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Abstract—Pneumonia is the cause of death for over a million
children each year around the world, largely in resource poor re-
gions such as sub-Saharan Africa and remote Asia. One of the
biggest challenges faced by pneumonia endemic countries is the
absence of a field deployable diagnostic tool that is rapid, low-cost
and accurate. In this paper, we address this issue and propose a
method to screen pneumonia based on the mathematical analysis
of cough sounds. In particular, we propose a novel cough feature
inspired by wavelet-based crackle detection work in lung sound
analysis. These features are then combined with other mathemati-
cal features to develop an automated machine classifier, which can
separate pneumonia from a range of other respiratory diseases.
Both cough and crackles are symptoms of pneumonia, but their
existence alone is not a specific enough marker of the disease. In
this paper, we hypothesize that the mathematical analysis of cough
sounds allows us to diagnose pneumonia with sufficient sensitiv-
ity and specificity. Using a bedside microphone, we collected 815
cough sounds from 91 patients with respiratory illnesses such as
pneumonia, asthma, and bronchitis. We extracted wavelet features
from cough sounds and combined them with other features such
as Mel Cepstral coefficients and non-Gaussianity index. We then
trained a logistic regression classifier to separate pneumonia from
other diseases. As the reference standard, we used the diagnosis
by physicians aided with laboratory and radiological results as
deemed necessary for a clinical decision. The methods proposed
in this paper achieved a sensitivity and specificity of 94% and
63%, respectively, in separating pneumonia patients from non-
pneumonia patients based on wavelet features alone. Combining
the wavelets with features from our previous work improves the
performance further to 94% and 88% sensitivity and specificity.
The performance far surpasses that of the WHO criteria currently
in common use in resource-limited settings.

Index Terms—Automated cough analysis, childhood cough,
pneumonia, wavelet transform (WT).

I. INTRODUCTION

PNEUMONIA is a major cause of child morbidity around
the globe. Pneumonia kills an estimated 1.3 million chil-
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TABLE I
WHO/IMCI GUIDELINES FOR PNEUMONIA CLASSIFICATION IN

RESOURCE-POOR REGIONS [4], [5]

Criteria Classification

·History of cough and/or difficult
breathing of less than 3 weeks duration

Nonsevere pneumonia

·Increased respiratory rate: �60/min if age
<2 months, �50/min if age 2–11 months,
�40/min if age 12–59 months
·Lower chest wall in-drawing Severe pneumonia
·Cyanosis or inability to feed or drink Very severe pneumonia

dren under 5 years old in 2011 [1]. Nearly 75% of these deaths
are concentrated in Africa and South East Asia regions, mainly
affecting the underprivileged and the poor population. As much
as 65% of the deaths could have been prevented with the right in-
terventions [2]. The unavailability of low cost, field-deployable,
rapid diagnostic technology is one of the key challenges in
combating pneumonia mortality. There is currently an absence
of gold standard for pneumonia diagnosis even in hospitals.
The process is not straightforward, but rather a combination of
clinical, radiological, and laboratory diagnostics that is often
inaccessible to much of the population affected by the disease
[3].

The World Health Organization (WHO) has developed a sim-
ple clinical algorithm to classify childhood pneumonia in re-
source poor regions of the world (see Table I). This algorithm is
based on the existence of symptoms (e.g., cough, breathing dif-
ficulty, chest-in-drawing, breathing rate) and is simple enough
to be implemented by community health care workers in disease
endemic regions.

The criteria present good sensitivity (77–81%) and speci-
ficity (77–80%) when combined with clinical and radiological
examinations [6]. In the absence of clinical and radiological
examinations, however, the WHO algorithm has unacceptably
low specificity (16–47%) in diagnosing pneumonia [5], [7], [8].
The low specificity largely comes from the use of breathing rate
and chest in-drawing in the algorithm, both of which may be
associated with other conditions such as anxiety, anemia, reac-
tive airway disease, lower airway obstruction, bronchiolitis, and
asthma [9], [10].

Low specificity is harmful to the patient and the society; it
leads to excessive antibiotic prescription and wastage of rare
drug stocks. Antibiotics also kill beneficial bacteria, causing
unintended health problems in patients. Excessive usage also
leads to the proliferation of drug resistant bacteria leading to
subsequent treatment failures.
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The WHO criteria have been designed with simplicity and
high diagnostic sensitivity in mind. This maximizes access to
life-saving antibiotics. WHO recognizes the need to improve
specificity especially in nonsevere pneumonia cases [11].

In this paper, we propose an innovative method to address
these challenges. Our method is based on automated cough
sound analysis to diagnose pneumonia. This opens up the possi-
bility of having low-cost, noncontact, noninvasive way of testing
potential pneumonia cases without the need for comprehensive
training in the field. We aim to achieve a higher specificity
compared to WHO criteria and maintain sensitivity at >90%.

In a previous study [8], we have shown the basis for using
cough to diagnose pneumonia. That study relied on combination
of several mathematical features, some of which are widely used
in speech signal processing, such as formant frequencies (FF)
and Mel Frequency Cepstral Coefficients (MFCC). In this paper,
we propose another class of features inspired by the adventitious
lung sounds known as crackles, which are commonly found in
pneumonia and routinely observed over the chest musculature
using stethoscopes. We recorded cough sounds in free-air out-
side the mouth and analyzed them (wavelet decomposition),
targeting crackle-like components. We then combined the two
feature sets and developed pattern recognition technology to
diagnose childhood pneumonia.

Crackles are short random bursts of popping, rattling, crack-
ling lung sound commonly found in pneumonia [12], but are not
specific to the disease. These are also found, to a lesser extent,
in diseases such as asthma, bronchitis, congestive heart failure,
pulmonary edema, and emphysema [13], [14].

Trained physicians can use the existence and the nature of
crackles (coarse, low frequency crackles versus fine, higher fre-
quency crackles) in a clinical diagnosis of pneumonia. In the
current clinical practice, physicians observe crackles over the
chest/back musculature using a stethoscope (auscultation). The
lungs and the chest muscles heavily low-pass filter sounds, and
the low-bandwidth (<3 kHz) of stethoscopes further eliminates
high frequency components from observations. The clinical de-
tection of adventitious lung sounds in children requires special-
ist training and experience. Such skills are simply not available
in frontline healthcare facilities in resource-poor regions of the
world. Our paper seeks to provide a solution to this problem.

In this paper, we focus our attention to cough sounds mea-
sured from the air outside the mouth, at much higher bandwidths
(20 kHz) than available in traditional stethoscopes (<3 kHz). We
hypothesize that sounds generated in lungs, including crackles,
may be embedded in cough sounds, hidden among the louder
sound components contributed by the upper airways. During a
cough, lungs are directly connected to the atmosphere through
a column of air in which information can propagate at the speed
of sound. This air column can support a much higher band-
width than the pathway through the musculature. It should be
noted that crackles are also audible from the surface of the neck
(outside the trachea) [12], well away from the chest surface.

In this paper, we propose several new features to analyze
cough sounds, which are inspired by crackles in pneumonia.
Our features are designed to be particularly sensitive to crackles
but are capable of extracting additional properties of pneumonia

TABLE II
PATIENT RECRUITMENT CRITERIA

Inclusion criteria Exclusion criteria

·Patients with symptoms of chest infection. ·Advanced disease where recovery is not
expected e.g.

·At least 2 of: ·Terminal lung cancer
Cough ·Droplet precautions
Sputum ·NIV required
Increased breathlessness
Temperature >37.5 °C
·Consent ·No informed-consent

related cough. Considering the transient, nonstationary nature
of crackles, we chose wavelet analysis as our tool to develop
the technology. Wavelets provide a good way of decomposing
nonstationary signals in both time and frequency domains [15],
[16], the ability to focus on localized signal structures with a
zooming procedure very efficient in detecting singularities in
signals [17], and a powerful multiresolution analysis tool to
capture changes in frequency characteristics at any moment in
time [18].

A systematic review of 34 studies in stethoscope-based au-
tomated lung sound analysis has also found time–frequency
analysis such as wavelets to be effective for detection and clas-
sification of respiratory diseases [19]. Wavelet transform (WT)
has been successfully used previously in developing cough clas-
sification technology for respiratory diseases such as asthma and
chronic obstructive pulmonary disease (COPD) [20]. There have
been no studies to date showing evidence of wavelet features
within cough sounds being used to diagnose pneumonia.

The diagnosis of childhood pneumonia using cough sound
analysis is a pristine research area. To the best of our knowl-
edge, no other work exists except our own [8]. In this paper, we
aim to explore how effective wavelets can be in decomposing
cough sounds and developing features specific to pneumonia.
We also investigate its use, alone and in combination with our
existing cough-derived features [8], in the diagnosis of child-
hood pneumonia.

In Section II, we describe the recording environment as well
as the equipment used. Section III describes how the wavelets
are used as cough features, and Section IV details the process
of designing the classifier model and performance validation.
The classification results for each wavelet types are presented in
Section V and compared with results from our previous study.
Concluding remarks and future work as well as study limitations
are given in Section VI.

II. MATERIALS

The cough sounds used in this work were collected from
the Respiratory Medicine Unit of the Sardjito Hospital, Gad-
jah Mada University, Indonesia. Patients showing symptoms
of acute respiratory illnesses were recruited in the first 12 h
of admission. The most common diagnosis found in patients
was pneumonia, followed by bronchitis, asthma, and rhino-
pharyngitis. Table II lists the recruitment criteria for patients.
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Fig. 1. Side-by-side comparison of (a) example infant expiratory crackle [22]
with various wavelets: (b) Morlet, (c) Du, (d) Daubechies3, (e) Mexican hat,
and (f) Paul. The shape of crackle within the 2CD is very similar to wavelets
(AU = arbitrary units).

This study was approved by the ethics committee of Gadjah
Mada University and The University of Queensland.

Not all patients were subjected to X-ray imaging for concern
of inflicting unnecessary radiation exposure to children. Consent
was sought prior to each recording following explanation of the
study and the strictly noncommercial, research only, use of the
data. Sound recording began as soon as the patient was ready and
stable. Patients were mostly placed in single occupancy rooms,
often with one or more relatives accompanying the patient at all
times.

The recording setup comprised of high fidelity recordings
from two bedside microphones (Rode NT3, cardioid beam pat-
tern, 16 bits/sample, 44.1 kHz sampling rate). Distance from
the microphone to the patient’s mouth varied from 40 to 70 cm,
taking into account patient movement on the bed. The second
microphone was aimed at opposite direction to help with iden-
tifying background interferences as well as cough sounds from
other patients. The background interferences included human
speeches, footsteps, periodic tones from medical equipment,
and various other sounds from interactions between parents and
their child.

The lengths of recordings had a mean of 4 h 3 min, with stan-
dard deviation (SD) of 1 h 39 min. Sessions were occasionally
interrupted due to noisy nebulizer treatment, groups of visitors,
power blackouts, patient falling asleep or being taken out of
room, and medical emergencies.

In total, recordings from 91 patients were collected for this
study and proportionally split into training and testing group.
Patients were exclusively assigned by order of presentation to a
group, either training or testing group. In this way, we keep data

from each group mutually independent of each other. In the end,
there were 66 patients (46 pneumonia and 20 non-pneumonia)
in the training group and 25 patients (17 pneumonia and 8 non-
pneumonia) in testing group.

In the absence of a commonly accepted method for auto-
matic cough identification, manual segmentation was employed
to identify the cough samples. This is still the gold standard in
clinical work as well as in literature. In this paper, each cough
sample was manually segmented out following a careful listen-
ing process applicable by any adult person as cough sound is
characteristic. For subjects in the training set, we handpicked
from each patient 5–10 clean cough samples that cover a wide
spectrum to develop a well-represented model. Clean cough
sample is defined as free of background interferences mentioned
earlier, has sufficient gain, and no clipping. For testing group,
first 15 coughs uncorrupted with interferences were picked from
each patient to preserve objectiveness of the study. The begin-
ning and end of a cough were marked out by listening to the
cough sound and assisted by visual representation of each cough
(in time and frequency domains). Segmented samples include
the 100 ms of recordings prior to and after each cough. This is
done to cover the possibility of crackles occurring in those brief
moments.

III. WAVELET AS COUGH FEATURE

For each cough sample, the wavelet features, fc , are calcu-
lated to form the feature matrix, FM . Wavelet has the advantage
over time and frequency domain features in its ability to localize
signals in both domains simultaneously. Compared to short time
Fourier transform (STFT), wavelet has more accurate represen-
tation for nonstationary signals with discontinuities like cough
and crackle sounds. Over the years, various wavelets have been
proposed, some tailored for specific purposes, others with more
general application. In this section, we cover some properties
of wavelets and described the motives behind wavelet selection
for this study.

A. WT for Crackle Detection

Given a cough sample in time domain, xi , where i denotes
the cough number in the set, the continuous wavelet transform
(CWT) is given by [21]

CWTxi
(a, b) = xi, ψ a,b =

∫
xiψa,bdt (1)

where a is the dilation parameter and b is the translation. The
dilation is equivalent to the scale, which determines the time-
scale resolution of the resulting CWT operation. More details
on CWT in Appendix A. By analyzing xi over a range of dif-
ferent scales, CWT offers multiresolution frequency filtering
capability to target specific frequency bands. This translates to
different crackle types (coarse, medium, or fine) based on two
cycle duration (2CD) of the detected crackles.

Fig. 1 shows a time-domain example of an infant expiratory
crackle (top left) [22], in comparison with various wavelets such
as Morlet, Du, Daubechies3, Mexican Hat, and Paul. It can be
observed here that the crackle waveform has some similarity to
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the basic shape of the various wavelets. It is quite useful because
wavelets can detect and localize self-similar phenomena [21].
Other researchers have utilized this aspect in detecting crackles
amongst vesicular sounds and other adventitious sounds [23],
[24], automatic classification of crackles to fine and coarse
groups [25], [26], and separation of healthy and pathological
subjects [15]. The latest study by Serbes et al. compared perfor-
mance of various wavelets for crackle detection in lung sound
recordings, all of which achieved performance above 90% accu-
racy [24]. The study compared 6000 samples from 26 subjects
equally divided to three sets: training, validation, and test. Each
set contains equal proportion of crackle and noncrackle signal.
The wavelets used were Morlet, Paul, and Mexican Hat. In these
studies, lung sounds were recorded using stethoscopes.

In the case of noncontact cough sound analysis, wavelet was
used by Knocikova et al. for classification of adult asthma
bronchiale, COPD, and healthy subjects [20]. Sixty-five sub-
jects were studied, with roughly equal numbers in each group.
Their use of Daubechies3 concluded with a correct classification
rate of 85–90% for a training set. Results from a testing set were
not reported. Wavelet features were shown by Al-khassaweneh
et al. to be potentially useful for asthma classification [27],
with 100% accuracy in classifying eight children in the testing
set. However, the authors also warned that their use of chil-
dren with similar age and gender pose a statistical weakness
and there is a need for universal features. Abaza et al. used
wavelets among many other features to classify coughs from
112 adults with abnormal lung physiology. They reported a
sensitivity and specificity of 98% [28]. Meanwhile, Du et al.
proposed a crackle-based wavelet using matched wavelet anal-
ysis for crackle detection from contact recording of lung sound,
though this was only tested on a very limited number of samples
(n = 13) [26].

In this study, one of our targets is to explore whether crackle-
like features extracted from noncontact cough sounds can help
in diagnosing childhood pneumonia. Our work is inspired by
existing literature on crackle detection in lung sounds acquired
with contact instrumentations (e.g., stethoscopes) and also other
successful respiratory diagnostic applications of wavelets on
cough sounds. The work reported in this paper is novel in the
application (e.g., cough analysis for pneumonia diagnosis), the
targeting of crackle-like components from cough sounds, and
the study population (pediatric). This paper also aims to com-
bine other feature classes with wavelets to diagnose childhood
pneumonia.

IV. EXPERIMENTAL METHODS

A. Choice of Scale

As mentioned in Section III, the scale selection can be used for
targeting different crackle types (e.g., fine versus coarse) based
on direct conversion of its 2CD to frequency. Scale selection in
wavelets is akin to window sizes in STFT, which determines the
frequency resolution of the representation of each cough sounds
and directly affects the shapes of the output. A coarse crackle
with 2CD of 10 ms or larger would be comparable to having a
center frequency of 200 Hz and under.

Fig. 2. Effects of varying scale representations of crackle signals. (a) Example
infant expiratory crackle [22], (b) FFT representation, (c) Morlet CWT on scale
128, f = 280 Hz, (d) Morlet CWT on scale 74, f = 484 Hz, and (e) Morlet
CWT on scale 35, f = 1024 Hz. Crackles may not be clearly separated by
looking at individual scale alone.

Fig. 2 shows an example of crackles as recorded from a con-
tact lung sound recording (top), followed by FFT, CWT at scale
128, 74, and 35. The recording contains two individual crackles
followed by three successive crackles [22]. FFT analysis shows
dominant frequencies around 484 and 280 Hz. At scale 128
(f = 280 Hz), the first two individual crackles were distinctly
visible, but the following two seemed to merge and the last one
barely separate.

Similarly, these observations were also found at scale 74
(f = 484 Hz), where the supposedly most dominant frequency
was. On the other hand, separation of the last three crackles was
clearly visible at scale 35 (f = 1024 Hz), while the first crackle
was very small this time. Given the variable spectral characteris-
tics in each sample, crackle detection based on wavelet features
is not straightforward. In order to objectively compare crackles
in one sample to another, one needs to simultaneously consider
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Fig. 3. Overall block diagram of proposed method for pneumonia cough
classification using crackle detection. LRM is abbreviation for LRM. A more
detailed description is provided in Section 2.

a multitude of scales. This is also expected for crackles in a
cough sample.

In this study, 64 scales were calculated and analyzed for
each cough sample. The number 64 was chosen following a se-
lection process aimed at maximized classification performance
and minimized computational complexity. Detailed description
of the process is given in Appendix B.

B. From Preprocessing to Classification to Validation

Cough events from the training set, DT , are used to develop
a model for pneumonia cough classification. Our approach is
centered on the use of logistic regression model (LRM) and
leave-one-out-validation (LOOV) for the model design. The
major stages in this process are shown in Fig. 3. Stage 1 in-
volves cough segmentation and preprocessing; Stage 2 covers
the feature extraction using various wavelet types as well as
other features identified from our previous work, feature selec-
tion with stepwise regression and model design/selection based
on LRM and LOOV applied to the training set. Stage 3 details
performance validation with independent testing set based on
models created from Stage 2.

Stage 1: Preprocessing. In this step, cough samples are nor-
malized to the same root mean square (RMS) value to remove
the effects of sound intensity variation in calculating wavelet
features for each cough. This is necessary for an objective
comparison, as WT is adversely affected by differing sound
intensity.

As WT produces a multiresolution representation of cough
signals, the wavelet feature set has a built-in band pass filtering
process already for noise reduction and frequency filtering. By
splitting the original signal to 64 scales of wavelet representa-
tions, we have band pass filtered each signal to 64 frequency
bands. In the following stages, any local noise that is present in

specific time and scale will be identified and removed via the
feature selection process.

Stage 2.1: Calculate time scale feature matrix. Following
normalization, wavelet features for each cough is calculated
for use in developing the classifier. The following process is
repeated for each wavelet type used (Morlet, Paul, Mexican
Hat, Daubechies3, and Du). The wavelet features from each
cough in DT were computed as follows.

1) Let x denote an RMS normalized cough sample.
2) Apply CWT on x to 64 scales. Let cirepresent wavelet rep-

resentation of x on the ith scale, where i = 1, 2, 3, . . . , 64.
3) Segment each ci to 12 equal nonoverlapping subsegments

and calculate the energy concentration by sum of absolute
values in each segment, cij , where j = 1,2,3, . . . ,12. Each
cough sample, ci , is now represented by a vector of 12
numbers.

4) For each ci , calculate the slopes for each cij along the time
axis. For the first segment, it is the ratio of cij : ci(j+1) .
For segments 2–11, it is the ratio of ci(j−1) : ci(j+1) . For
the last segment, it is the ratio of ci(j−1) : cij .

5) Repeat for each ci in DT .
The segment number was defined as 12 following a prelimi-

nary study comparing different numbers ranging from 1 to 20.
Given that most cough samples are less than 400 ms length,
segmenting each cough sample to 12 time bins was found to be
most effective for identifying crackle-like signals. At the end of
this process, the training dataset DT is represented by a cough
feature matrix, MT , of size CT × FT , where CT is the number
of cough events in MT and FT = 768, representing the number
of scales, i, multiplied by the number of segments, j.

Stage 2.2: Calculate Other Cough Features. In our previous
work [8], our group has identified a set of 30 mathematical fea-
tures for use in pneumonia classification. The features consist of
one from non-Gaussianity score (NGS), two from bispectrum
score (BSG), two from log energy (LogE), three each from FF
and zero-crossing rate (ZCR), and 19 MFCC features. These 30
features were calculated for each cough samples in DT and DV ,
generating a second set of feature matrix. A brief description
of these features can be found in Appendix C. In the following
stages, each step was executed firstly with the time-scale fea-
ture matrix alone, then again with combined time-scale feature
matrix and the features described in this stage.

Stage 2.3: LRM Design and Feature Selection. LRM is a type
of statistical classification model useful for calculating the prob-
ability of a dependent variable based on multiple independent
variables. The dependent variable Y in this case is pneumonia
(when Y = 1) and non-pneumonia (when Y = 0). Each cough
events from the training set DT is labeled as “one” or “zero”
depending on whether the subject was clinically classified as
pneumonia or non-pneumonia. As a generalized linear model,
the probability of Y with respect to the independent cough fea-
tures can be written as follows:

Prob(Y = 1)|fT
=

et

et + 1
(2)

t = β0 + β1 · f1 + β2 · f2 + . . . + βn−1 · fT . (3)
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The slope (β1 , β2 , β3 , . . . , βn−1) and intercept, β0 , in (3) rep-
resents the best-fitting equation in the model for predicting Y.
The slopes are weights assigned to each feature f depending
on their significance in predicting Y. Finding the best decision
threshold μ for predicted Y is achieved with receiver operating
curve (ROC) analysis. For example, when μ = 0.5, the prob-
ability Y is classified as pneumonia when Y > 0.5 and non-
pneumonia otherwise.

In the training process, LOOV is used, where coughs from
one person are set aside and used for validating trained model
using the rest of the training dataset, DT . The process is iterated
with a different person each time, resulting in creation of NT

models, where NT is the number of patients in DT . The perfor-
mance of each model is evaluated by calculating the sensitivity
(SEN), specificity (SPE), accuracy (ACC), positive predictive
value (PPV), and the negative predictive value (NPV). SEN is a
measure of the proportion of actual pneumonia cases correctly
classified by the algorithm, while the SPE is the proportion of
actual non-pneumonia cases correctly identified. ACC denotes
the proportion of all correct identifications, both pneumonia
and non-pneumonia. PPV is the proportion of actual pneumonia
cases within the group classified as pneumonia by the algorithm.
NPV is the proportion of actual non-pneumonia cases within the
group classified by the algorithm as non-pneumonia.

In each of the LOOV iteration, a feature selection process is
undertaken by way of stepwise forward addition of features from
the feature set, FT . In each step, the feature that contributed most
to reduction in the residual sum of squares error is added to the
model, until further addition of features no longer contributes
to the model [8].

Stage 2.4: Optimal LRM selection. To find the best model
following the LOOV iterations, we use k-means clustering al-
gorithm, where q data points in d-dimensional space are divided
into k clusters to minimize the sum of squared distance of each
cluster from the centroid. With k set to 2, we divide our models
into high performance and low performance clusters [8]. We
then calculate the centroid of the high performance cluster via
averaging to represent the best model. Let RT represent the se-
lected model and μT be the optimal decision threshold for the
final model.

Stage 2.5: Pneumonic cough index (PCI). The output of the
model RT is a classification for each cough sample irrespective
of the subject the samples are taken from. For it to be useful for
classifying a subject, the PCI is used as a decision maker. Let
P be the number of coughs from a patient and Q the number of
coughs classified as pneumonic for the same person, the PCI is
defined as follows:

PCI =
Q

P
. (4)

Since the result from (4) is a ratio between 0 and 1, another
threshold, PCITH , is calculated using ROC for the best perfor-
mance in pneumonia classification on a person basis [8].

Stage 3: Model validation. With the final model and thresh-
olds determined, it is time to validate the model performance
with an independent dataset previously set aside, the validation
dataset, DV . Since none of the patients in DV were used in the

training process, it will provide an objective test for the final
training model, RT .

For each cough events in DV , we computed the feature ma-
trix, MV , and use the model RT to predict the class each cough
belongs to. In the same way as the training results, we calculate
PCI for each person and compare it against PCITH for final
classification. The results are compared with reference diagnos-
tics provided by clinicians for each patient and the performance
statistics are calculated.

V. RESULTS AND DISCUSSION

A. Subject Database and Clinical Diagnosis

In this paper, there were 91 patients recruited in total for the
study, with near equal male to female ratio of 48:43. The age
distribution of the subjects has a mean of 3 years 1 month (SD
= 3 years 11 month), with the youngest subject being a month
old and the oldest at 15 years old. Most subjects were under
60 months old (79%, 71 out of 91 patients). Pneumonia and non-
pneumonia patients numbered 63 and 28, respectively. Chest X-
ray (CXR) confirmation was obtained for 65 subjects, with the
remainder based on clinical diagnosis only (eight pneumonias
and 18 non-pneumonias).

B. Data Acquisition

The total number of cough samples analyzed in this study was
815 samples, with pneumonia coughs numbering at 561 sam-
ples and non-pneumonia at 254 samples. The training dataset
consist of 440 cough samples from 66 patients (46 pneumonia
and 20 non-pneumonia). In training set, on average six cough
samples (minimum 2 and maximum 15) were extracted from
each patient. The testing dataset had 375 cough samples from
25 patients (17 pneumonia and 8 non-pneumonia, 15 coughs
from each subject). The mean SNR for the dataset was 15.8 and
16.7 dB for the training and testing set, respectively.

C. Feature Extraction and Selection

Cough sounds are usually thought to start with a sharp peak
followed by a gradually decreasing tail, but this is not always the
case. This is especially true in children with respiratory diseases
such as pneumonia. Following our observations, it became ap-
parent that single scale representations of pneumonia cough on a
select group of scales often consists of individual segments with
clear separation along the time axis. By separating each scale
into 12 segments (see Section IV-B, Stage 2.1) along the time
axis and calculating the energy in each segment, it is possible to
track and localize these events in both time and scale axis. The
classifier then uses these features for classifying cough sounds
into pneumonia and non-pneumonia groups.

In the case of Morlet wavelet, the classifier found 13 such fea-
tures following the forward stepwise addition process described
in Stage 2.3, equally spread out over both time and scale axis.
Features for other wavelets vary as they resonated differently
with coughs on each scale and time segment.
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TABLE III
PNEUMONIA CLASSIFICATION PERFORMANCE OF THE 66 LRM ON THE LOOV

TRAINING DATASET

Wavelet
type

By sample

SEN SPE ACC PPV NPV AUC

Morlet 88.36
±0.69

67.03
±1.17

81.88
±0.50

85.96
±0.39

71.63
±0.81

76.00
±0.93

Paul 86.28
±0.85

44.25
±2.58

73.50
±0.71

77.96
±0.60

58.53
±1.46

71.12
±0.70

Mexh 86.22
±0.71

48.08
±1.51

74.61
±0.59

79.13
±0.54

60.45
±0.98

73.32
±0.43

Db3 86.68
±1.04

42.72
±2.21

73.31
±0.88

77.56
±0.68

58.45
±1.45

72.31
±0.55

Du 86.20
±0.99

61.63
±1.26

78.73
±0.83

83.69
±0.56

66.21
±1.30

72.93
±0.41

Wavelet
type

By person

SEN SPE ACC PPV NPV AUC

Morlet 91.20
±1.02

89.84
±1.33

90.79
±0.79

95.38
±0.54

81.65
±1.62

88.52
±2.49

Paul 89.10
±0.66

52.70
±4.57

78.09
±1.27

81.29
±1.16

67.64
±2.93

71.82
±2.41

Mexh 93.30
±0.78

59.84
±1.88

83.17
±0.80

84.23
±0.71

79.57
±1.90

74.56
±1.23

Db3 89.06
±0.60

49.74
±3.34

77.15
±1.01

80.31
±1.00

66.35
±2.27

70.09
±2.58

Du 91.33
±1.14

75.15
±1.53

86.43
±0.93

89.42
±0.66

79.10
±2.08

84.05
±1.32

D. Training Performance

The initial training results for the LOOV group using all 66
models can be seen in Table III. Each set of numbers consist
of average and SD as the performance measure. The model
performance was calculated separately for evaluation of coughs
as individual samples and as a group of coughs belonging to the
same person. Our target was to maximize SPE subject to the
constraint that SEN is >90%.

The optimum threshold μT for each sample and PCITH for
each person were found to be the same at 0.6. Considerable
improvements were found when classifying coughs with respect
to each person instead of treating each cough independently. It
is shown here that the best results were found using Morlet
wavelet, followed closely by Mexican hat and Du wavelet.

Following the model selection process, the best model is
chosen and fixed. The performance of this model on the training
dataset can be seen in Table IV. With the final model, the best
training performance on a person level is 91% SEN and 90%
SPE using the Morlet wavelet. From this point on, the parameters
for each feature in the LRM model are fixed along with μ and
PCITH .

E. Testing Performance

Each cough in the testing set follows the same feature ex-
traction process applied to the training set. When the trained
model was applied to the test feature set, the model based on
Du wavelet performed best for individual cough samples with
83% SEN and 53% SPE, as shown in Table V. Paul, Mexican
hat, and Daubechies wavelets are comparable in sensitivity but

TABLE IV
PNEUMONIA CLASSIFICATION PERFORMANCE OF THE CHOSEN LRM ON THE

LOOV TRAINING DATASET

Wavelet type By sample

SEN SPE ACC PPV NPV AUC

Morlet 87.58 67.91 81.59 86.17 70.54 76.47
Paul 85.94 44.77 73.40 78.04 58.25 71.32
Mexh 86.27 48.51 74.77 79.28 60.75 74.70
Db3 86.93 42.54 73.41 77.55 58.76 73.05
Du 85.62 61.19 78.18 83.44 65.08 83.90

Wavelet type By person
SEN SPE ACC PPV NPV AUC

Morlet 91.30 90.00 90.91 95.45 81.82 93.17
Paul 91.30 50.00 78.79 80.77 91.30 72.94
Mexh 93.48 60.00 83.33 84.31 80.00 74.33
Db3 89.13 50.00 77.27 80.39 66.67 70.33
Du 91.30 75.00 86.36 89.36 78.95 83.61

TABLE V
PNEUMONIA CLASSIFICATION PERFORMANCE OF THE CHOSEN LRM ON THE

INDEPENDENT TESTING DATASET

Wavelet type By sample

SEN SPE ACC PPV NPV AUC

Morlet 77.65 54.17 70.13 78.26 53.28 68.28
Paul 85.49 40.83 71.20 75.43 56.98 70.32
Mexh 83.53 46.67 71.73 76.90 57.14 74.22
Db3 84.31 40.83 70.40 75.17 55.06 70.51
Du 82.75 53.33 73.33 79.03 59.26 76.05

Wavelet type By person
SEN SPE ACC PPV NPV AUC

Morlet 94.12 62.50 84.00 84.21 83.33 82.35
Paul 94.12 50.00 80.00 80.00 80.00 82.72
Mexh 88.24 50.00 76.00 78.95 66.67 81.25
Db3 82.35 50.00 72.00 77.78 57.14 81.25
Du 88.24 75.00 84.00 88.24 75.00 89.34

performed worse in specificity. Morlet wavelet in this case has
the best specificity at 54% and PPV second only to Du wavelet,
with lowest sensitivity compared to others.

On the patient level, where cough classifications are aggre-
gated by the person they belong to, there is marked increase
in performance across the board, especially SPE and NPV. The
Morlet wavelet performed best with 94% SEN and 63% SPE.
Sensitivity-wise, the Paul wavelet performed at the same level
(94%), whereas specificity-wise the Du wavelet is the highest at
75%. The best accuracy was achieved at 84% using Morlet and
Du wavelets.

From our previous study on the same dataset [8], we have
shown the WHO criteria to perform at diagnostic sensitivity of
83%, specificity of 47%, and an accuracy of 75%. In that same
study, our LRM-based cough features alone achieved sensitivity
and specificity of 94% and 75%, respectively. Compared to that,
wavelet-based LRM performed better than WHO criteria and
matched our previous study on sensitivity.

Taking it a step further, we combined our wavelet feature set
with features from our previous study and repeated the model
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TABLE VI
PNEUMONIA CLASSIFICATION PERFORMANCE OF COMBINED FEATURES ON THE

INDEPENDENT TESTING DATASET

Wavelet type By sample

SEN SPE ACC PPV NPV AUC

Morlet 81.18 50.00 71.20 77.53 55.56 74.54
Paul 79.61 45.00 68.53 75.46 50.94 70.93
Mexh 80.78 51.67 71.47 78.03 55.86 75.13
Db3 78.82 45.00 68.00 75.28 50.00 70.77
Du 77.25 45.83 67.20 75.19 48.67 69.90

Wavelet type By person
SEN SPE ACC PPV NPV AUC

Morlet 94.12 87.50 92.00 94.12 87.50 86.40
Paul 76.47 62.50 72.00 81.25 55.56 79.78
Mexh 82.35 87.50 84.00 93.33 70.00 87.87
Db3 76.47 62.50 72.00 81.25 55.56 78.31
Du 76.47 62.50 72.00 81.25 55.56 83.09

creation and validation process. Table VI shows the performance
of the combined model on the prospective dataset.

At individual cough level, there were only slight variations in
the classification performance for all wavelet types combined
with the other cough features. On a patient-level diagnosis, sig-
nificant improvements were again observed in all cases, but
more markedly on Morlet and Mexican hat models. The Morlet
model combined with other cough features had 94% SEN and
88% SPE, a significant improvement from previous results and
is the best performing model in both SEN and SPE this time.
The Mexican hat model matched the performance in SPE, but
has slightly reduced SEN. Paul and Daubechies models exhib-
ited reduced SEN and increased SPE, while Du model suffers
following the combination. In the end, the Morlet and Mexi-
can Hat wavelet equally contributed to the highest classification
specificity when combined with other features.

The method proposed in this paper outperforms the WHO
criteria for resource-poor regions. Our approach also boasts of
a good potential for automation, ease of use and low overheads
for mass deployment. To the best of our knowledge, there is no
comparable work in literature on cough analysis in pneumonia,
even though cough had been used in diagnosing other respiratory
diseases. Such work (e.g., Al-khassaweneh et al. (asthma) [20];
Knocikova et al. (COPD & asthma) [27]) encouraged us to
explore wavelet analysis in pneumonia.

VI. CONCLUSION

In our previous study [8], we have shown that it is feasi-
ble to classify childhood pneumonia based on cough sounds
alone. That paper presented classification performance of 94%
sensitivity and 75% specificity. In this paper, we were able to
achieve 94% sensitivity and 63% specificity on pneumonia clas-
sification performance using wavelet features alone, based on
the same dataset. A new dimension to the study was added
by investigating wavelet features of cough sounds to improve
the classification performance. Combining the wavelet features
with features from our previous work, the specificity was further
increased to 88% with sensitivity kept at 94%.

The simplicity of the proposed features and opportunities for
low cost implementation of this technology on portable devices
make our approach valuable. Current development of our tech-
nology is ongoing on smartphones as well as a dedicated low
cost device for cough analysis.

We know crackles are characteristic of pneumonia, but not
uniquely. This is reflected in our initial results obtained with
wavelet features alone. Large proportion of pneumonia cases
will have crackles, translating to high sensitivity. However the
existence of crackles does not necessarily mean the patient has
pneumonia, thus leading to a reduction in specificity.

Wavelet features increased the performance of our algorithms
but what fraction of that increase was contributed to by the
actual existence of crackles is not clear at the moment. Wavelet
features can capture many other transient properties of a cough
in addition to the existence of crackle. In the future, we will
be addressing these issues through a detailed study involving
clinical experiments. Irrespective of the existence of crackles
in coughs, however, the method we propose will be useful in
diagnosing pneumonia in remote regions of the world.

The results may be further optimized through systematic con-
trol of the recording environment where possible. The recording
environment and background noise may affect the performance
of the algorithm. We are greatly encouraged, however, that our
method well outperformed the existing WHO algorithm, which
is in widespread use in the field.

Our methods have yet to be clinically tested in trials involv-
ing higher participant numbers from a community-based pop-
ulation. In addition, the reference standard used in pneumonia
diagnosis is the overall clinical diagnosis aided by laboratory
testing, X-ray assessment (only when clinically required) and
the clinical course of the disease. Not all subjects were put
through X-ray imaging. Results presented in this study should
be interpreted in this context.

APPENDIX A

WT: Our method requires the computation of CWT from
cough sounds. Here, we describe the application of CWT on a
recorded cough sound f(x).

Let ψa,b(x), a ∈ R\ {0} , b ∈ R be a family of functions
comprising of translations and rescales of function ψ(x) ∈
2 (R), where x is the cough signal in time domain. The wavelet
function, ψ, can be written as follows:

ψa,b(x) =
1√
|a|

ψ

(
x − b

a

)
. (5)

Also called the mother wavelet, ψ must satisfy the admissi-
bility condition:

Cψ =
∫
R

|Ψ(ω)|2

|ω| d ω < ∞ (6)

where Ψ(ω) is the Fourier transformation of ψ(x). This implies
[21]

Ψ (0) =
∫

ψ (x) dx = 0. (7)
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Fig. 4. Pneumonia classification performance on training dataset using various
numbers of scale. Sensitivity fluctuates slightly while specificity shot up as
number of scales was increased to 64.

This property of the function ψ motivates the name wavelet,
for it is well localized and can be made arbitrarily fine via suffi-
cient scaling. This allows adjustment of the time and frequency
resolution of the wavelet to better correlate with the target sig-
nal, in this case various crackle types with different 2CDs. For
a cough function f(x), the continuous wavelet transformation is
defined as a function of two variables:

CWTf (a, b) = 〈f, ψa,b〉 =
∫

f(x)ψa,b (x)dx. (8)

The scale and translation parameters, a and b, vary continu-
ously over R\ {0} ×R.

APPENDIX B

Choice of scales: Appendix A outlines the details in the scale
selection process. We performed WT on each cough in the train-
ing dataset with Morlet wavelet. The number of scales used was
varied from 8 to 512 scales in power of two increments. For
each scale, a wavelet feature set was calculated for each of the
440 cough samples in the training set as per the method de-
scribed in Section IV. The training performance was calculated
and tabulated for comparison.

The result of this analysis is shown in Fig. 4, where sensi-
tivity and specificity performance for each scale is shown. The
performance of the algorithm increases as the number of scales
increase, and plateaus after n = 64. The computational com-
plexity increases with increasing n. Thus, we picked n = 64 as
the best compromise. Other performance measures are listed
below in Table VII.

APPENDIX C

In this appendix, we briefly describe the additional mathe-
matical features of cough we used in Section IV-B Stage 2.2.
Detailed description of these with mathematical implementation
can be found in [8].

TABLE VII
PNEUMONIA CLASSIFICATION PERFORMANCE BASED ON FEATURES DERIVED

FROM WAVELET REPRESENTATION ON VARIOUS SCALES

Scale SEN SPE ACC PPV NPV n

8 93% 29% 74% 75% 66% 3
16 85% 56% 76% 82% 62% 8
32 89% 75% 85% 89% 75% 9
64 91% 90% 91% 95% 82% 17
128 90% 85% 88% 93% 78% 17
256 95% 85% 92% 93% 88% 20
512 92% 86% 90% 94% 83% 20

n = number of features selected.

1) The BGS: The third-order spectrum of a signal is known as
the bispectrum. The bispectrum is a 2-D signal. However,
it is proved that any 1-D oblique slice of the bispectrum
other than the slices parallel to the axes: ω1 = 0, ω2 = 0
and ω1 + ω2 = 0 carries sufficient information to char-
acterize the entire 2-D bispectrum. We used bispectrum
slice inclined to the ω1 by 450 and pass through the ori-
gin. From this bispectrum slice, we computed the BGS by
computing the ratio of area under the curve for following
frequencies f1 = 90 Hz, f2 = 5 kHz, f3 = 6 kHz, and
f4 = 10.5 kHz.

2) NGS: NGS is a numerical measure of non-Gaussianity of
a given segment of data. The normal probability plot was
utilized to obtain a measure of the Gaussianity of a set of
data.

3) FF: In speech analysis, FF are referred to as the resonances
of the vocal tract. In cough, it is reasonable to expect that
the resonances of the overall airway will be represented in
the formant structure. A classic example for this is wheeze.
Existence of mucous can also change acoustic properties
of airways. We included the first four formants (F1, F2, F3,
and F4) in our candidate feature set. We computed these
by peak picking the linear predictive coding spectrum of
cough segments.

4) LogE: The LogE for every subsegment of cough event
was computed.

5) ZCR: The number of zero crossings was counted for each
subsegment of cough event.

6) Kurtosis (Kurt): The kurtosis is a measure of how peaky
the probability density distribution of a data segment.

7) MFCC: The computation of MFCC involves the estima-
tion of short-term power spectra, mapping to Mel fre-
quency scale and then computing the cepstral coefficients.
We included 12 MFCCs in our feature set.
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