
per methods select a subset of features (i.e., “wrap” the feature
selection) for targeted learning models by using evaluation met-
rics such as cross-validation accuracy [58]. Embedded methods
integrate machine learning algorithms [e.g., support vector ma-
chines (SVM)] with recursive feature elimination [59].

Among feature extraction techniques, principal component
analysis (PCA) is a basic method that identifies a small num-
ber of orthogonal linear vectors [51]. Its performance heavily
depends on correctly identifying an optimal number of com-
ponents, and requires careful testing and validation [60]. Other
techniques include artificial neural networks such as autoen-
coders [61], and nonlinear kernels in PCA [62].

2) —Omic Data Preprocessing: NGS and MS high-
throughput assays require different preprocessing methods that
are summarized in Table IV. NGS is a popular assay for ge-
nomic, transcriptomic, and epigenomic studies. Its common
preprocessing step is sequence mapping that identifies not only
the origin but also the alignment of each read [78]. This step is
computationally intensive and requires auxiliary data structures
(e.g., the hash table [63] and the Burrows—Wheeler transform
[64]), multithreading, or in-memory computing [65] for im-
proved computational efficiency. Genomic studies typically aim
to identify variants in a sequenced genome [79]. Small-scale
variant (i.e., SNPs and indels) detection uses “per base differ-
ences” between reads and the reference genome as the evidence
[30], [66]. Large-scale variant (i.e., SVs) detection uses read-
pair-based, read-depth-based, split-read-based, and assembly-
based methods [80], [81]. Transcriptomic studies mostly
center on expression profiling, fusion gene detection, and al-
ternative splicing detection [32], [33]. Expression profiling as-
sociates mapped reads with genes and isoforms. Different profil-
ing methods handle multimapped reads differently, where some
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TABLE IV
SELECTED TOOLS FOR —OMIC DATA PREPROCESSING

TABLE V
SELECTED TOOLS FOR —OMIC BIOMARKER IDENTIFICATION

Tool Assay —Omic Data Key Functionality Tool —Omic Data —Omic Biomarker Approach
GMAP" [63] Next-generation Genomic, Sequence mapping SNPassoc [89] Genomic Significant SNPs associated with Genome-wide
sequencing transcriptomic, traits association
and epigenomic studies
BWA* [64] SNPTEST* [90]
STAR* [65] VAT [91] Significant SNPs and indels
GATK* [30] Genomic Genomic variant discovery associated with traits
SAMtools* [66] PLINK* [92] Significant SNPS, igdels, :dnd
HTSeq* [67] Gene expression quantification CNVs associated with traits
BEDTools* [68] CNVRuler [93] Significant CNVs associated with
RSEM* [69] Gene and transcript expression traits
quantification edgeR* [94] Transcriptomic Differentially expressed genes  Differential
Cufflinks* [70] /transcripts analysis (model
defuse [25] Transcriptomic  Gene fusion detection f‘mf‘g. and
TopHat-Fusion [24] statistical tests)
DESeq2* [95
Trans-ABySS* [71] Alternative splicing detection and 'e q' 53]
Lantification omniBiomarker [96]
Trinity* [72] q DiffSplice [97] Differential alternative splicing
Cufflinks* [70] MATS [98] . . . B
Scripture® [73] DBCAhIP [99] Epigenomic Differential binding sites
MACS* [74] Epigenomic ChIP-seq peak calling ChIPDiff [100] Differential histone modification
sites
SISSRs* [75] o . .
DMR [101 Diff tiall thylated s
OpenMS [76] Mass Proteomic and  Peak detection and quantification Q (o) . HHerentiatly me y atec regions S
spectromet metabolomic DetectTLC [102] Proteomic and Molecular patterns in mass Similarity

MZmine 2* [77 P ™y metabolomic  spectrometry images scoring

mine 2° [77] Automics [103] Differentially abundant Supervised and

metabolites unsupervised

GMAP stands for genomic mapping and alignment program; BWA, Burrows-Wheeler learning
aligner; STAR, spliced transcripts alignment to a reference; GATK, genome analysis toolkit; MetaboAnalyst*
RSEM, RNA-seq by expectation-maximization; Trans-ABySS, transcriptome assembly and [104]

analysis pipeline; MACS, model-based analysis of ChIP-seq; and SISSRs, site identification
from short sequence reads. *Highly impactful tool with more than 50 citations per year.

methods associate the reads with all loci [67], [68], while others
probabilistically associate the reads with only a few model-
inferred loci [69], [70]. Fusion gene detection relies on two
factors, the spanning read pairs and the split read [24], [25].
Alternative splicing detection relies on either de novo transcrip-
tome assembly [71], [72], [82]-[84], or inference from sequence
mapping outputs [70], [73]. Epigenomic studies mainly focus
on identifying patterns of protein-DNA binding sites, histone
modification, and DNA methylation [34]. Epigenomic data pre-
processing builds a profile representing the density of reads
along the genome, models background noises, and determines
statistically significant peaks [78].

MS is for proteomic and metabolomic studies, and its pre-
processing steps include alignment, baseline correction, and
peak detection [85]. In chromatography-coupled MS, chromato-
graphic peak alignment can correct drift to ensure coherent
retention time and accurate mass across samples, and mass-
to-charge ratio (m/z) alignment can ensure mass spectra and
component features are comparable among samples [86].
In matrix-assisted laser desorption ionization (MALDI) MS,
baseline correction is particularly important. Low-mass mea-
surement noise from the chemical matrix used in MALDI
experiments affects the spectral baseline and needs to be re-
moved prior to analysis [87]. Peak detection is then performed
based on criteria such as signal-to-noise ratio, peak shape, and
detection thresholds [88]. A common subsequent step is the
identification, and potentially the filtering, of isotopic peaks
from the spectrum [77].

3) Biomarker Identification Using —Omic Data: In
practice, different groups of samples are collected for different

SNPassoc stands for SNP-based whole genome association studies; VAT, variant association
tools; PLINK, population-based linkage analyses; edgeR, empirical analysis of digital
gene expression data in R; MATS, multivariate analysis of transcript splicing; DBChIP,
differential binding with ChIP-seq data; and QDMR, quantitative differentially methylated
regions. *Highly impactful tool with more than 50 citations per year.

biological conditions (e.g., disease vs. non-disease) or differ-
ent time points (e.g., before vs. after a treatment). Thus, Ta-
ble V summarizes selected tools that identify discriminatory
biomarkers among different groups. Most —omic biomarkers
are identified by investigating statistically significant differences
among groups, such as differentially expressed genes or tran-
scripts [94]-[96], differential alternative splicing [97], [98], dif-
ferential protein-DNA binding [99], differential histone modifi-
cation [100], and differential DNA methylation [101]. The basic
idea is to quantify and then fit the abundance of each group to
Poisson-based distributions (e.g., the Poisson distribution and
the negative binomial distribution), followed by statistical tests
(e.g., the Fisher’s exact test and the likelihood ratio test) that
determine the statistical significance of each molecular feature.
For genomic data, genome-wide association studies (GWAS)
uses different approaches (e.g., the chi-squared test or logistic
regression) to assess the degree of association between each vari-
ant and a targeted trait, and then select most significant variants
as biomarkers [105]. Most GWAS focuses on SNP association
[89]-[91], while only a few infer CNV or SV association [92],
[93].

4) Systems Biology Modeling Using —Omic Data:
To gain insights about a complex molecular system, we can
conduct systems biology modeling using either “static network
analysis” or “dynamic temporal analysis” based on —omic fea-
tures (see Table VI).
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TABLE VI
SELECTED TOOLS FOR —OMIC DATA MODELING

TABLE VI

SELECTED METHODS FOR EHR DATA PREPROCESSING

Tool Modeling Approach Key Functionality
Type

WGCNA* [106] Static Correlation between Network construction, module
Network  quantitative variables detection, and gene selection
analysis

CODENSE [107] Summary graphs and Mining frequent coherent dense
dense subgraphs for  subgraphs across large numbers
frequent edges of massive graphs
Mutually exclusive  Network construction, module
genomic alterations  detection, and gene selection
Ordinary and partial ~ Graphical interface for ODE or
differential equations PDE model implementation and
simulation; systems biology
markup language compatibility
Agent-based models  General-purpose modeling
environment capable of
simulating hundreds to thousands
of interacting agents
Simulating and analyzing Boolean
and probabilistic Boolean models
Network modeling using Petri
nets; hierarchical structure and
multiple class compatibility

MEMo* [108]

CellDesigner [109] Dynamic
Temporal
Analysis

NetLogo* [110]

BoolNet [111]

Boolean models

Snoopy [112] Petri nets

WGCNA stands for weighted correlation network analysis; CODENSE, coherent dense
subgraphs; and MEMo, mutual exclusivity modules in cancer. *Highly impactful tool with
more than 50 citations per year.

Static network analysis studies the interactome (i.e., a com-
plete set of molecular interactions) with three steps [113]: iden-
tifying a network scaffold that describes interactions among
—omic features [106], [108], decomposing the network scaffold
into smaller network modules [106]-[108], and mathematically
representing each network module for downstream simulation
and analysis [114]. Most interactome networks use a single
—omic data such as metabolic networks and gene regulatory
networks. Few incorporate multi-omic data but are limited to
simpler organisms (e.g., S. cerevisiae and C. elegans) [115].

Dynamic temporal analysis (e.g., ordinary or partial differ-
ential equations, Boolean networks, agent-based models, and
Petri nets [116]) makes use of temporal measurement of —omic
data to develop and validate dynamic predictive models of com-
plex systems. For example, a recent study on A. thaliana used a
Granger causality model to integrate two types of metabolomic
data acquired at multiple time points for studying the interaction
of primary and secondary metabolism [117].

5) EHR Data Preprocessing: Information embedded
in EHR is abundant but disorganized in nature. Thus, EHR
data requires systematic preprocessing that are summarized in
Table VII. On EHR missing data, conventional approaches either
impute missing values by the mean or median in a population,
or listwise or pairwise delete records with missing values. These
approaches are simple and easy to implement, but they ignore
the underlying data structure and tend to introduce additional bi-
ases [128]. Thus, more robust missing data imputation methods
such as interpolation [129], multiple imputation [130], expec-
tation maximization [131], and maximum likelihood [132] are
needed.

On high time-resolution waveform data quality issues [50],
we can use the following:

1) filtering strategies such as median filtering, Kalman filter-
ing, and model-based filtering to handle noise [50], [123];

2) signal quality indices that detect the presence of expected
physiological features, quantify the agreement between signals

Method

Advantages

Limitations

Missing data: listwise
deletion, mean filling*
[118], [119]

Missing data: hot deck,
nearest neighbor* [120]

Missing data:
interpolation (linear,
piecewise linear, spline,
cubic) [121]

Missing data:
model-based filling
(expectation
maximization, maximum
likelihood, multiple
imputations)” [122]
‘Waveforms: noise
filtering (IIR, FIR, PCA,
ICA, Kalman filter,
wavelets) [50], [123]
Waveforms: signal
quality indices
[123]-[125]

Simple to implement;
complete case analysis

Simple to implement and
interpret; immune to
cross-user
inconsistencies

Simple to implement and
interpret; direct
estimation on the basis of
neighbors

Accounts for uncertainty
in imputations

Generally simple to

implement

Human-interpretable
metrics of signal quality

Loss of statistical power;
introduces biases;
underestimates variances
Introduces biases;
underestimates variances

Does not account for
relationships among
different features

Does not account for
missing data mechanisms
(i.e., MCAR, MAR, and
MNAR)

Falls short in situations
where “true” waveform is
obscured by artifact such
as patient motion

Can be complex to
implement and
computationally

intensive; may require
ad-hoc calibration based
on the features of the
target waveform
Computationally
intensive; loss of detail
from individual sensor
waveforms

Waveforms: sensor
fusion [126], [127]

Improved SNR; reduces
data dimensionality while
increasing data quality

“Highly impactful method with more than 50 000 relevant papers.

with mutual information, or infer other ad hoc definitions of
signal quality to identify artifacts and gaps in the waveform
[123]-[125];

3) sensor fusion techniques (e.g., using redundant mea-
surements of electrocardiography, blood pressure sensors, and
photoplethysmography to derive a more reliable measure of
heart rate than any single signal alone [126], [127]) to correct
artifacts and fill in gaps in the waveform.

6) EHR Data Mining: To derive actionable knowledge
from complex EHR big data, two strategies such as static end-
point prediction and temporal data mining are summarized in
Table VIII.

6) a) Static endpoint prediction: After dimension-
ality reduction, we can model the relationship between selected
clinical features (i.e., the patient’s condition) and targeted clin-
ical endpoints (i.e., the clinical outcome) with three groups of
techniques: Regression analysis is a statistical process that esti-
mates the relationship between independent variables (i.e., fea-
tures) and dependent variables (i.e., endpoints). If dependent
variables follow distributions such as normal, Poisson, and bi-
nomial, we can use a generalized linear model for regression
model fitting; Classification involves building statistical models
that assign a new observation to a known class. Many classifica-
tion techniques such as decision trees, k-nearest neighbors, and
SVMs prove to be effective in clinical applications; Associate
Rule Learning (ARL) discovers frequent and reliable associa-
tions among clinical variables, and these association rules de-
scribe that if all elements in the antecedent occurs, all elements
in the consequent should occur with certain confidence [28]. In
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TABLE VI
SELECTED METHODS FOR EHR DATA MINING

TABLE IX
SELECTED PLATFORMS FOR BIG DATA ANALYTICS

Method Advantages Limitations

Platform Advantages Limitations

Logistic regression, cox Sensitive to outliers
regression, local regression

(LOESS)* [133]

Simple to implement and
interpret; direct estimates of
relevant hazards for Cox
regression

Logistic regression with LASSO Reduces feature space
regularization [134]

Hidden Markov models [135]

Prone to overfitting

Simultaneous detection, Sensitive to the design of
segmentation, and the Markov model being
classification in a waveform trained

Supports temporal analysis; Sensitive to

resistant to differences in regularization and feature
class prevalence space size

Relational subgroup discovery, ~ Valid sequential techniques  Tradeoffs between
episode rule mining, windowing® for some clinical applications simplicity, complexity,
[137] and temporal resolution
Rule mining, Allen’s interval Temporal mining/modeling Requires specific
algebra, directed acyclic graph®  capabilities experimental design
[138]

Conditional random fields [136]

Apache Hadoop
(MapReduce)* [11], [142]

Horizontally scalable; Generally most effective for
fault-tolerant; designed to be batch-mode processing; not
deployed on always appropriate for
commodity-grade hardware; real-time, online analytics
free and open-source
Includes purpose-built tools
to handle streaming
information; integrates with
open-source tools such as

IBM InfoSphere Platform*
[143]

Commercial licensing

Hadoop
Apache Spark Streaming®  Integrates with the Hadoop  Depends on more expensive
[144] stack; allows one code base hardware with large amounts

for both batch-mode and
online analysis
Visualization of large and
complex data sets

of RAM to work efficiently

Tableau, QlikView, TIBCO
Spotfire, and other visual
analytics tools™

Generally incomplete
solutions, requiring other
tools to effectively handle
data storage

“Highly impactful method with more than 50 000 relevant papers.

general, these machine learning techniques prefer a large sample
size.

6) b) Temporal data mining: EHR captures diagno-
sis, treatment, and outcome chronologically throughout a med-
ical encounter, and thus, it is important to model temporal rela-
tionship between events using temporal data mining techniques
such as the hidden Markov model (HMM) and the conditional
random field (CRF) [135], [136]. One constraint of HMM and
CREF is that they require predefined clinical variables and out-
come categories often difficult to generalize for a given treat-
ment of a given patient. Thus, temporal association rule mining
(TARM) is proposed to discover causality between the event
and outcome. A temporal association rule, denoted by A — C,
describes an antecedent A followed by a consequent C sep-
arated by a time difference T. Because the selection of the
event and outcome is flexible, the TARM model can be tailored
for any event—outcome combination in various clinical settings
[137], [139].

D. Enablers of Biomedical Big Data Analytics

The big data revolution has led to the development of enter-
prise tools and platforms for extracting, summarizing, and in-
terpreting knowledge from rapidly generated data, for business
intelligence, analytics, and predictive modeling as summarized
in Table IX [11], [140], [141].

Distributed computing systems such as Apache Hadoop
(based on MapReduce) provide the storage and processing
backbone for dealing with very large datasets [142]. Specific
tools also exist to solve more specialized problems. For exam-
ple, IBM InfoSphere Streams and Apache Spark Streaming can
handle real-time streaming data [143], [144]. Cloud computing
providers such as Amazon Elastic Compute Cloud (EC2) can
provide on-demand computing power to accommodate scalable
growth from development to truly big data production [145].
Many cloud-based services in bioinformatics such as Illumina’s
BaseSpace [146] and the Galaxy project [147] are deployed on
Amazon EC2.

“Highly impactful platform.

Integrative Analysis of Multimodal -Omic Data

Genomics .
D
Transcriptomics 2 Novel

Z = Cancer
Epigenomics i
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Fig.2. Integrative analysis of multi-omic data leads to the improved un-
derstanding of cancer mechanisms, which in turn enables more precise
classification of cancer subtypes.

To deploy biomedical big data for precision medicine in
health care, there is a critical need to address domain-specific
challenges such as the requirements of Health Insurance
Portability and Accountability Act, Health Information Tech-
nology for Economic and Clinical Health, and other privacy
regulations. Thus, security is an important enabling technology
(e.g., encryption for protected health information) in biomedical
big data [140], [145], [148].

IIl. CASE STUDIES

In this section, we present two real-world applications to
illustrate the utility of biomedical big data analytics for pre-
cision medicine: 1) integrative —omic data for the improved
understanding of cancer mechanisms (see Fig. 2); and 2) the
incorporation of genomic knowledge into the EHR system for
improved patient diagnosis and care (see Fig. 3).

A. Integrative —Omics for Precise Cancer Understanding

One notable effort that integrates multi-omic data for the
improved understanding of cancer mechanisms is The Cancer
Genome Atlas (TCGA) [149]. TCGA hosts public datasets of 27
cancer types with more than 11 000 patient cases. Each patient
is annotated with clinical data (i.e., demographic, diagnostic,
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Fig. 3.  Integrating derived —omic knowledge into the existing EHR sys-
tem is an approach to utilizing molecular information for clinical decision
support, and it also help deliver precision medicine.

and survival data) and multimodal —omic data (i.e., genomic,
transcriptomic, epigenomic, and proteomic).

We use head and neck squamous cell carcinoma (HNSCC)
as an example to illustrate the integrative multi-omic study for
precision medicine [150]. In 2014, a pan-cancer study with
12 cancer types using multi-omic TCGA data was performed
[151]. Among 3527 samples in total, 305 were HNSCC. Six
different data types (i.e., DNA copy number, methylation, mu-
tation, and expression of mRNAs, miRNAs, and proteins) were
analyzed both separately and integratively. By using clustering-
based methods, pathway activities (inferred from gene
expression and copy number data) have shown common CNVs,
mutation frequency patterns, and survival patterns between HN-
SCC and lung squamous cell carcinomas or some bladder can-
cers. Such integrative pan-cancer analysis provides more precise
subtyping across multiple cancers sharing common molecular-
level processes underlying cancer development. This new sub-
typing system reflects precision medicine because it finds
precise classification of patients into disease subgroups.

TCGA Research Network has published more than 30 articles
describing multi-omic investigation on numerous cancer types,
and identified more precise, clinically relevant subtyping for
multiple cancers [152]-[154].

B. Adoption of Genomics in EHR for Precision Medicine

In a clinical setting, healthcare providers use electronic medi-
cal record (EMR) for clinical decision support. Thus, it is impor-
tant to incorporate —omic data and knowledge into EMR. The
Electronic Medical Records and Genomics (eMERGE) Network
consortium aims to identify causal genomic variants (mostly
SNPs) for EMR-based phenotypes and to integrate identified
genotype-phenotype associations into the EMR system [155].
One crucial challenge is on how to store variants present in an
individual or even in family members in the EMR [156]. The
consortium has proposed several recommendations on augment-
ing the current EMR structure.

1) It should store various genomic variants, such as SNPs,
indels, and CNVs, in a discrete computable format.

2) It needs to satisfy interoperability to reduce the burden in
data transfer and update within and between healthcare facilities.

3) It has to support rule-based decision support engines.

4) It must contain abundant visualization elements for easier
interpretation [157].

Another big challenge is that each individual typically has
millions of variants. The consortium has proposed one potential
solution that stores only known pathological variants in the
EMR system. However, because the set of known pathological
variants may change over time, this approach may lead to the
inclusion of false positive and the exclusion of false negative
variants. Thus, an alternative solution is to archive raw data in
separate repositories easily accessible when necessary [158].

EMR is only for local clinic and hospital, while EHR con-
tains and shares medical records among all participant clinics
and hospitals [159]. Thus, interoperability is critical in using big
data for precision medicine. Recently, the Health Level Seven
International proposed the Fast Healthcare Interoperability Re-
sources (FHIR) standard that addresses this important issue. On
clinical genomics, several new FHIR resources and extension
definitions are designed for variant data [160]. With such a stan-
dardized data exchange protocol, clinicians can utilize genomic
information with other existing EHR data to determine the most
effective treatment for each patient, which is a paradigm shift
toward precision medicine.

IV. BIOMEDICAL BIG DATA INITIATIVES

To apply big data analytics for precision medicine, Table X
summarizes multiple consortium initiatives that collect and or-
ganize data from various projects and trials, and make them
available to the research community for secondary data use.

First, initiatives such as Project Data Sphere aim to im-
prove research efficiency and to encourage collaboration by
integrating information of clinical trials for different cancers.
For example, the European Union-funded RD-Connect aggre-
gates data of multiple rare diseases from around the world.
TCGA of U.S., Therapeutically Applicable Research to Gener-
ate Effective Treatments, and the International Cancer Genome
Consortium aim to study multiple aspects of individual diseases
by collecting multi-omic data of hundreds of patients for each
cancer type. In contrast, the U.S. 1000 Genomes Project and the
U.K.-based 100 000 Genomes Project aim to connect genotypes
with phenotypes using single —omic data type.

Second, large data repositories have been created and main-
tained by organizations such as U.S. National Institutes of
Health (NIH) and the World Health Organization (WHO). The
Trans-NIH BioMedical Informatics Coordinating Committee
has established a data repository that archives the data from
61 large multicenter studies for promoting secondary use of
biomedical data [161]. The Global Health Observatory Data
Repository is maintained by WHO for population-level health
studies [162]. As another example, the Health Indicators Ware-
house within the U.S. Department of Health and Human Ser-
vices provides country-level and state-level aggregated clinical
information [163].

V. DISCUSSION

Among many data types included in the NIH Big Data to
Knowledge Initiative, —omic data, EHR, and medical imaging
data are the three most important biomedical big data. We con-
ducted the review of —omic and EHR data because of their close
relationship with precision medicine [3], [5], [17], [18].
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TABLE X
SELECTED BIOMEDICAL BIG DATA INITIATIVES
Consortium Data Sources Data Elements
TCGA Multi-omic data for 27 cancer types, Clinical, genomic, transcriptomic,

covering more than 11 000 cases

Project Data Patient-level data from comparator

epigenomic, and proteomic data
Common data include baseline, safety,

Sphere arms of Phase IIB and III clinical efficacy, medication, dosing, lab test,
trials; currently contains 33 trials medical history, and demographic data
covering 12 cancer types

TARGET  Multi-omic data for seven types of  Clinical, genomic, transcriptomic, and
childhood cancers epigenomic data

1,000 Large-scale genome sequencing Low-coverage whole genome

Genomes  project for populations of African,  sequencing for 179 individuals;

Project European, and East Asian ancestry ~ high-coverage targeted exome

sequencing for 697 individuals

100,000 Large-scale genome sequencing Genome sequencing will be

Genomes  project for studying cancers and rare completed in 2017

Project diseases in the U.K.

ICGC Genomic data for 18 cancer types; ~ SNPs, CNVs, methylation, and gene

partially overlap the TCGA data

RD-ConnectInfrastructure project funded by

European Union for facilitating rare
disease research

and miRNA expression
Currently links to three biobanks and
more than 150 rare disease registries

ADNI Multicenter, longitudinal study with ~ Clinical, genetic, magnetic resonance
elderly control subjects, early imaging, and positron emission
Alzheimer’s disease subjects, and tomography imaging data
mild cognitive impairment subjects

iDASH Data from 17 focused trials, each of Imaging, EHR, sensor, and genomic
which represents a specific objective data from multiple clinical trials
and a patient population

GHO Worldwide population and Population-level statistics and
environmental data for infectious modeling
diseases, noncommunicable diseases,
sexually transmitted diseases, and
children’s health

BMIC Large trials encompassing thousands EHR, imaging, genetic, and social
of samples research data

MIMIC II  ICU data for more than 30 000 Chart data, administrative data, alert
patients with more than 40 000 ICU  data, lab results, electronic
stays documentation, and bedside monitor

trends and waveforms
HIW Federal data for aggregated health Data element varies, depending on the

indices by geography; covers data

trials

from claims, healthcare cost, to
population statistics

TCGA stands for The Cancer Genome Atlas; TARGET, Therapeutically Applicable Re-
search to Generate Effective Treatments; ICGC, International Cancer Genome Consortium;
ADNI, Alzheimer’s Diseases Neuroimaging Initiative; iDASH, Integrating Data for Analy-
sis, Anonymization, and Sharing; GHO, WHO Global Health Observatory Data Repository;
BMIC, Trans-NIH BioMedical Informatics Coordinating Committee; MIMIC II, Multipa-
rameter Intelligent Monitoring in Intensive Care II; and HIW, Health Indicators Warehouse.

Big data have had major societal impact in energy, environ-
ment, financial, and others. They motivate rapid advances in
data storage, data mining and analytics, data retrieval, and data
visualization [164], [165]. When applying to biomedicine and
healthcare, big data will improve quality and outcome by dis-
covering new knowledge (e.g., automated identification of post-
operative complications in EHR data [166]); disseminating new
knowledge (e.g., data-driven clinical decision support systems
such as IBM Watson); incorporating —omic data into EHR (e.g.,
eMERGE network [167]); and implementing patient-centered
care (e.g., e-health [168]).

To accelerate the delivery of precision medicine, more re-
search is needed in the following biomedical big data areas.

1) —Omic data integration: As illustrated by the TCGA case
study, integrative multi-omic data analysis is of growing im-
portance because it provides holistic view of molecular finger-
prints for each patient’s condition. Recent research has shown

positive impact of knowledge and insight obtained from inte-
grative analysis of genomic and transcriptomic [169], transcrip-
tomic and proteomic [170], and multiple —omic data types [53],
[151] on disease diagnosis, prognosis, and treatment. The next
important direction is the development of guidelines (or best
practices) for —omic data integration and interpretation that will
in turn enable better prediction of biosystem behavior, and safer
and more effective therapeutics.

2) Waveform and irregularly spaced time series analysis:
Real-time streaming data analytics needs to be further devel-
oped due to the pervasive use of wearable sensors in either the
critical care setting or in the continuous home monitoring setting
for fitness and preventative medicine [171], and the need to re-
duce alarm fatigue [172]. However, the challenge for irregularly
sampled temporal data remains and requires advanced impu-
tation techniques and robust parameter extraction techniques
[50], [173].

3) Patient similarity: Precision medicine promotes precise
subgroup classification of patients based on biological basis
such as molecular profiles. Thus, EHR mining can assist in pa-
tient classification based on clinical measurements (e.g., drug
responses, physiological signals, and disease susceptibility).
However, because of high patient variability for any disease,
the precise subtypes of many diseases remain unknown as of
today, and it requires systematic big data analytics to model
physician knowledge to validate the reliability of patient sub-
grouping based on EHR mining.

VI. CONCLUSION

In this review, we present —omic and EHR big data challenges
and current progressed. We provide case studies to show how
big data analytics can facilitate precision medicine. Because
biomedical big data analytics is in its infancy, more biomedi-
cal data scientists and engineers are needed to gain necessary
biomedical knowledge, to use large data provided by biomedi-
cal big data initiatives, and to put concerted effort in areas such
as multi-omic data integration, waveform and time series data
analysis, and patient similarity and so on to speed up big data
research for precision medicine. By delivering the most suitable
and effective treatment to each patient based on their precise
subtyping information, the healthcare system can achieve better
care efficiency and quality.
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