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Unsupervised Content Classification Based Nonrigid
Registration of Differently Stained Histology Images

Y. Song, D. Treanor, A. J. Bulpitt, N. Wijayathunga, N. Roberts, R. Wilcox, and D. R. Magee∗

Abstract—Registration of histopathology images of consecutive
tissue sections stained with different histochemical or immunohis-
tochemical stains is an important step in a number of application
areas, such as the investigation of the pathology of a disease, vali-
dation of MRI sequences against tissue images, multiscale physical
modeling, etc. In each case, information from each stain needs to be
spatially aligned and combined to ascertain physical or functional
properties of the tissue. However, in addition to the gigabyte-size
images and nonrigid distortions present in the tissue, a major chal-
lenge for registering differently stained histology image pairs is
the dissimilar structural appearance due to different stains high-
lighting different substances in tissues. In this paper, we address
this challenge by developing an unsupervised content classification
method that generates multichannel probability images from a
roughly aligned image pair. Each channel corresponds to one auto-
matically identified content class. The probability images enhance
the structural similarity between image pairs. By integrating the
classification method into a multiresolution-block-matching-based
nonrigid registration scheme (N. Roberts, D. Magee, Y. Song, K.
Brabazon, M. Shires, D. Crellin, N. Orsi, P. Quirke, and D. Treanor,
“Toward routine use of 3D histopathology as a research tool,” Amer.
J. Pathology, vol. 180, no. 5, 2012.), we improve the performance
of registering multistained histology images. Evaluation was con-
ducted on 77 histological image pairs taken from three liver spec-
imens and one intervertebral disc specimen. In total, six types of
histochemical stains were tested. We evaluated our method against
the same registration method implemented without applying the
classification algorithm (intensity-based registration) and the state-
of-the-art mutual information based registration. Superior results
are obtained with the proposed method.

Index Terms—Computerized diagnosis, digital pathology, histol-
ogy registration, image analysis, multistains, mutual information,
virtual slides.

Manuscript received April 9, 2013; revised June 14, 2013; accepted August
5, 2013. Date of publication August 8, 2013; date of current version Decem-
ber 16, 2013. This work was supported by WELMEC, Center of Excellence
in Medical Engineering funded by Wellcome Trust and EPSRC under Grant
WT088908/Z/09/Z. Asterisk indicates corresponding author.

Y. Song was with the School of Computing, University of Leeds, Leeds, LS2
9JT, U.K. He is now with the Centre for Medical Image Computing, University
College London, London, WC1E 6BT, U.K. (e-mail: yi.song@ ucl.ac.uk).

D. Treanor is with the Leeds Institute of Molecular Medicine, University of
Leeds, Leeds, LS2 9JT, U.K., and also with Leeds Teaching Hospitals NHS
Trust, Leeds, LS9 7TF, U.K. (e-mail: darrentreanor@nhs.net).

A. J. Bulpitt is with the School of Computing, University of Leeds, Leeds,
LS2 9JT, U.K. (e-mail: a.j.bulpitt@leeds.ac.uk).

N. Wijayathunga and R. Wilcox are with the School of Mechani-
cal Engineering, University of Leeds, Leeds, LS2 9JT, U.K. (e-mail:
V.N.Wijayathunga@leeds.ac.uk; R.K.Wilcox@leeds.ac.uk).

N. Roberts is with the Leeds Institute of Molecular Medicine, University of
Leeds, Leeds, LS2 9JT, U.K. (e-mail: N.J.Roberts@leeds.ac.uk).

∗D. R. Magee is with the School of Computing, University of Leeds, Leeds,
LS2 9JT, U.K. (e-mail: d.r.magee@leeds.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBME.2013.2277777

I. INTRODUCTION

THE histological examination of adjacent tissue sections
prepared with different stains or biomarkers (e.g., histo-

chemical, immunohistochemical, and special stains) can pro-
vide valuable information to aid understanding of the physical
or functional properties of tissue [1]. For example, liver cirrho-
sis is characterized by dense fibrous scars traversing the tissue
and dividing it into nodules. The hematoxylin and eosin (H&E)
stain (the most common histological stain) enables cell nuclei
and cytoplasm to be identified. The Sirius Red, reticulin, and
Masson trichrome stains highlight the fibrous scarring by stain-
ing different histochemical components of the scar tissue (Col-
lagen subtypes). Combining multiple stain modalities allows
a complete picture of the relationship between the causative
liver disease and the resulting scarring to be built up. In addi-
tion to its utility in medical diagnosis, histological examination
of differently stained tissue sections has seen increasing usage
in biomedical engineering [2]. In this domain, one of the ob-
jectives of our work is to help build multiscale physics based
models of the intervertebral disc. The Alcian blue stain can
characterize proteoglycan-rich extra cellular matrix as a blue
color—a component necessary for maintaining spinal flexibil-
ity under different loading scenarios, whereas the Elastic Picro
Sirius Red (EPSR) stain shows collagen-rich structural areas
within and at the periphery of the disc. Combining this infor-
mation allows an improved understanding of the biomechanical
behavior of the disc, leading to better numerical evaluation of
treatment methodologies [3].

Traditionally, pathologists and researchers view glass mi-
croscopy slides serially with a microscope and combine the in-
formation mentally to derive an opinion or diagnosis. Although
this works for global assessment of tissue sections, detailed as-
sessment and measurement requires more detailed side-by-side
comparison. However, due to the nature of the slide prepara-
tion and the fact that different stains characterize different sub-
stances, the tissue sections do not have the same morphology,
appearance, or spatial alignment, making it a nontrivial task to
even find the same region on adjacent slides. The introduction of
digital pathology (scanning tissue sections and digitizing them
into images) allows the development of automatic computer-
aided registration algorithms [4]–[10] to assist pathologists and
researchers quantitatively analyzing the spatial co-occurrence
of structural and functional elements in different modalities.

Our study on multistain histology image registration is moti-
vated by the research demands of both medical research (liver
disease) and biomedical engineering (intervertebral disc) appli-
cations. The common interest is to spatially align differently
stained adjacent tissue sections for information integration. The
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Fig. 1. Dissimilar appearance between differently stained adjacent sections.
Slides are viewed at 1.25× magnification. Adjacent liver sections are stained
with H&E (left) and Sirius Red (right).

experiments in this paper cover various stain types including
H&E, Sirius Red, Alcian blue, EPSR, CK7, and FAST. Al-
though discussions are mainly based on liver and intervertebral
disc specimens, the proposed method makes no assumption of
the existence of particular anatomic structures and could be ap-
plied to any similarly produced histological sections. The main
challenges for registering histology images with different stains
are:

1) Dissimilar appearances: Different stains highlight differ-
ent substances in tissues. Consequently, the same tissue
structures on adjacent tissue sections often appear very
different. For example, the H&E stain allows cell nuclei
and cytoplasm to be identified at high magnifications, e.g.,
20×. However, as shown in Fig. 1 left, the content at low
magnification (1.25×) appears as a rather uniform tex-
ture of cellular components. On the other hand, at the
same magnification, the fibrous tissue (e.g., scarring of
liver tissue) in an adjacent section is clearly selectively
highlighted by the Sirius Red stain (see Fig. 1 right).

2) Nonrigid distortions: Introduced by slice preparation, such
as bending, shearing, stretching and tearing, etc. At micron
resolutions, even minor deformations appear conspicuous.

3) The large size of digital microscopy images. For example,
one uncompressed three-channel, 8-bit digital microscopy
image of an intervertebral disc at 40× magnification used
in our study has file size ∼20 GB.

4) The image pair is not the exact same piece of tissue. They
are usually at best serial sections 5μm apart.

In this paper, we address these challenges with:
1) A multiresolution-block-matching-based nonrigid regis-

tration scheme, which aims to tackle the large image size
and nonrigid distortion.

2) A novel two-dimensional (2-D) unsupervised content clas-
sification method (the main contribution of this paper,
detailed discussion in Section II). The objective of this
method is to enhance the structural similarity between the
differently stained image pairs. The output from the al-
gorithm is multichannel probability images (the default
is three-channel in this paper). Each channel corresponds
to an emergent appearance (content) class that may or

may not map to a single anatomical tissue type [see
Fig. 2(c)–(e)].

Our multiresolution-block-matching-based registration sche-
me has been presented in our previous work on registering con-
secutive histological sections stained with the same stain [9].
For the multistained case presented in this paper, we extend this
scheme to register the multichannel probability images obtained
from the unsupervised content classification method presented
in this paper (see Figs. 3 and 4).

A. Related Work

There are a limited number of previous studies related to
the registration of microscopy data with different stains that
largely concentrate on specific feature matching. For example,
Can et al. [4] rigidly registered bright field and fluorescent
microscopy images by extracting a nuclear image from each
modality, and Cooper et al. [5] extracted features based on color
that are matched and combined by fitting a polynomial trans-
form. Earlier, Cooper et al. [6] presented a more general frame-
work for nonrigid registration that involved detecting anatomic
features based on high local pixel variance and using normalized
cross-correlation to match these at specific locations within the
image. However, for some tissue specimens, anatomic features
such as blood vessels, etc., are distributed sparsely across the
image, giving rise to insufficient information for calculating a
precise deformation field for nonrigid registration. There are
also intensity based approaches. The mutual information maxi-
mization based method, which is widely adopted for registration
of multimodal radiology images [18], has been extended to reg-
ister differently stained histology images where they exhibit a
certain structural similarity [7], [15]. However, such similarity
is not necessarily guaranteed for some differently stained pairs,
as exemplified in Fig. 1. Therefore, in this paper, we propose an
unsupervised content classification method to enhance the struc-
tural similarity between image pairs that consequently improves
the registration accuracy.

In addition to the proposed classification method, our cur-
rent registration framework builds on two other categories of
related work: multiresolution registration and block matching
based nonrigid registration. Multiresolution schemes have been
widely adopted in image registration to increase speed and avoid
local minima and thus increase the likelihood of convergence
to the correct solution [13]–[15]. This is part of the reasoning
for our choice of this approach; however, more importantly, the
multiresolution approach ensures we start with roughly aligned
subimages at each scale, which is essential in our unsupervised
content classification method as well as in regularizing the set of
displacement vectors. Block matching methods have been pro-
posed in the context of radiology image registration [16], [17],
which search reference images to find the best block matching
to floating image blocks. The deformation field is then repre-
sented by the set of block centroid displacements. While there is
similarity between these approaches and our work, it is of note
that the block sizes used in our work are substantially larger1

1From our cross-validation study, the best results are given at 256 × 256
pixels per block.
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Fig. 2. (a) Images of two adjacent liver tissue sections stained by H&E (reference image) and Sirius Red (floating image) separately. The pair has been aligned
using the transformation estimated at resolution 1.25×. (b) The subimages marked in (a) at resolution 2.5×. (c–e) Three channel probability images obtained by
applying the 2-D unsupervised tissue classification method on the subimages. Each channel corresponds to one appearance (content) class emerging from the
subimages.

Fig. 3. Registration of multichannel probability blocks by calculating displacement vectors. We use the central blocks highlighted in Fig. 2(c)–(e) to demonstrate.
(a1–c1) are reference blocks, (a2–c2) are floating blocks, and (a3–c3) are the transformed floating blocks (images are enlarged for clarity). (d) The registration of
the floating block is represented by 5 × n vectors (i.e., displacement vectors) for a n channel probability image (n = 3 in this figure).

Fig. 4. Illustration of our multiresolution-block-matching-based nonrigid registration scheme applied to intervertebral sections stained by Alcian blue and EPSR.
The transformation estimated at level Xn is refined at level Xn−1 . The reference and floating images are automatically partitioned into blocks by regular lattices
of constant size (256×256 pixels). For clarity, the lattice is not visualized with 50% overlapping as in our implementation and the set of displacement vectors
(exemplified at level Xn−1 ) is plotted based on only one channel.
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than that often used in block matching in the literature. The
advantage of this is that a greater amount of detail can be used
in the registration process, increasing robustness. The disadvan-
tage of using larger blocks is that a sparser set of displacement
vectors is produced. However, our use of five vectors per block
(thus taking into account block rotation; see Fig. 3), 50% block
overlapping, and B-spline approximation alleviate this to an
extent.

There is a rich literature on employing unsupervised clas-
sification algorithms (e.g., clustering) for applications such as
gene expression analysis [23], data mining [24], information
retrieval [25], image segmentation [26], etc. However, unlike
previous works that process images individually, our method
processes image pairs simultaneously to capture the statistically
significant structures shared by both images. This approach has
not been seen in the literature to the best of our knowledge.

The rest of this paper is organized as follows: An overview of
our registration implementation integrated with the 2-D unsu-
pervised content classification method is presented in Section II.
In Section III, we present the classification algorithm in five
steps: (A) appearance feature selection and generating feature
vector sets; (B) clustering the appearance feature vector set of
each image; (C) partitioning the obtained two sets of clusters into
content classes common to both images; (D) iteratively refin-
ing the emergent content classes by introducing spatial features;
(E) generating probability images based on the refined content
classes. The datasets and experimental results are described in
Section IV. Conclusions are made in Section V.

II. OVERVIEW ON REGISTRATION IMPLEMENTATION

Our registration implementation is based on a rigid block
matching approach that we have previously presented for the
same stain registration [9]. The novel extension here is generat-
ing multiple channel probability images from images of differ-
ent stains using an unsupervised content classification method
to increase the similarity of the two images (see Section III).
The sequence of processes is as follows.

1) Transform each image into a multichannel probability im-
age, where the individual channels of each image corre-
spond (see Section III).

2) Perform block matching based registration for each proba-
bility channel separately (see Fig. 3(a)–(c), the rigid trans-
form of the block is estimated by using phase correlation,
a combination of [11] and [12] to recover rotation and
translation).

3) Represent the rigid transform of each block by five vec-
tors [located at the four corners and center of the block,
Fig 3(d)]. The results from different channels are com-
bined into a displacement vector set.

4) Compute a single approximating nonrigid transform (cu-
bic B-spline) from the displacement vector set (see Fig. 4)
by using a regularized least squares difference minimizing
method (see [9] for details).

The approach is applied in a multiscale manner from coarse to
fine. In addition, except for the initialization (which is performed
by rigidly registering whole grayscale images at the coarsest res-

TABLE I
NOTATION

olution), the registration problem is decomposed into numerous
small block matching problems. So we bypass the infeasible
practice of directly handling gigabyte images.

III. UNSUPERVISED CONTENT CLASSIFICATION

In this section, we present our novel 2-D unsupervised content
classification method, which generates multichannel probability
images from a roughly aligned image pair. The purpose of this
method is to increase the structural similarity of the two im-
ages and thus increase registration performance. Each derived
probability channel corresponds to an emergent “content class”
[see Fig. 2(c)–(e)], where a pixel value in a specified channel
image is the probability that it belongs to the corresponding con-
tent class. It should be noted that the automatically identified
content classes do not necessarily map to real anatomical tissue
classes as they are solely emergent from co-occurrence statistics
between image pairs. The key idea is that we capture the sta-
tistically significant structures common in images, by studying
two images simultaneously.

Without loss of generality, we explain the proposed classifica-
tion method based on images at level Xi (which have previously
been registered at lower resolution level Xi+1) in the following
context. Since it is impracticable to directly classify a whole
image when the images are very large, we divide the image pair
into a set of subimages and apply the proposed content classifi-
cation algorithm on each subimage pair separately. This also has
the advantage of being more robust to color variations over the
images. The multiresolution registration scheme ensures similar
tissue regions are present in the corresponding subimage pairs.
The size of subimages is balanced between being big enough
to be representative, but small enough to allow for stain varia-
tion. We have used subimages sized 1024×1024 pixels in our
experiments. Notation used in the following discussion is listed
in Table I. The five-step unsupervised classification algorithm is
outlined in algorithm I. In step D of the algorithm, spatial loca-
tion features are introduced as complementary to the appearance
features. This overcomes the problem where the appearance fea-
tures alone (for some stains) are not sufficient to separate certain
regions on an image that have similar appearance, but belong to
different content classes.

We detail the implementation of the algorithm step by step in
the following Sections III-A–E.
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A. Appearance Feature Vector Sets (UR and UF ) Generation

Each pixel is represented as a feature vector. These form
the feature vector set used to derive content classes based on
co-occurrence statistics. To tackle the various stains and tissue
types used in our study, we include a step to automatically
select appearance features for each type of image from a feature
pool consisting of color, intensity and texture information. This
feature selection process is performed only once for each type
of image pair.

The feature pool is as follows:
1) Each RGB color channel of the original image and Gaus-

sian smoothed images. The Gaussian kernels are: 7×7
(σ = 3), 15×15(σ = 5).

2) A texture descriptor based on grayscale images defined
in (1) and (2). The kernel sizes (w×h) used are: 15×15,
30×30. The grayscale image is obtained by averaging
RGB color channels.

The texture representation (2) is a one-dimensional feature
that is the root squared sum of the difference operators (1) in
directions (1,0), (0,1), (1,1)

I(w,h,dx,dy ) (x, y)

=
1

(w×h)

w/2∑

Δy=−w/2

h/2∑

Δx=−h/2

I(x+Δx, y+Δy)
−I(x+Δx+dx, y+Δy+dy)

(1)

I∗(w,h)(x, y)

=
√

I2
(w,h,1,0)(x, y) + I2

(w,h,0,1)(x, y) + I2
(w,h,1,1)(x, y). (2)

It should be noted the features listed in the pool could be
potentially replaced by other more complicated features if these
prove insufficient for a particular image type. However, these
features have proved sufficient for the images studied in this pa-
per. The rationale for using these simple appearance features in
our study is based on two criteria: 1) low computational cost and
2) we are interested in co-occurrence statistics common between
the image pairs, rather than trying to extract specified texture
information from a single image to identify a particular tissue
type, as proposed in [19], which differentiates the cancerous
glands from normal glands by knowing that normal glands tend
to be strongly oriented in a particular direction and cancerous
glands not.

From the feature pool, the best set of features for each type of
image pair is selected by maximizing (3) (Section III-C) over all
feature subsets. A greedy search method (as exhaustive search
is prohibitively expensive) is used to explore subsets of feature
combinations. In Table III, we list the selected features.

From this point forward, we assume the appearance features
have been determined for the image pair IR , IF by this method.
For every pixel (x, y) in IR , a feature vector uR (x, y) is com-
puted, which forms the feature vector set UR . Similarly, the
feature vector set UF is computed for IF .

B. Clustering Appearance Feature Vector Sets

A clustering algorithm is applied to the appearance feature
vector sets UR,UF to obtain NR,NF clusters and the corre-
sponding cluster-label images IC

R , IC
F , respectively. We propose

a principal eigenvector binary tree clustering algorithm that cre-
ates a binary tree structure for a feature vector set and uses the
leaf associated index as cluster labels. Take the feature vector
set UR for instance, the root of the tree consists of a single clus-
ter containing all elements of UR . Principle component analysis
(PCA) is applied at each level of the tree, and the elements are
partitioned into two children by thresholding their projections
onto the first principle component at zero (the mean). This pro-
cess results in NR clusters. Each cluster corresponds to a leaf of
the tree. The same clustering algorithm is applied to the feature
vector set UF to get NF clusters.

It should be noted that the main objective of the proposed
clustering method is to guarantee the maximal separation of
pixels belonging to different content categories even under sim-
ilar appearance. For example, the intervertebral image stained
with Alcian blue, etc., in Fig. 4 has only a very subtle difference
between the light blue tissue and the white background. An-
other aim of developing this clustering method is computational
efficiency (provided by the tree structure).

Denoting the labels of the NR clusters as {cRi} and the la-
bels of the NF clusters as {cF j}, we obtain a cluster-label
image IC

R corresponding to the reference image IR , where
IC
R (x, y) = CR (uR (x, y)) = cRi . CR (.) is the mapping func-

tion output from the principal eigenvector binary tree cluster-
ing algorithm for image IR . Similarly, a cluster-label image
IC
F corresponding to the floating image IF is obtained, where

IC
F (x, y) = CF (uF (x, y)) = cF j .

C. Partitioning of Clusters into Content Classes

The objective of this step is to partition the obtained NR,NF

clusters from the two images into NT common groups (NT

“content classes”).2 This is in keeping with our aim to increase
the similarity of the representation of the image pair. Denoting
the labels of the NT classes as {ti}. Let φ(n) be a hypothesized
partition scheme of cluster-label image IC

R , which gives content-
label image IT

R (x, y) = φ(n)(IC
R (x, y)) = ti ; and ψ(m ) a hy-

pothesized partition scheme of IC
F , which gives content-label

2In our implementation, the default number of content classes is three. If
having NT > 3, some content classes may contain very few pixels and their
corresponding channel of the probability image are treated as background and
removed in registration.
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Fig. 5. Process of partitioning clusters: partitioning each set of six clusters into three content classes (t1 , t2 , t3 ). Each line between φ(n ) and ψ(m ) represents a
hypothesized partition scheme, i.e., a combination for which mutual information is calculated.

image IT
F (x, y) = ψ(m )(IC

F (x, y)) = tj . The “optimal” content
classes are determined by the (nth, mth) hypothesized partitions
that maximize mutual information between φ(n)(IC

R (x, y)) and
ψ(m )(IC

F (x, y)), as described by (3). Fig. 5 is a simplified ex-
ample demonstrating hypothesized schemes of partitioning six
clusters into three groups (aka. content classes t1 , t2 , t3)

n,m∗ = arg max
n,m

(MI(φ(n)(IC
R );ψ(m )(IC

F ))) (3)

As the complexity of an exhaustive search of NT classes
partitions is O(Nmin(NR ,NF )

T ), which is prohibitively computa-
tionally expensive, we approximate the NT class problem using
the principle of alpha-expansion [20] and conduct exhaustive
searches of binary assignments for each class. In this search we
consider the binary problems of assigning a cluster to a particular
class, or it retaining its original assignment. Search is initialized
by assigning all clusters of the reference image to a single class,
and iteratively repeating the binary searches until convergence.
The complexity is therefore reduced to O

(
NT ∗ 2min(NR ,NF )

)
.

D. Iteratively Refining Content Classes by Introducing
Spatial Features

In this step, we iteratively refine the derived content classes
based on spatial features. Due to the fact that the appearance
features are sometimes not sufficient to distinguish pixels of
different content categories, those pixels could be wrongly clus-
tered into one cluster. This consequently affects the result of the
partition, as exemplified in Fig. 6. Comparing the cluster-label
images IC

R and IC
F , the pixels belonging to two clusters cF 1 and

cF 3 in IC
F are clustered into a single cluster cR1 in IC

R , which
results in the number of pixels belonging to the emergent con-
tent class t1 in IT

R and IT
F being significantly different (enclosed

by blue curves). We overcome this by introducing spatial in-
formation to enforce the separation of wrongly clustered pixels,
e.g., dividing the cluster cR1 in IC

R into several smaller, spatially
separate clusters, as shown in Fig. 6 (steps b and c).

We define “conflicting pixels” as pixels labeled as ti in IT
R

but labeled as tj (i�=j) in IT
F , at the corresponding locations.

The cluster containing the largest number of conflicting pixels
in the cluster-label image IC

R or IC
F is identified, as described

in (4). To distinguish it from other cluster labels, we name it
as c∗. For clarity, in the following discussions we use IC

R as an
example

c∗=arg max
{cR i }

⎛

⎝
∑

x,y∈I C
R

{
1, if IC

R (x, y)=cRi and IT
R (x, y) �=IT

F (x, y)

0, otherwise

⎞

⎠.

(4)

Next, for every pixel IC
R (x, y) = c∗, a spatial feature vector

sRi = [x, y] is created, which constitutes a spatial feature vec-
tor set SR . By applying the principal eigenvector - binary tree
clustering method (discussed in Section III-B) to SR , the clus-
ter c∗ is split into a set of smaller clusters {ri}. Consequently,
the cluster-label image IC

R is updated by replacing label c∗ with
{ri}. Fig. 6(c) demonstrates a synthetic example in which the
cluster cR1 in IC

R is split into two new clusters cR1−1 and cR1−2 .
The pixels previously labeled as cR1 are replaced by the new
labels.

Using the renewed cluster-label image IC
R , as shown in

Fig. 6(d), the content classes are recalculated using (3) (Section
III-C). Consequently, we have the refined content-label images
IT
R , IT

F , as shown in Fig. 6(e). This refinement process is re-
peated until the number of “conflicting pixels” in any cluster
is about 1% of the total number of pixels (typically ten itera-
tions). This threshold is based on the fact that we expect the
following errors: 1) the anatomical structures on adjacent tissue
sections are similar but not identical and 2) misalignment exists
between adjacent tissue sections at level Xi . The resultant par-
tition scheme after the refinement is denoted as φ, ψ for IC

R , IC
F ,

respectively. A stopping criterion is necessary as otherwise the
eventual result would be two identical content-class images.
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Fig. 6. Synthetic example of partitioning clusters into content classes (see Section III-C) and the following refinement process (see Section III-D). (a) Finding
the best partition scheme φ(n ) , ψ(m ) that maps cluster-label images IC

R , IC
F to content-label images IT

R , IT
F by maximizing mutual information, (b) identifying

the cluster containing the largest number of conflicting pixels, (c) dividing the identified cluster from (b) into several smaller clusters using spatial information,
(d) renewing the cluster-label image IC

R with the results of (c), and (e) finding the new optimal partition scheme φ(n ′) , ψ(m ′) and renewing content-label images
IT
R , IT

F .

E. Generation of Probability Images

We convert the refined classification result into probability
images that provide a continuous image representation that
can be used within our image registration framework. First,
we calculate the normalized joint probability density matrix
P

(
IC
R = a, IC

F = b
)
, a ∈ {cRi} , b ∈ {cF j}. For each emer-

gent content class tm , we generate a pair of probability images
IP
R,tm

, IP
F,tm

for the input image pair, described as follows:

IP
R,tm

(x, y) =
NF∑

j=1

{
P

(
IC
R , IC

F

)
, if ψ

(
IC
F

)
= tm

0, otherwise (5)

IP
F,tm

(x, y) =
NR∑

i=1

{
P

(
IC
R , IC

F

)
, if φ

(
IC
R

)
= tm

0, otherwise . (6)

Taking Fig. 6 as an example, pixels in the content-label image
IT
R which identified as the t3 class are assigned the probability

value calculated from (5); pixels that do not belong to t3 classes,
are assigned zero probability.

Fig. 2(c)–(e) shows an example of a set of calculated mul-
tichannel probability images. The image pair (taken from the
liver#1 specimen) is stained by H&E and Sirius red stains, re-
spectively.

IV. EVALUATION

A. Materials

77 pairs of tissue sections were taken from three human liver
tissue specimens showing cirrhosis and one ovine intervertebral
disc specimen (which had been decalcified prior to sectioning).
The liver#1 specimen had four artificial vertical holes drilled
before it was sectioned. Using standard histological techniques,
all specimens were formalin fixed, paraffin embedded, and cut
in ∼5 μm sections using a microtome. In our study, adjacent
sections were stained pairwise, e.g., one of each pair with H&E
and other with CK7. In total, six types of histochemical stains
were used. The images of these sections were digitized using
an Aperio XT scanner at 20× or 40× magnification giving a
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TABLE II
SPECIMENS

final image resolution of 0.46 or 0.23 μm per pixel. A summary
of the datasets is given in Table II. Figs. 7 and Fig. 8 show
the examples of the image pairs and their manual annotations.
Local NHS research ethical approval was obtained for use of the
human tissue. The ovine disc (vertebra specimen) was harvested
from a mature (7–8 years old) spine released by the Official
Veterinarian of the local abattoir, subsequent to the approval of
the application made to the area Veterinary Manager at the Food
Standards Agency.

Among 77 image pairs, we include some images with artefacts
that are often introduced during the preparation of histopathol-
ogy images, such as:

1) Luminance gradient: Sections mounted close to the edge
of the glass slide produce images with significant lumi-
nance gradients (e.g., in Fig. 7, liver#3 section stained with
CK7).

2) Nontissue noise: Dust and air bubbles in the slide (see
Fig. 8).

3) Staining variations: Differences in section thickness,
staining duration, and stain concentration result in color
variations (e.g., in Fig. 7, liver#3 section stained with
H&E).

B. Evaluation Design

The goal of developing our 2-D content classification method
is to improve registration accuracy by using probability im-
ages that enhance the structural similarity between image pairs.
Therefore, to evaluate the content classification method, we use
registration performance as a criterion, which is measured by the
Hausdorff distances (μm) between manually annotated corre-
sponding regions (boundaries) on image pairs after registration.
The corresponding regions were annotated by the first author
and reviewed for approval by a consultant pathologist using
the Aperio ImageScope slide-viewing software on the original
virtual slide image.

Multiresolution registration (see Section II) is applied with
3 or 4 levels such that image size at the lowest resolution is clos-
est to 1 K×1 K and the “final” level of the registration resolution
is closest to 4 μm/pixel. The resulting transformations are then

applied to the full-resolution images (and thus to those manual
annotations on the images) to calculate the Hausdorff distances
(μm) between the corresponding annotations for evaluation.

The size of blocks for matching is a constant 256×256 (pix-
els) for each scale and blocks are 50% overlapping. This gave
the best results in our previous study [9].

By covering a wide range of stain types and two very differ-
ent types of tissues, our experiments try to reflect the fact that
our content classification method makes no assumptions about
either anatomic structures or stain types. Moreover, there is no
other preprocessing required except conducting automatic ap-
pearance features selection once for each pairwise image type.
Our evaluation consists of four experiments:

1) The application of automatic appearance feature selection,
given in Section IV-C.

2) In Section IV-D, we compare registration performance
between using content classification (CC) and not using
content classification (NC), i.e., intensity based registra-
tion. The data groups 1–6 (28 image pairs in total, each
having 20–30 manual annotations, as shown Fig. 7) are
used in this evaluation.

3) In Section IV-E, we compare our content classification
based registration against the state-of-the-art mutual in-
formation based registration [7]. The data groups 1–6 are
used in this evaluation.

4) In Section IV-F, we evaluate the influence of sectioning
distance between the stained sections on our classification
method. Dataset 7 (49 image pairs, with manual annota-
tions of the four artificial holes, as shown Fig. 8) is used
in this evaluation.

C. Experiment 1: Feature Selection

As discussed in Section III-A, for each image pair type at each
resolution, such as H&E/Sirius Red, H&E/DAB, etc., the best
set of features is selected from the feature pool by maximizing
(3) over all feature subsets (via greedy search). Feature selec-
tion is performed on subimages of size 1024×1024 pixels, the
same as the classification process. In our experiments, we tested
those subimages located at both the boundary and the center of
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Fig. 7. Examples of image pairs and their manual annotations. From top to
the bottom, they are sections taken from liver#1 (H&E/Sirius Red), liver#2
(H&E/Sirius Red), liver#3 (CK7/H&E), intervertebra disc (EPSR/Alcian blue),
intervertebra disc (Alcian blue/FAST), intervertebra disc (FAST/EPSR). Three
liver specimens are viewed at 0.5× magnification. Sections of vertebra discs are
viewed at 0.6× magnification. Manual annotations used in the evaluation are
superimposed on the images.

Fig. 8. Data group 7, four artificial vertical holes were manually annotated (in
green).

Fig. 9. Boxplot of the registration accuracy of consecutive tissue sections
stained by H&E/Sirius Red (data group 1). In total, six image pairs of the
liver#1 specimen. The registration performance is compared between registra-
tions using content classification (CC) and not using content classification (NC),
i.e., intensity-based registration.

Fig. 10. Boxplot of the registration accuracy of consecutive tissue sections
stained by H&E/Sirius Red (data group 2). In total, five image pairs of the
liver#2 specimen.

the images with little difference in the final registration perfor-
mance. Generally, the features selected from the center are more
representative, and are adopted in the following experiments.

Taking H&E/Sirius Red as an example, we randomly choose
one image pair from the data group 1. Applying the feature
selection process on its subimages, we then get a set of fea-
tures for the image stained by H&E and another set of features
for the image stained by Sirius Red (see Table III). The ob-
tained features are used for the content classification for all
image pairs of the group 1. To test the robustness of the se-
lected features to staining variations, we applied the same fea-
ture sets to images of data group 2, which too are stained by
H&E/Sirius Red but present significant color variations from
those image pairs in data group 1 (see Fig. 7). The registra-
tion results of data groups 1–2 can be found in Figs. 9 and 10,
respectively.
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TABLE III
SELECTED FEATURES FOR THE FINAL REGISTRATION LEVEL

Fig. 11. Boxplot of the registration accuracy of consecutive tissue sections
stained by H&E/CK7 (data group 3). In total, seven image pairs of the liver#3
specimen.

The feature selection process was also applied on other data
groups covering various stains: H&E/DAB, Alcian blue /EPSR,
Alcian blue /FAST and FAST/EPSR. The selected features sets
of the “final” level of registration resolution are exemplified in
Table III.

D. Experiment 2: Registration Performance

As mentioned in Section IV-B, we use registration per-
formance as a criterion to evaluate the content classification
method. We compared the registration accuracy between using
no content classification (NC), and the registration process using
the content classification (CC). We report registration results for
28 histology image pairs (data groups 1–6), evaluated by mea-
suring the Hausdorff distances (μm) between the corresponding
annotations (transformed by the registration result at full reso-
lution X0). There are 20–30 corresponding regions (see Fig. 7)
manually annotated on each image.

Figs. 9–14 show that there is improvement in registration ac-
curacy using the content classification (CC), when compared
to the registration process without using content classification
(NC). In Fig. 15 visualizes the boundary smoothness of an

Fig. 12. Boxplot of the registration accuracy of consecutive tissue sections
stained by Alcian blue/EPSR (data group 4). In total, five image pairs of the
intervertebral disc specimens.

anatomical structure (blood vessel), and illustrates that CC based
registration can achieve better accuracy than NC based registra-
tion. A paired t-test was performed and a statistically significant
improvement in error was detected for CC over NC for all data
sets, as listed in Table IV.

E. Experiment 3: Content Classification Based Registration
Versus Mutual Information-Based Registration

We compared our content classification based registration
against to the state-of-the-art mutual information based regis-
tration [7]. We replicate the implementation as described in [7],
except:

1) Fifty bins are used in Mattes mutual information [21],
instead of 32 bins. We have tested both 50 bins and 32
bins on the 28 datasets. The performance using 50 bins is
better than, or similar to, that using 32 bins.

2) Instead of using 4096 random samples, we define the num-
ber of samples as a fraction (20%) of the total number of
pixels in the image, which gives good results for all 28
datasets.
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Fig. 13. Boxplot of the registration accuracy of consecutive tissue sections
stained by Alcian blue/FAST (data group 5). In total, three image pairs of the
intervertebral disc specimens.

Fig. 14. Boxplot of the registration accuracy of consecutive tissue sections
stained by EPSR/FAST (data group 6). In total, three image pairs of the inter-
vertebral disc specimens.

Performance of mutual information based registration is eval-
uated on data groups 1–6 (28 image pairs), with the same mul-
tiresolution levels applied as in Experiment 2. Comparative re-
sults are summarized (groupwise) in Fig. 16. These show that
our method slightly outperforms MI-based registration.

Computational efficiency is also an important factor. We com-
pare the two methods by execution time, at the specified image
sizes and the number of multiresolution levels as listed in Ta-
ble V. Results are summarized (groupwise) in Fig. 17. These
show that MI based registration generally takes a significantly
longer time than our method and has larger variance between
the different image pairs from the same group. This can be ex-
plained by the iterative nature of the MI algorithm, which has a
stopping criteria based on convergence. All computations were
carried out on a desktop computer with the following specifi-
cations: Intel i7 dual core ×3.07 GHz, 8 GB RAM, Windows
7. It should be noted that our method is not yet optimized for
parallel computation.

Fig. 15. Checkerboard visualization (at magnification 10×) of the registration
accuracy (liver images stained by H&E and Sirius Red). (a) Results of regis-
tration done at the magnification of 2.5×, without applying classification (NC).
(b) Results of applying content classification.

TABLE IV
PAIRED t-TEST

TABLE V
CONDITIONS UNDER WHICH THE EXECUTION TIME IS MEASURED
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Fig. 16. Comparison of registration performances between content-
classification-based method (CC) and a state-of-the-art MI-based method [7].

Fig. 17. Comparison of execution times between MI-based registration and
content classification based registration (CC).

F. Experiment 4: The Influence of Sectioning Distance

The influence of sectioning distance between the differently
stained sections on our classification method is of interest since
we calculate co-occurrence statistics between image pairs. Large
distances between sections (e.g., when the pair is not consecu-
tive serial sections) may lead to noticeable variations in tissue
structures between the image pairs, which could affect the cor-
rectness of the classification.

It is not ideal to use the real anatomic structures as the ground
truth to evaluate the influence of sectioning distance on the reg-
istration accuracy, since there are natural variations between
anatomical structures on different tissue sections. Data group
7 (see Table II and Fig. 8) was designed for this experiment
as four artificial vertical holes were drilled before the speci-
men was sectioned, and subsequently annotated (see Fig. 8). In
total, 49 image pairs were evaluated, with 25 consecutive sec-

Fig. 18. Comparison between the registration accuracy of the consecutive
image pairs (25 pairs, 100 annotations) and that of nonconsecutive image pairs
(24 pairs, 96 annotations).

tions (section distance ∼5 μm), and 24 nonconsecutive sections
(average section distance ∼30 μm). Fig. 18 shows that the dis-
tance between sections can affect the registration accuracy that
is decreased when the gap between image pairs increases. This
experiment indicates the desirability of registering as closely
spaced sections as possible.

V. CONCLUSION

This paper is motivated by the application of registering dif-
ferently stained 2-D histology images. One of the main chal-
lenges of such a registration problem is the dissimilarity of
structural appearance between image pairs. This paper addresses
this challenge by proposing a novel unsupervised content clas-
sification method that automatically identifies common content
classes from differently stained histology image pairs. The al-
gorithm outputs multichannel probability images, where each
channel corresponds to one content class. The advantage of us-
ing the probability images for registration is that they enhance
the structural similarity between the image pair. Since the con-
tent classes are emergent from co-occurrence statistics between
image pairs, they do not necessarily map to real anatomical
tissue classes, which is also not prerequisite for registration.
Comparing to previous work on multistained histology image
registration, our content classification based registration method
makes no assumption on either the stain types or the existence
of particular anatomic structures. This makes it applicable to a
wide variety of tissue types, stains, and problem domains with
no manual parameter tuning, as demonstrated in our evaluation.

Experiments 2 and 3 proved that our classification based reg-
istration method outperformed both intensity based and mu-
tual information based registration methods. Other potential
applications of the registration method (in addition to those
described in this paper) could be to study co-expression of mul-
tiple biomarkers in Tissue microarrays, or identify cancer com-
partments based on one stain and relate this to structure (cells,
vessels, etc.) identified using a separate stain.
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