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Monitoring Cardiac Stress Using Features Extracted
From S1 Heart Sounds

Jonathan Herzig∗, Amitai Bickel, Arie Eitan, and Nathan Intrator

Abstract—It is known that acoustic heart sounds carry signif-
icant information about the mechanical activity of the heart. In
this paper, we present a novel type of cardiac monitoring based
on heart sound analysis. Specifically, we study two morphologi-
cal features and their associations with physiological changes from
the baseline state. The framework is demonstrated on recordings
during laparoscopic surgeries of 15 patients. Insufflation, which
is performed during laparoscopic surgery, provides a controlled,
externally induced cardiac stress, enabling an analysis of each pa-
tient with respect to their own baseline. We demonstrate that the
proposed features change during cardiac stress, and the change is
more significant for patients with cardiac problems. Furthermore,
we show that other well-known ECG morphology features are less
sensitive in this specific cardiac stress experiment.

Index Terms—Biomedical signal processing, cardiology,
laparoscopy, morphological features, phonocardiography.

I. INTRODUCTION

PATIENTS undergoing noncardiac surgery are at increased
risk of cardiovascular morbidity and mortality [1]. Ev-

ery year, more than 33 million patients undergo noncardiac
surgery in the United States alone. Approximately 4% of these
patients experience perioperative complications [2]. Cardiovas-
cular complications arising from noncardiac surgery exceeds 1
million patients worldwide [3], and these complications account
for one third of perioperative deaths [4]. In the coming decades,
it is predicted that perioperative complications will double due
to the increasing size of the elderly population in most developed
countries [2].

Monitoring cardiac stress is a standard procedure in critical
care medicine. It is most commonly performed via electrocar-
diography (ECG). ECG monitoring alone is not adequate to
detect ischemia in real time in the intensive care unit or in
an intraoperative setting [5]–[7]. Specifically, conventional vi-
sual ECG monitoring for the detection of transient ST-segment
changes is inaccurate [7].

Another way to monitor cardiac status is by analyzing the
acoustic signals of the heart. Heart sounds (HS) are generated
by mechanical cardiac activity—blood flow and the closure of
valves. HS can change their timing, magnitude, and morphol-
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ogy due to different cardiac events. These changes happen due
to the complex interplay between pressure gradients in the atria,
ventricles, and arteries. The resulting nonstationary signal in-
directly reflects the physiological attributes of the subject [8].
The HS signal of a healthy heart is composed of two distinct
components—the first HS, S1 , and the second HS, S2 . S1 occurs
at the end of the isometric contraction period, during systole,
and S2 occurs after the isovolumetric relaxation period, during
diastole [9].

The pulmonary system contributes to the modulation of car-
diovascular mechanical activity. Respiratory changes in pleural
pressure, arterial resistance, and venous return can have signifi-
cant effects. These effects lead to significant differences between
the properties of S1 and S2 , which occur during inspiration and
expiration [10].

The field of automated analysis of HS signals requires work
at several levels, from signal processing to pathology diagnosis.
The most important avenues of research that are considered in
this paper are listed below:

Noise removal: Removal of various types of noise (sound
from lungs, background noise, and friction between the record-
ing device and the skin), which can distort the features of basic
HS components and decrease the quality of further analysis. Var-
ious methods have been used to separate HS signals from lung
sounds, such as the manipulation of weight scales in wavelet
multiresolution decomposition [11], [12] and singular spec-
trum analysis [13]. Other denoising methods include moment
segmentation analysis [14] and multiple HS signal averaging
[12], [15].

Segmentation: Segmentation of HSs into cardiac cycles and
the partitioning of those cycles into HS components (S1 , sys-
tolic phase; S2 , diastolic phase). Methods for segmentation often
involve choosing a signal representation, such as the homomor-
phic transform [16], [17], continuous wavelet transform [18],
[19], Hilbert transform [20], or Stockwell transform [21], [22].
A threshold is set on the output signal to detect S1 and S2 events.
The use of an external ECG signal can assist segmentation, as
S1 occurs after the QRS complex [15], [23].

Accurate localization of S1: Some applications, e.g., tracking
blood pressure changes and monitoring respiration, demand an
accurate S1 localization in addition to the basic segmentation
of HS. This can be accomplished by using ensemble averaging
[15] or Shannon entropy [13], [24].

This paper presents a general physiological monitoring sys-
tem for cardiac stress, which is based on HSs. Features are
extracted from the S1 HSs during baseline (BL) activity and
during stress, and these features are compared so that each pa-
tient serves as their own control. This type of monitoring can
be performed while patients undergo surgery with anesthesia or
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while participating in any other activity with a cardiac risk. The
system is noninvasive and portable; therefore, it could also be
used for home monitoring.

The framework presented in this paper is applied to HS signals
recorded during laparoscopic surgeries. The immediate cardio-
vascular function changes that may occur due to CO2 insuffla-
tion are characterized by a decrease in cardiac output, cardiac
index, and stroke volume (decreased venous return), and an in-
crease in systemic vascular resistance. This pattern is the result
of the interaction between increased intra-abdominal pressure,
neurohumoral responses, and the effects of absorbed CO2 [25].
The effects of CO2 (like mild respiratory acidosis) should be
controlled by mechanical ventilation, and the proper evacuation
of the gas at the end of surgery.

It should be noted that hemodynamic cardiovascular changes
during laparoscopic operations depend on many factors, such
as the patient’s posture during abdominal insufflation, their
hemodinamic status before insufflation, general medical health
etc. Our study population included patients undergoing laparo-
scopic cholecystectomy, while the patient is in the antitrende-
lenburg (head up) position, expecting more adverse cardiovas-
cular changes during creation of positive pressure pneumoperi-
toneum. Such inhomogeneity in subjects’ response makes the
chosen framework sufficiently challenging for a realistic study
on cardiovascular changes under cardiac stress.

II. METHODS

The following computational framework was developed to
identify the features of physiological changes that occur during
and after cardiac stress. Monitoring these changes is critical for
the prevention of cardiovascular complications during surgery.
Early detection of these complications can help the surgeon to
make an informed decision during surgery. In some cases, the
procedure should be stopped to prevent further complications,
and in other cases, longer hospital admission should be provided
after the procedure is finished.

It is desirable to extract features for physiological changes
that are comparable across patients. However, patients are het-
erogeneous. Each patient has a different cardiovascular char-
acteristic behavior. Furthermore, some patients have no cardiac
diseases, and others suffer from a variety of diseases with differ-
ent physiological manifestations. We wish to apply a monitoring
technique that takes into account the normal cardiac functioning
of the patient and measures the deviation from normal function.
In particular, we need the system to be useful for patients with
a healthy heart as well as for those who suffer from a variety
of cardiac problems. The novel feature of our method is that
it addresses this problem by extracting features that compare
the patients current cardiac state with the BL cardiac activity
recorded previously. Our method, therefore, takes into account
the normal cardiac activity of the individual.

We have analyzed recordings of HSs from several patients
at BL activity and during cardiac stress, and we have extracted
several candidate features that appear to distinguish the BL state
from cardiac stress. Of these features, the two most significant
features are presented here. Figs. 1 and 2 show recordings from

Fig. 1. Multiple S1 HSs (upper row) and ECG recordings (lower row) for a
single patient (patient ID: PA) that were recorded during laparoscopic surgery.
The recording site for the HSs was the second left intercostal space (2L). HSs
recorded before insufflation are shown in red. HSs recorded during insufflation
are shown in blue. Inspiration samples are on the left, and expiration samples
are on the right. ECG samples are all aligned such that R wave onset is at
50 ms. HSs onset portrays the heart electrical conductivity velocity. We see
that the insufflation and noninsufflation phases have different average onsets,
indicated respectively by the blue and red arrows. It is also notable that the
ECG samples for the different phases are practically the same, showing little
variance.

Fig. 2. Multiple HSs and ECG recordings with the same layout and record-
ing site as Fig. 1 but for a different patient (patient ID: SUA). This example
demonstrates the different morphologies that the insufflation and noninsuffla-
tion phases can have. Note that S1 onset, indicated respectively by the blue and
red arrows, is similar for the two phases, as is the ECG morphology.

patients that demonstrate the extensive deviation of HS features
despite the similarity of the ECG readings. The first feature
measures the difference in S1 sound morphology between the
BL and cardiac stress states. This nonparametric feature cap-
tures the physiological changes that are caused by cardiac me-
chanical activity, without addressing specific diagnostics. For
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Fig. 3. Computational framework.

instance, morphology of recordings during insufflation pre-
sented in Fig. 2 may indicate split S1 HSs [26] which results
from asynchronous closure of mitral (M1) and tricuspid (T1)
valves. However, this feature may be applicable to numerous
cardiac problems that may arise during stress, such as cardiac
ischemia and congestive heart failure. The second feature mea-
sures the cardiac electromechanical activation time. This repre-
sents the temporal delay in S1 onset following the QRS wave
(RS1). This feature is linked with a specific physiological be-
havior, and it is known to have significantly different values for
patients with impaired left ventricular contractility [27] and for
patients who have experienced systolic heart failure [28]. Other
features that were extracted and found to be less significant were
measures of HS morphology deviations between the inspiration
and expiration phases of respiration. These are related to the
health of the heart and to intrathoracic pressure.

The details presented here refer to the setup for a noncardiac
surgery, but the framework can be applied to any procedure with
cardiac risk.

For each patient, two sets of S1 HSs were recorded a BL
set, which contains HSs recorded under anesthesia before the
beginning of surgery, and a “monitoring state” set (MS). MS
can contain HSs recorded during surgery, or HSs recorded after
surgery, while the patient is still under anesthesia. Hierarchical
clustering was applied to the BL set [23]. The most significant
cluster centers were used as a template representing the phys-
iological cardiac state under no cardiac stress. Clustering was
also applied to all sets of HSs for outlier rejection. This is an-
other novel feature of this paper; only the samples contained
in the most significant clusters were kept for further analysis.
For each set, the average delay relative to the BL template was
calculated. The mean squared error (MSE) value for each set,
relative to the BL template, was calculated as well to measure
the change in signal morphology. Features representing the re-
lationship between the two sets were then extracted from these
calculations.

The computational framework consists of the building blocks
described in Fig. 3 (described below in detail).

A. Preprocessing and Segmentation

HSs were recorded using a digital data acquisition system.
The system is consisted of piezoelectric contact transducers,
which were placed in the same locations for all patients. More
details of the phonocardiogram recording are provided in a pre-
vious report [29]. The input to this stage is a vibro-acoustic

signal consisting of multiple cardiac cycles that are to be moni-
tored for cardiac stress. This signal can be recorded at any stage
of the surgery. The output of this stage will be a set of S1 sounds
of the MS).

Except for producing the MS, the BL should be produced
once during the monitoring procedure for each patient. This set
consists of S1 sounds recorded following the start of anesthesia.
The motivation is to generate a template for patient-specific
“normal” cardiac activity, which can be highly variable across
patients. For this reason, each patient is assigned a specific
BL. We assume that following the start of anesthesia, minimal
cardiac stress is induced from the procedure itself, so we can
refer to this stage as a BL, that is specific to the patient’s cardiac
functioning.

The acquired vibro-acoustic signal was digitally filtered by a
Chebishev type-I IIR bandpass filter of order 4, with a passband
between 20 and 75 Hz. The least noisy recording channel on this
passband was manually selected for further analysis. The HS
signal was then partitioned by using a simultaneously recorded
ECG signal. The peaks of the ECG-QRS complexes were used
as reference points. The S1 sound was defined as the segment
beginning 50 ms before the R-wave peak, and ending 250 ms
later. These preprocessing parameters were selected as described
previously [23]. This paper addresses monitoring by extracting
the features of S1 segments because most of the HS energy is
concentrated in this component. S1 segments are standardized
after extraction. Segments with peaks significantly below or
above average are considered to be invalid segments and are
filtered out.

B. Inspiration and Expiration Discrimination

The respiratory cycle modulates the HS morphology: Heart
beats that follow high breathing pressure during expiration are
morphologically different from beats following low breathing
pressure during inspiration [10]. We would like to find a com-
pact BL representation for each patient, which best describes
the cardiac activity for that patient. Therefore, we discriminate
between S1 sounds collected during expiration and inspiration,
and we extract different compact BLs for each phase. The dis-
crimination process is detailed below. Further analysis is applied
separately for these two respiratory phases. The output of this
stage includes BL and MS sets that contain only the segments
of the chosen respiratory phase (inspiration or expiration).

To discriminate between the phases, we make use of the fact
that the respiratory signal is generated by the movement of
the chest during respiration. This signal can be extracted from
the HS signal [10] by filtering with a bandpass filter in the
range 0–0.5 Hz. The breathing signal is divided into respiratory
cycles. The lowest point of the cycle corresponds to the end
of expiration and the beginning of inspiration, and the highest
point corresponds to the end of inspiration and the beginning
of expiration. The respiratory cycle is mapped to the range of
0–360, the sinusoidal cycle. Inspiration corresponds to values
of 0–180, and expiration to values of 180–360. Fig. 4 shows
an example for a patient’s breathing signal with the described
mapping.
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Fig. 4. (Top) three respiratory cycles. The lowest point of the cycle corre-
sponds to the end of expiration and beginning of inspiration, and the highest
point to the end of inspiration and the beginning of expiration. (Bottom) map-
ping of the respiratory cycle to the range 0–360. The graph shows a sinus of this
map. The red intervals are times of S1 beats.

C. Signal Representation

The choice of representation method for S1 sound is fun-
damental for the analysis framework. Different representations
highlight different features of the sound and may lead to dif-
ferent clustering results [30]. We examine three types of signal
representations (which correspond to three types of estimators):
Time domain, envelogram, and time–frequency representations.

The inputs to the signal representation stage are the MS and
BL datasets. The outputs are these sets after transformation to
a signal representation. The same transformation should be ap-
plied to both sets. We detail the transformation process for one
set because it is similar for the other set: The input is a set of
N S1 sounds, B = {b1 , b2 , . . . , bN }, where bi is the represen-
tation of an S1 HS during a single cardiac cycle. All signals
were recorded during the same phase of surgery. Furthermore,
all signals were recorded during the same phase of the respi-
ratory cycle (inspiration or expiration). The signals were given
in a time-domain representation. Extracting the different signal
representations from the detailed input was performed in the
following way.

Time-domain representation: This is the raw representation
of the data. Therefore, BT D = B , where BT D denotes the set
of signals under the time-domain representation.

Hilbert envelogram representation: This representation car-
ries less information, but it is also less noisy than the time-
domain representation [20]. Every signal bi(t) ∈ B is trans-
formed by Hilbert transform, to produce the envelogram, b

′
i =

E(t). The output is BE = {b′
1 , b

′
2 , . . . , b

′
N }, where BE is the

envelogram representation of B.
Stockwell transform representation: This was found to be

a suitable time– frequency representation for HSs because it
avoids the tradeoff between temporal and spectral resolution
that afflicts STFT [22], [30]. The S-transform was applied to
each signal bi(t) ∈ B to produce the S-matrix of the HS, b

′
. The

output is BT F = {b′
1 , b

′
2 , . . . , b

′
N }, where BT F is the time–

frequency representation of B.

D. Cluster Analysis

Hierarchical Clustering was applied to both sets of HSs for
two purposes.

Outlier rejection: Even sequential S1 sounds recorded during
a short period of time can have large variability [10]. Further-
more, background noise and friction between the recording de-
vice and the skin can corrupt signals. To obtain a representation
with less variability and fewer outliers, we only considered the
segments with the most significant clusters for further analysis.
This approach for noise reduction is novel, and our experiments
indicate that it is better for the monitoring task described in this
paper [29].

Extracting a BL template: This paper introduces features that
measure temporal and morphological differences between MS
and BL. Signals in the BL set represent the normal cardiac ac-
tivity of a patient. We wish to extract a patient-specific template
representing this activity using compact information. We use
the centers of the most significant clusters as the template. The
inputs for this stage are the BL and MS sets after transformation
to a certain signal representation. We denote these sets as BL
and MS. The clustering process is identical for both sets, so we
describe it for a general set B = b1 , b2 , . . . , bN of N S1 sounds.
We use hierarchical clustering as described previously [23]. The
distance between two clusters is defined by

dGA (G,H) =
1

NG · NH

∑

i∈G

∑

j∈H

dij (1)

where NG , NH are the respective number of observations in
each group, and dij represents pairwise observation dissimilar-
ity [31].

The distance metric used to compare observations is the
correlation

dij =‖mi−mj‖=1−
∑

t(mi,t − mi)(mj,t − mj )√∑
t(mi,t − mi)2

√∑
t(mj,t − mj )2

(2)
where mi and mj are the signals of length n. Additionally,
mi = 1/n

∑
t mi,t . This distance metric was chosen because it

produced more compact clusters than other metrics. To obtain
the desired number of clusters, we pruned the hierarchical clus-
tering tree. Observations beneath each cut were assigned to a
single cluster.

The cluster analysis assigns a cluster identifier to each
signal cycle, using the hierarchical clustering algorithm and
dendogram pruning, which results in a clustered set C =
{(b1 , c1), (b2 , c2), . . . , (bN , cN )}, where cj ∈ {1, . . . , M} are
cluster identifiers that are sorted by cluster size, so |C1 | ≥
|C2 | ≥ · · · ≥ |CM |. Using this notation, a cluster Cj is the set of
signal cycles with cluster identifier cj : Cj = {i|(bi , cj ) ∈ C}.
The center of a cluster Cj is the weighted average of the cluster
elements, in which each signal cycle is weighted by its similarity
to the clusters arithmetic mean

Cj =
∑

i∈Cj
wibi , wi = 1 − D(bi , (

∑
i∈Cj

bi)/|Cj |), where
D is a distance function [30].
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Fig. 5. Temporal shifting algorithm. This algorithm determines the morpho-
logically closest template cluster center, and it determines the temporal delay and
morphology change relative to that cluster center. Line 4 computes the temporal
shift that minimizes the MSE between the signal and a cluster center. Line 7
finds the cluster center which has the minimum MSE, after temporal shift, with
b. The output is used in Sections II-E and II-F.

After M clusters are obtained, the top k largest clusters are
denoted as significant clusters, where k is a parameter that needs
to be set.

E. Morphology Analysis

The morphology of an S1 sound encapsulates information
about cardiac mechanical activity. The change in morphology
from the BL state may correlate with the cardiac stress that
the patient experiences (Fig. 2 demonstrates the extent of the
morphology change of the first HS). We use this feature as a
general indication for change in the physiological state, which
is not specific to a certain type of cardiac problem, and may
be applicable for identifying numerous cardiac problems that
affect cardiac mechanical activity.

The goal is to measure changes in morphology during the
ongoing surgery. For this purpose, an MSE estimator is used.
The MSE for two vectors with length n is defined as follows:

MSE(x, y) =
1
n

n∑

i=1

(xi − yi)2 . (3)

The input to this stage is the output of the hierarchical cluster-
ing algorithm: The clustered sets of BL and MS. CBL

1 , . . . , CBL
k

and C
BL
1 , . . . , C

BL
k are taken to be the k most significant clusters

and the cluster centers of BL, respectively. CMS
1 , . . . , CMS

k and

C
MS
1 , . . . , CMS

k are similarly defined for MS. The cluster center
vectors of BL are used as a compact template for the patient’s
normal cardiac functioning.

To encapsulate the morphology changes alone without con-
sidering the temporal shifts, we describe the following temporal
shifting algorithm (see Fig. 5). We first define the set of samples
we wish to monitor: B = {bi |i ∈

⋃k
j=1 CMS

j }. It is the set of
signals contained in the k most significant clusters of MS.

The temporal shifting algorithm determines the morpholog-
ical change and temporal delay of each MS signal relative to
its closest significant cluster center in the BL set. The aver-
age MSE, which is the average change in morphology of MS

samples relative to the BL template, is then calculated

MSmorph =
∑

b∈MS

1
|MS|Mb (4)

where Mb is the change in morphology of signal b compared to
the template, as defined in the algorithm.

The temporal shifting algorithm can be used when B =
{bi |i ∈

⋃k
j=1 CBL

j }, i.e., when the monitored set is the set of
signals from the k most significant clusters of BL. Thus, the
average change in morphology of the BL set relative to the
patient’s template is

BLmorph =
∑

b∈BL

1
|BL|Mb. (5)

This value is important because BL may have great variability,
which would lead to a less accurate (smeared) representation
for the template. This variability represents how BL is different
from the template.

The patient’s morphology feature, Fmorph , is defined as
follows:

Fmorph = ln

(
1 +

MSmorph

BLmorph

)
. (6)

This encapsulates the ratio of morphology change between
BL and MS on a logarithmic scale. The logarithmic scale was
chosen to give less importance to large morphology ratios. Large
ratios can occur if BLmorph is small.

We note the differences in analysis under the time–frequency
signal representation that arise because a signal is represented
as a time–frequency matrix. Because of these differences, we
use an appropriate MSE measure for the matrices. Additionally,
line 4 in the temporal shifting algorithm was changed to allow
shifting the signal by frequency f0 . Thus, we minimize the value
of MSE(C(t, f), b(t − τ, f − f0)).

F. S1 Onset Analysis

One feature known to be influenced by increased cardiac
stress is the time difference in cardiac electromechanical acti-
vation (RS1). Fig. 1 depicts recordings for patients who show
significant changes in activation time. We calculate the differ-
ence in average RS1 for the two sets (BL and MS). For this
purpose, there is no need to directly calculate the RS1 tim-
ing for the signals. We use the patient’s template to calculate,
for each signal, the delay in S1 onset relative to the template.
Then, the difference in the average delay between both sets is
calculated.

The outputs from the temporal shifting algorithm, when the
input is B = {bi |i ∈

⋃k
j=1 CMS

j }, are the morphological change
and temporal delay of each MS signal relative to its closest
significant cluster center in BL. The average delay of MS relative
to the BL template is, thus, calculated as follows:

MSdelay =
∑

b∈MS

1
|MS|τb . (7)

When the input to the algorithm is B = {bi |i ∈
⋃k

j=1 CBL
j },

the outputs are morphological change and temporal delay for
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each signal in BL relative to the template. Thus, the average
delay of the BL set relative to its template is calculated as
follows:

BLdelay =
∑

b∈BL

1
|BL|τb . (8)

The patient’s delay feature, Fdelay , is defined to be the differ-
ence between these two measurements

Fdelay = MSdelay − BLdelay . (9)

To summarize this section, we have described how to produce
the morphology feature (Fmorph ) and the delay feature (Fdelay ).
The inputs for this process are the sets of S1 sounds BL and
MS, in a specific respiratory phase (inspiration or expiration).
We extract a robust patient-specific template to represent normal
cardiac activity. The different signal representations that we
described (which include time-domain, envelogram, and time–
frequency representations) highlight different attributes of the
signal. Thus, each signal representation yields different results
and corresponds to a different estimator.

G. Monitoring Using Multiple Estimators

Sections II-A to II-F describe the flow of monitoring using a
single estimator. The main computational task within this work
flow is to estimate the temporal shift between an S1 sound and
the patient’s template. For this, we used the approach of shift-
ing the signal until the MSE is minimized between the two
signals, as described in the temporal shifting algorithm (see
Section II-E). However, for this task, some signal representa-
tions are more robust across different patients due to the large
variability of S1 morphology across patients.

For this reason, we introduce the following process to utilize
different estimators based on different signal representations.
From the three representations, we generate three estimators.
We combine the results of these three estimators, or experts, in
a “mixture-of-experts” estimator. We accomplish this by taking
the average value of the two closest estimators. This produces
more robust results across patients.

1) Initial Preprocessing: The signal analysis includes the
following stages: 1) preprocessing and segmentation and 2) in-
spiration and expiration discrimination. These steps are per-
formed for each expert based on the time-domain signal.

At this point, BL and MS, which are in the time domain, are
transformed as described in Section II-C to produce a Hilbert en-
velogram copy (BLE , MSE ) and an S-transform copy (BLT F ,
MST F ). Clustering was applied to each of the signal represen-
tations separately, as described in Section II-D, to produce the
k most significant clusters for each representation. The most
significant clusters for the two different signal representations
can contain different cardiac cycles. For this reason, the cy-
cles to be monitored were taken to be cardiac cycles that were
contained in the k most significant clusters for all three signal
representations. The same goes for cycles from the patients BL
set.

2) Morphology and S1 Onset Analysis: The temporal shift-
ing algorithm was applied for every signal representation. The

set includes every S1 sound contained in the k most significant
clusters for all signal representations. Each S1 sound gener-
ates three estimates: τT D

b , τE
b , and τT F

b . These are the tempo-
ral shift estimates relative to the patient’s template under the
time-domain, envelogram, and time–frequency signal represen-
tations, respectively. Each representation has its own template.

To utilize the information gained by the three estimators, we
define the mixed temporal estimate, τb , for sound b to be the
average shift for the two most similar estimators

{a, b} = argmina,b |a − b| s.t. a, b ∈ {τT D
b , τE

b , τT F
b }

and a �= b (10)

τb =
a + b

2
. (11)

With this definition, we assume that if two estimators give
similar results, they are more likely to be accurate.

After estimating the temporal shift of b relative to its tem-
plate, we take the morphology change for Mb , to be Mb =
MSE(C(t), b(t − τb)), where C is the template cluster center
that is morphologically closest to b. This calculation is per-
formed under the time-domain signal representation.

III. RESULTS

A. Experimental Setup

The study group included 15 patients scheduled for elective
laparoscopic cholecystectomy, due to symptomatic cholecys-
tolithiasis. The surgeries were performed in Nahariya hospital.
The vibro-acoustic HSs were acquired from multiple record-
ing locations. Supplementary data, such as electrocardiogram
recordings, were acquired simultaneously.

The patients included six men and nine women, aged between
24 and 92 years. Some patients suffered from heart disease as
assessed by medical history, clinical symptoms, ECG, echocar-
diography, coronary catheterization, and coronary computed to-
mography. Most heart-diseased patients suffered ischemic heart
disease, hypertension, and old myocardial infarction. Cardiac
pacing was not included in any of the patients. The details of the
medical data are included in Table I. From here on, patients who
suffered from a heart disease are referenced as “ill,” while other
patients without any heart diseases are referenced as “healthy.”

Surgery was performed under general anesthesia and posi-
tive pressure pneumoperitoneum was established by CO2 gas
that was kept automatically under pressure of 14 mmHg. Fol-
lowing introduction of a video camera and additional canulae,
the gallbladder was dissected, resected, and pulled out of the
abdominal cavity by an endobag. Afterwards, the gas was re-
moved to desuflate the abdominal cavity, before completion of
the operation.

Recording was performed during three different phases of the
surgery: After anesthesia, during pneumoperitoneum, and after
desufflation. Each recording took at least 30 s. The recordings
were labeled according to operation stages. The recorded signals
were saved digitally to the hard disk of the recording system.
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TABLE I
DETAILS OF LAPAROSCOPIC PATIENTS

ID Age Gender Diagnosis Details For Cardiac Diseases

AZ 29 F Biliary colic Cholelithiasis Obstructive jaundice
AJ 24 F Cholelithiasis
KA 69 M Acute pancreatitis, Calculus of Gallbladder I.H.D, old M.I, LVH, s/p CVA
DM 84 M Acute pancreatitis, Calculus of Gallbladder Old MI, I.H.D, hypertension, type II D.M, CRF, s/p CVA,

LVEF 48%
RB 60 F Cholelithiasis, Calculus of Gallbladder
SHA 43 M Calculus of Gallbladder IHD, SVT, hypertension, obesity
PZ 92 F Acute pancreatitis, Calculus of Gallbladder Cholelithiasis
YY 86 M Calculus of Gallbladder Obstructive jaundice COPD, IHD, DM, moderate MR,
PA 76 F Acute pancreatitis, Calculus of Gallbladder
ES 35 F Choledocholithiasis Cholelithiasis, Calculus of Gallbladder

Obstructive jaundice
Hypothyroidism, effort dyspnea

NA 27 F Cholelithiasis, Calculus of Gallbladder
DE 53 F Calculus of Gallbladder
SUA 29 F Cholelithiasis, Calculus of Gallbladder
GR 58 M Obstructive jaundice Calculus of Gallbladder IHD, s/p MI (infero posterior and Rt, including stent), DM,

akinetic basal, septal and dorsal wall on echocardiography
MM 28 M Cholelithiasis, Calculus of Gallbladder Hypertension, DM, clinical presentation of CHF

TABLE II
MEAN NUMBER OF PROCESSED CARDIAC CYCLES ACROSS SUBJECTS

Phase Inspiration Expiration

Before anesthesia 21.3 ± 8.3 19.8 ± 11.7
During insufflation 28.4 ± 21.4 16.6 ± 10.1
After desufflation 18.1 ± 6.7 14.6 ± 6.1

B. Parameter Selection

The physiological monitoring framework was applied indi-
vidually to data for each of the 15 patients. The data were
constructed from a single recording channel, chosen based on
its recording quality. Only the S1 components of the HS cy-
cles were used. The mean number of cardiac cycles processed
across subjects, per surgery phase (before induction of anes-
thesia, during abdominal insufflation or right after desufflation)
and per respiration phase (inspiration or expiration) is detailed
in Table II.

After signal preprocessing, the signals were transformed into
three signal representations: Time-domain, Hilbert envelogram,
and the S-transform (time–frequency representation). Analysis
of the resulting time–frequency matrix indicates that most of the
energy is concentrated at frequencies between 10 and 40 Hz. For
this reason, we take 100 nonoverlapping frequency bands in this
frequency range for the S-transform analysis.

Hierarchical clustering was applied to the dataset, and the
clustering tree obtained was pruned to obtain four clusters. The
number of clusters was empirically tuned; experiments with
fewer clusters showed results that were not sensitive enough
for different morphologies. Experiments with more than four
clusters resulted in sparse clusters. The number of significant
clusters was set to k = 2. This means that the data in the two
largest clusters were considered for further analysis, and the
data in the two smallest clusters were considered outliers. On
average, 76.8% of the data were contained in the two largest
clusters. For the mixture of estimators, only signals contained

in the two largest clusters of all signal representations were
analyzed. This intersection covers 67.8% of the original data, on
average. This indicates that the clustering processes for different
signal representations resulted in similar dendograms.

C. Qualities of Estimators

Our framework extracts features from HSs. In the process of
extraction, we estimate the relative delay, τb , in the onset be-
tween an S1 sound, b, and a template, T , in one of the signal
representations. This estimation is performed by using the tem-
poral shifting algorithm, i.e., by shifting b until a minimal MSE
is obtained between the two signals. This is denoted by

Θ̂(b, T ) = τb . (12)

For an unbiased estimator, the error is MSE(Θ̂) = V ar(Θ̂)
[32]. We compared the qualities of our estimators by calculating
the average sample standard deviation of τb across patients,
which is equal to the estimator error, for each phase of surgery
and for each estimator. Fig. 6 indicates that for all phases of
surgery, the errors of the mixture-of-experts estimator and the
raw signal estimator are the lowest.

D. Estimator Monitoring Results

The results for the extracted features for each patient and for
each phase of surgery are presented. The results are presented
only for the mixture-of-experts estimator (see Fig. 7) because
it was found to be best in terms of error rate and manual as-
sessment. Full results can be found in another work [29]. The
results are presented only for the inspiration respiratory phase.
The reason for this is that the artificial inspiration induces more
stress than artificial expiration.

We see that for the introduced estimator, there is a shift in
the extracted features relative to the BL state. It is evident that
patients who are tagged as having cardiac problems experience a
more severe shift in their extracted features during insufflation.
We notice that this estimator can be used for a high-quality
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Fig. 6. Mean sample STD across patients for each phase of surgery and for
each type of estimator.

Fig. 7. Mixture-of-experts estimator output for the relative delay feature (top)
and relative morphology feature (bottom) for each of the 15 patients during
the three different surgery phases. Green circles represent healthy patients, and
red circles represent ill patients. Initials also appear for each patient. A line
represents the temporal changes for a given patient. The mean for each group of
patients is represented by a star. Error bars represent the STD for each group.

classification of ill and healthy patients during insufflation. It is
also evident that right after abdominal desufflation, the ability
to discriminate between ill and healthy patients deteriorates.
Moreover, for some of the patients, it is clear that the value for the
extracted features gets closer to the BL. These findings indicate
that the features we have chosen are beneficial for monitoring
cardiac stress.

TABLE III
CLASSIFICATION ACCURACY FOR EACH FEATURE,

MONITORED PHASE, AND ESTIMATOR

Feature Phase Raw Signal Hilbert Transform S Transform Mixture

Fd e la y During 0.6 0.87 0.67 0.73
Fm o rp h insufflation 0.73 0.33 0.4 0.67
Both 0.8 0.8 0.8 0.8
Fd e la y After 0.73 0.07 0 0.47
Fm o rp h desufflation 0.4 0.4 0.4 0.33
Both 0.73 0.13 0.33 0.47

TABLE IV
P-VALUE SCORE OF WELCH’S T-TEST BETWEEN HEALTHY AND ILL PATIENTS

FOR EACH FEATURE, MONITORED PHASE, AND ESTIMATOR

Feature Phase Raw Signal Hilbert Transform S Transform Mixture

Fd e la y During 0.15 0.05 0.02 0.03
Fm o rp h insufflation 0.17 0.42 0.4 0.02
Fd e la y After 0.06 0.96 0.89 0.33
Fm o rp h desufflation 0.62 0.59 0.47 0.46

E. Healthy and Ill Patient Discrimination

1) Classification: The presented framework extracts the rel-
ative delay and relative morphology features for each monitoring
phase. Section III-D presents the evolution of both of the fea-
tures during different phases of surgery for all patients. Looking
at this graph, it appears that the presented features can be used
to discriminate between ill and healthy patients during insuf-
flation. We tested this assumption by examining the following
classification problem: For each monitoring phase, feature, and
estimator, we calculated the accuracy of classifying patients as
healthy or ill. The clinical condition of each patient is detailed
in Section III-A. We used an SVM classifier with a linear kernel.
Because the number of samples is small (only 15 patients), we
used leave-one-out cross validation.

Table III indicates that classification using both of the fea-
tures gave good results during insufflation (80% accuracy). The
average accuracy (for Fdelay , Fmorph , and for both features) is
best with the mixture estimator (73 ± 6% accuracy). This agrees
with previous results presented in Sections III-C and III-D.

We also note that after desufflation, the classification quality
using the detailed features becomes low, even less than that
expected by chance. This is reasonable because in this phase
of surgery, there is no abdominal insufflation, and the cardiac
function of the patient becomes more similar to the BL.

2) Significance Testing: We tested whether the distribution
of healthy patients is similar to that of ill patients. We used
Welch’s t-test and applied it to the same data used in the classi-
fication problem. Table IV suggests that the only estimator that
is significant for both features during insufflation is the mixture-
of-experts estimator. This result matches the results presented
earlier regarding classification accuracy for this classifier, and
it is in agreement with error of this estimator and our manual
assessment. The Hilbert envelogram and S-transform estimator
were also significant for Fdelay .
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TABLE V
CLASSIFICATION ACCURACY FOR EACH ECG FEATURE

AND MONITORED PHASE

Feature Phase ECG Raw Signal

Famp During 0.4
Fm o rp h insufflation 0.6
Both 0.6
Famp After 0.4
Fm o rp h desufflation 0.47
Both 0.53

We also note that after desufflation, there is no significant
difference for all features and all estimators. This matches the
classification results obtained in the last section.

F. ECG Monitoring Comparison

We further examined two ECG features as alternatives to
the delay and morphology features extracted from HS. These
features were the ECG morphology and the power ratio of the
R wave amplitude between the BL phase and the monitored
phase. Patient discrimination based on these ECG features was
compared to the HS feature quality.

ECG signals were recorded at the same time as HSs. After
preprocessing the HSs and separating them into inspiration or
expiration phases, we analyzed the corresponding ECG signals.
We use the same notation as for HSs; therefore, BL is the set of
ECG signals recorded during the BL phase, and MS is the set of
ECG signals recorded during the monitored phase. Only the raw
signal representation was examined. Clustering was performed
for the BL set with the same parameters as for HSs to produce a
template for each patient (consisting of the two most significant
cluster centers).

The ECG morphology feature was extracted in the same way
as described in Section II-E. The power ratio feature was cal-
culated as the ratio between the mean R wave amplitude of the
signals in MS and BL. Formally, for an ECG signal b, we define
A(b) as the amplitude of the R wave of b. Then, Famp is defined
as follows:

Famp =
1

|MS|
∑

bi ∈MS A(bi)
1

|BL|
∑

bi ∈BL A(bi)
. (13)

Table V and Fig. 8 indicate that HS features were better than
ECG features for discriminating between sick and healthy pa-
tients during insufflation. Of the two ECG features, the morphol-
ogy feature produced better discrimination. Table VI suggests
that there is no significant difference between the distributions
of sick and healthy patients for any of the features. The mor-
phology feature performed better here as well.

These findings indicate that overall the ECG features are not
effective for monitoring cardiac stress and that monitoring using
the acoustic S1 sounds, which indicate the mechanical activity
of the heart, provides useful additional information that cannot
be obtained from the ECG signal alone.

Fig. 8. ECG raw signal estimator output for the power ratio feature (top) and
the relative morphology feature (bottom) for each of the 15 patients during
the three different surgery phases. Green circles represent healthy patients, and
red circles represent ill patients. Initials also appear for each patient. A line
represents the temporal changes for a given patient. The mean for each group of
patients is represented by a star. Error bars represent the STD for each group.

TABLE VI
P-VALUE SCORE OF WELCH’S T-TEST BETWEEN HEALTHY AND ILL PATIENTS

FOR EACH ECG FEATURE AND MONITORED PHASE

Feature Phase ECG Raw Signal

Famp During 0.4
Fm o rp h insufflation 0.6
Famp After 0.4
Fm o rp h desufflation 0.47

IV. CONCLUSION

This paper studied a well-known problem of increased cardiac
risk during noncardiac surgery. We proposed a novel monitoring
framework based on the mechanical activity of the heart, which
is represented by the sounds emitted from the heart. One novel
feature of our method is the use of a nonparametric measure of
morphology changes between the individual BL morphology
and the continuous measure of cardiac electric conductance
time. The other novelty is the use of clustering to remove outliers
and to ensure robustness against noise during the HS recording,
which is performed in a noisy surgery room. The third novelty
is in the computational technique used to measure the delay in
S1 onset relative to a different signal.

We examined various types of estimators that use different
signal representations for the extraction of these measures. Ad-
ditionally, we described a mixture-of-experts estimator, which
utilizes measurements of different estimators to produce a more
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robust measurement. We have demonstrated an improvement in
accuracy and robustness using this mixture-of-experts approach.

We have demonstrated that the two physiological measures
(morphology change and delay in S1 onset relative to BL) un-
dergo changes during the cardiac stress caused by abdominal
insufflation. We have further shown that shortly after desuffla-
tion, the above features start returning to their BL values. We
have also shown that for patients with known cardiac problems,
the proposed physiological features change more dramatically,
and in some cases, they start returning to their BL values more
slowly. Furthermore, setting a threshold for the values of the
extracted features generated two groups of patients. We have
shown that these groups are similar (with 80% accuracy) to the
sick and healthy groups of patients, which were labeled accord-
ing to their cardiac state prior to surgery.

We have further shown here and elsewhere that the mechan-
ical functional changes during cardiac stress are not as readily
manifested in ECG measurements, such as ECG morphology,
suggesting that our proposed features, which are based on HSs,
add new information to the monitoring of cardiac functionality
under cardiac stress caused during surgery. These HS measure-
ments may also be useful in other cases, such as the onset
of congestive heart failure or before dialysis in kidney failure
patients.
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