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Multichannel Electrophysiological Spike Sorting via
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Abstract—We propose a methodology for joint feature learning
and clustering of multichannel extracellular electrophysiological
data, across multiple recording periods for action potential detec-
tion and classification (sorting). Our methodology improves over
the previous state of the art principally in four ways. First, via shar-
ing information across channels, we can better distinguish between
single-unit spikes and artifacts. Second, our proposed “focused
mixture model” (FMM) deals with units appearing, disappearing,
or reappearing over multiple recording days, an important con-
sideration for any chronic experiment. Third, by jointly learning
features and clusters, we improve performance over previous at-
tempts that proceeded via a two-stage learning process. Fourth, by
directly modeling spike rate, we improve the detection of sparsely
firing neurons. Moreover, our Bayesian methodology seamlessly
handles missing data. We present the state-of-the-art performance
without requiring manually tuning hyperparameters, considering
both a public dataset with partial ground truth and a new experi-
mental dataset.

Index Terms—Bayesian, clustering, Dirichlet process, spike
sorting.

I. INTRODUCTION

S PIKE sorting of extracellular electrophysiological data is
an important problem in contemporary neuroscience, with

applications ranging from brain–machine interfaces [22] to neu-
ral coding [24] and beyond. Despite a rich history of work in
this area [11], [34], room for improvement remains for auto-
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matic methods. In particular, we are interested in sorting spikes
from multichannel longitudinal data, where longitudinal data
potentially consists of many experiments conducted on the same
animal over weeks or months.

Here, we propose a Bayesian generative model and associ-
ated inference procedure. Perhaps the most important and ad-
vance in our present study, over the previous art, is our joint
feature learning and the clustering strategy. More specifically,
standard pipelines for processing extracellular electrophysiol-
ogy data consist of the following steps:1) filter the raw sensor
readings; 2) perform thresholding to “detect” the spikes; 3) map
each detected spike to a feature vector; and then 4) cluster the
feature vectors [21]. Our primary conceptual contribution to
spike sorting methodologies is a novel unification of steps 3)
and 4) that utilizes all available data in such a way as to satisfy
all of the the aforementioned criteria. This joint dictionary learn-
ing and clustering approach improves results even for a single
channel and a single recording experiment (i.e., not longitudi-
nal data). Additional localized recording channels improve the
performance of our methodology by incorporating more infor-
mation. More recordings allow us to track dynamics of firing
over time.

Although a comprehensive survey of previous spike sort-
ing methods is beyond the scope of this paper, later we pro-
vide a summary of previous work as relevant to the previously
listed goals. Perhaps those methods that are most similar to ours
include a number of recent Bayesian methods for spike sort-
ing [9], [14]. One can think of our method as a direct extension
of theirs with a number of enhancements. Most importantly, we
learn features for clustering, rather than simply using principal
components. We also incorporate multiple electrodes, assume a
more appropriate prior over the number of clusters, and address
longitudinal data.

Other popular methods utilize principal components analysis
(PCA) [21] or wavelets [20] to find low-dimensional represen-
tations of waveforms for subsequent clustering. These methods
typically require some manual tuning, for example, to choose
the number of retained principal components. Moreover, these
methods do not naturally handle missing data well. Finally,
these methods choose low-dimensional embeddings for recon-
struction and are not necessarily appropriate for downstream
clustering.

Calabrese and Paniski [8] recently proposed a mixture of
Kalman filters (MoK) model to explicitly deal with slow changes
in the waveform shape. This approach also models the spike
rate (and even refractory period), but it does not address our
other desiderata, perhaps most importantly, utilizing multiple
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electrodes or longitudinal data. It would be interesting to extend
that work to utilize learned time-varying dictionaries rather than
principal components.

Finally, several recently proposed methods address sparsely
firing neurons [2], [23]. By directly incorporating firing rate
into our model and inference algorithm (see Section II-C), our
approach outperforms previous methods even in the absence of
manual tuning (see Section III-E).

The remainder of the manuscript is organized as follows.
Section II begins with a conceptual description of our model
followed by mathematical details and experimental methods for
new data. Section III begins by comparing the performance of
our approach to several other previous state-of-the-art methods,
and then highlights the utility of a number of additional features
that our method includes. Section IV summarizes and provides
some potential future directions. The Appendix provides de-
tails of the relationships between our method and other related
Bayesian models or methodologies.

II. MODELS AND ANALYSIS

A. Model Concept

Our generative model derives from the knowledge of the prop-
erties of electrophysiology signals. Specifically, we assume that
each waveform can be represented as a sparse superposition of
several dictionary elements, or features. Rather than presuppos-
ing a particular form of those features (e.g., wavelets), we learn
features from the data. Importantly, we learn these features for
the specific task at hand: spike sorting (i.e., clustering). This is
in contrast to other popular feature learning approaches, such as
principal component analysis (PCA) or independent component
analysis (ICA), which learn features to optimize a different ob-
jective function (for example, minimizing reconstruction error).
Dictionary learning has been demonstrated as a powerful idea,
with demonstrably good performance in a number of applica-
tions [38]. Moreover, statistical guarantees associated with such
approaches are beginning to be understood [25]. Section II-B
provides mathematical details for our Bayesian dictionary learn-
ing assumptions.

We jointly perform dictionary learning and clustering for the
analysis of multiple spikes. The generative model requires a
prior on the number of clusters. Regardless of the number of
putative spikes detected, the number of different single units
one could conceivably discriminate from a single electrode is
upper bounded due to the conductive properties of the tissue.
Thus, it is undesirable to employ Bayesian nonparametric meth-
ods [4] that enable the number of clusters (each cluster asso-
ciated with a single-unit event) to increase in an unbounded
manner as the number of threshold crossings increases. We de-
velop a new prior to address this issue, which we refer to as a
“focused mixture model” (FMM). The proposed prior is also
appropriate for chronic recordings, in which single units may
appear for a subset of the recording days, but also disappear and
reappear intermittently. Sections II-C and II-D provide mathe-
matical details for the general mixture modeling case, and our
specific FMM assumptions.

We are also interested in multichannel recordings. When we
have multiple channels that are within close proximity to one
another, we can “borrow statistical strength” across the chan-
nels to improve clustering accuracy. Moreover, we can ascertain
that certain movement or other artifacts—which would appear
to be spikes if only observing a single channel—are clearly not
spikes from a single neuron, as evidenced by the fact that they
are observed simultaneously across all the channels, which is
implausible for a single neuron. While it is possible that different
neurons may fire simultaneously and be observed coincidentally
across multiple sensor channels, we have found that this type
of observed data are more likely associated with animal mo-
tion, and artifacts from the recording setup (based on recorded
video of the animal). We employ the multiple-channel analysis
to distinguish single-neuron events from artifacts due to ani-
mal movement (inferred based on the electrophysiological data
alone, without having to view all of the data).

Finally, we explicitly model the spike rate of each cluster.
This can help address refractory issues, and perhaps more im-
portantly, enables us to detect sparsely firing neurons with high
accuracy.

Because our model is fully Bayesian, we can readily impute
missing data. Moreover, by placing relatively diffused but in-
formed hyperpriors on our model, our approach does not require
any manual tuning. And by reformulating our priors, we can de-
rive (local) conjugacy which admits efficient Gibbs sampling.
Section II-E provides details on these computations. In some
settings, a neuroscientist may want to tune some parameters, to
test hypotheses and impose prior knowledge about the experi-
ment; we also show how this may be done in Section III-D.

B. Bayesian Dictionary Learning

Consider electrophysiological data measured over a pre-
scribed time interval. Specifically, let Xij ∈ RT ×N represent
the jth signal observed during interval i (each j indexes a
threshold crossing within a time interval i). The data are as-
sumed recorded on each of N channels, from an N -element
sensor array, and there are T time points associated with each
detected spike waveform (the signals are aligned with respect
to the peak energy of all the channels). In tetrode arrays [12],
and related devices like those considered below, a single-unit
event (action potential of a neuron) may be recorded on multiple
adjacent channels, and, therefore, it is of interest to process the
N signals associated with Xij jointly; the joint analysis of all
N signals is also useful for longitudinal analysis, discussed in
Section III.

To constitute data Xij , we assume that threshold-based detec-
tion (or a related method) is performed on data measured from
each of the N sensor channels. When a signal is detected on
any of the channels, coincident data are also extracted from all
N channels, within a window of (discretized) length T centered
at the spikes’ energy peak average over all channels. On some
of the channels data may be associated with a single-unit event,
and on other channels the data may represent background noise.
Both types of data (signal and noise) are modeled jointly, as
discussed later.
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Following [9], we employ dictionary learning to model each
Xij ; however, unlike [9] we jointly employ dictionary learning
to all N channels in Xij (rather than separately to each of the
channels). The data are represented as

Xij = DΛSij + Eij (1)

where D ∈ RT ×K represents a dictionary with K dictionary
elements (columns), Λ ∈ RK×K is a diagonal matrix with
sparse diagonal elements, Sij ∈ RK×N represents the dictio-
nary weights (factor scores), and Eij ∈ RT ×N represents resid-
ual/noise. Let D = (d1 , . . . ,dK ) and E = (e1 , . . . ,eN ), with
dk , en ∈ RT . We impose priors

dk ∼ N
(

0,
1
T

IT

)
,en ∼ N (0, diag(η−1

1 , . . . , η−1
T )) (2)

where IT is the T × T dimensional identity matrix and ηt ∈ R
for all t.

We wish to impose that each column of Xij lives in a linear
subspace, with dimension and composition to be inferred. The
composition of the subspace is defined by a selected subset of the
columns of D, and that subset is defined by the nonzero elements
in the diagonal of Λ = diag(λ), with λ = (λ1 , . . . , λK )T and
λk ∈ R for all k. We impose λk ∼ νδ0 + (1 − ν)N+(0, α−1

0 ),
with ν ∼ Beta(a0 , b0) and δ0 a unit measure concentrated at
zero. The hyperparameters a0 , b0 ∈ R are set to encourage
sparse λ, and N+(·) represents a normal distribution truncated
to be nonnegative. Diffused gamma priors are placed on {ηt}
and α0 .

Concerning the model priors, the assumption dk ∼
N (0, 1

T IT ) is consistent with a conventional �2 regulariza-
tion on the dictionary elements. Similarly, the assumption
en ∼ N (0, diag(η−1

1 , . . . , η−1
T )) corresponds to an �2 fit of the

data to the model, with a weighting on the norm as a function
of the sample point (in time) of the signal. We also considered
using a more general noise model, with en ∼ N (0,Σ). These
priors are typically employed in dictionary learning; see [38]
for a discussion of the connection between such priors and
optimization-based dictionary learning.

C. Mixture Modeling

A mixture model is imposed for the dictionary weights Sij =
(sij1 , . . . , sijN ), with sijn ∈ RK ; sijn defines the weights on
the dictionary elements for the data associated with the nth
channel (nth column) in Xij . Specifically,

sijn ∼ N (μzi j n ,Ω−1
zi j n ), zij ∼

M∑
m=1

π(i)
m δm (3)

(μmn ,Ωmn ) ∼ G0(μ0 , β0 ,W0 , ν0) (4)

where G0 is a normal-Wishart distribution with μ0 a K di-
mension vector of zeros, β0 = 1, W0 is a K dimensional
identity matrix, and ν0 = K. The other parameters: π

(i)
m >

0,
∑M

m=1 π
(i)
m = 1, and {sijn}n=1,N are all associated with

cluster zij ; zij ∈ {1, . . . ,M} is an indicator variable defining
with which cluster Xij is associated, and M is a user-specified
upper bound on the total number of clusters possible.

The use of the Gaussian model in (3) is convenient, as it
simplifies computational inference, and the normal-Wishart dis-
tribution G0 is selected because it is the conjugate prior for a
normal distribution. The key novelty we wish to address in
this paper concerns design of the mixture probability vector
π(i) = (π(i)

1 , . . . , π
(i)
M )T .

D. Focused Mixture Model

The vector π(i) defines the probability with which each of the
M mixture components are employed for data recording interval
i. We wish to place a prior probability distribution on π(i) ,
and to infer an associated posterior distribution based upon the
observed data. Let b

(i)
m be a binary variable indicating whether

interval i uses mixture component m. Let φ̂
(i)
m correspond to

the relative probability of including mixture component m in
interval i, which is related to the firing rate of the single-unit
corresponding to this cluster during that interval. Given this, the
probability of cluster m in interval i is

π(i)
m =

1
Z

b(i)
m φ̂(i)

m (5)

where Z =
∑M

m ′=1 b
(i)
m ′ φ̂

(i)
m ′ is the normalizing constant to ensure

that
∑

m π
(i)
m = 1. To finalize this parameterization, we further

assume the following priors on b
(i)
m and φ̂

(i)
n :

φ̂
(i)
m ∼ Ga(φm , pi/(1 − pi))

φm ∼ Ga(γ0 , 1), pi ∼ Beta(a0 , b0) (6)

b(i)
m ∼ Bern(νm )

νm ∼ Beta(α/M, 1), γ0 ∼ Ga(c0 , 1/d0) (7)

where Ga(·) denotes the gamma distribution, and Bern(·) the
Bernoulli distribution. Note that {φm , νm}m=1,M are shared
across all intervals i, and it is in this manner we achieve joint
clustering across all time intervals. The reasons for the choices
of these various priors is discussed in Section V-B, when mak-
ing connections to related models. For example, the choice
b
(i)
m ∼ Bern(νm ) with νm ∼ Beta(α/M, 1) is motivated by the

connection to the Indian buffet process [16] as M → ∞.
We refer to this as a FMM because the νm defines the prob-

ability with which cluster m is observed, and via the prior in
(7) the model only “focuses” on a small number of clusters,
those with large νm . Further, as discussed below, the parameter
φm controls the firing rate of neuron/cluster m, and that is also
modeled. Concerning models to which we compare, when the
π

(i)
m are modeled via a Dirichlet process (DP) [4], and the matrix

of multichannel data are modeled jointly, we refer to the model
as matrix DP (MDP). If a DP is employed separately on each
channel the results are simply termed DP. The hierarchical DP
model in [9] for π

(i)
m the model is referred to as HDP.

E. Computations

The posterior distribution of model parameters is approxi-
mated via Gibbs sampling. Most of the update equations for
the model are relatively standard due to the conjugacy of
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consecutive distributions in the hierarchical model; these “stan-
dard” updates are not repeated here (see [9]). Perhaps the most
important update equation is for φm , as we found this to be a
critical component of the success of our inference. To perform
such sampling, we utilize the following lemma.

Lemma 2.1: Denote s(n, j) as the Sterling numbers of the first
kind [19] and F (n, j) = (−1)n+j s(n, j)/n! as their normalized
and unsigned representations, with F (0, 0) = 1, F (n, 0) = 0 if
n > 0, F (n, j) = 0 if j > n and F (n + 1, j) = n

n+1 F (n, j) +
1

n+1 F (n, j − 1) if 1 ≤ j ≤ n. Assuming n ∼ NegBin(φ, p) is
a negative binomial distributed random variable, and it is aug-
mented into a compound Poisson representation [3] as

n =
�∑

l=1

ul, ul ∼ Log(p), � ∼ Pois(−φ ln(1 − p)) (8)

where Log(p) is the logarithmic distribution [3] with probability
generating function G(z) = ln(1 − pz)/ln(1 − p), |z| < p−1 ,
then we have

Pr(� = j|n, φ) = Rφ (n, j) = F (n, j)φj

/ n∑
j ′=1

F (n, j′)φj ′

(9)
for j = 0, 1, . . . , n.

The proof is provided in the Appendix.
Let the total set of data measured during interval i be repre-

sented Di = {Xij}Mi
j=1 , where Mi is the total number of events

during interval i. Let n∗
im represent the number of data samples

in Di that are apportioned to cluster m ∈ {1, . . . , M} = S,
with Mi =

∑M
m=1 n∗

im . To sample φm , since p(φm |
p, n�

·m ) ∝
∏

i:b( i )
m =1 NegBin(n∗

im ;φm , pi)Ga(φm ; γ0 , 1) (see
Appendix IV-B for details), using Lemma 2.1, we can first
sample a latent count variable �im for each n∗

im as

Pr(�im = l|n∗
im , φm ) = Rφm

(n∗
im , l), l = 0, . . . , n∗

im . (10)

Since �im ∼ Pois(−φm ln(1 − pi)), using the conjugacy be-
tween the gamma and Poisson distributions, we have

φm |{�im , b(i)
m , pi} ∼

Ga

⎛
⎝γ0 +

∑
i:b( i )

m =1

�im ,
1

1 −
∑

i:b( i )
m =1 ln(1 − pi)

⎞
⎠ . (11)

Notice that marginalizing out φm in �m :=
∑

i:b( i )
m =1 �im ∼

Pois(−φm

∑
i:b( i )

m =1 ln(1 − pi)) results in �m ∼ NegBin(γ0 ,

p̃m ),∼ p̃m = −
∑

i b
( i )
m ln(1−pi )

1−
∑

i b
( i )
m ln(1−pi )

, therefore, we can use the same

data augmentation technique by sampling a latent count �̃m for
�m and then sampling γ0 using the gamma Poisson conjugacy
as

Pr(�̃m = l|�m , γ0) = Rγ0 (�m , l),∼ l = 0, · · · , �m

γ0 |{�̃m , b(i)
m , pi} ∼ Γ

(
c0 +

∑
m

�̃m ,
1

d0 −
∑

m ln(1 − p̃m )

)
.

(12)

Another important parameter is b
(i)
m . Since b

(i)
m can only

be zero if n∗
im = 0 and when n∗

im = 0, Pr(b(i)
m = 1|−) ∝

NegBin(0;φm , pi)πm and Pr(b(i)
m = 0|−) ∝ (1 − πm ), we

have

b(i)
m |πm , n∗

im , φm , pi ∼

Bernoulli

(
δ(n∗

im = 0)
πm (1 − pi)φm

πm (1 − pi)φm + (1 − πm )

+ δ(n∗
im > 0)

)
.

A large pi thus indicates a large variance-to-mean ratio on
n∗

im and Mi . Note that when b
(i)
m = 0, the observed zero count

n∗
im = 0 is no longer explained by n∗

im ∼ NegBin(rm , pi), this
satisfies the intuition that the underlying beta-Bernoulli process
is governing whether a cluster would be used or not, and once
it is activated, it is rm and pi that control how much it would be
used.

F. Data Acquisition and Preprocessing

In this study, we use two datasets, the popular “hc-1” dataset1

and a new dataset based upon experiments we have performed
with freely moving rats (institutional review board approvals
were obtained). These data will be made available to the research
community. Six animals were used in this study. Each animal
was trained, under food restriction (15 g/animal/day, standard
hard chow), on a simple lever-press-and-hold task until perfor-
mance stabilized and then taken in for surgery. Each animal
was implanted with four different silicon microelectrodes (Neu-
roNexus Technologies; Ann Arbor, MI; custom design) in the
forelimb region of the primary or supplementary motor cortex.
Each electrode contains up to 16 independent recording sites,
with variations in device footprint and recording site position
[e.g., Fig. 3(a)]. Electrophysiological data were measured dur-
ing 1-h periods on eight consecutive days, starting on the day
after implant (data were collected for additional days, but the
signal quality degraded after 8 days, as discussed below). The
recordings were conducted in a high walled observation cham-
ber under freely behaving conditions. Note that nearby sensors
are close enough to record the signal of a single or small group
of neurons, termed a single-unit event. However, in the device
in Fig. 3(a), all the eight sensors in a line are too far separated
to simultaneously record a single-unit event on all eight.

The data were bandpass filtered (0.3–3 kHz), and then all
signals 3.5 times the standard deviation of the background sig-
nal were deemed detections. The peak of the detection was
placed in the center of a 1.3-ms window, which corresponds to
T = 40 samples at the recording rate. The signal Xij ∈ RT ×N

corresponds to the data measured simultaneously across all N
channels within this window. Here N = 8, with a concentration
on the data measured from the 8 channels of the zoomed-in
Fig. 3(a).

1available from http://crcns.org/data-sets/hc/hc-1
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G. Evaluation Criteria

We use several different criteria to evaluate the performance
of the competing methodologies. Let Fp and Fn denote the
total number of false positives and negatives for a given neuron,
respectively, and let #w denote the total number of detected
waveforms. We define

Accuracy =
{

1 − Fp + Fn

#w

}
× 100%. (13)

For synthetic missing data, as in Section III-C, we compute the
relative recovery error (RRE):

RRE =

∥∥∥X − X̂
∥∥∥

‖X‖ × 100% (14)

where X is the true waveform, X̂ is the estimated waveform,
and ‖·‖ indicates the L2 or Frobenius norm depending on con-
text. When adding noise, we compute the signal-to-noise ratio
(SNR) as in [26]:

SNR =
A

2 SDnoise
(15)

where A denotes the peak-to-peak voltage difference of the
mean waveform and SDnoise is the standard deviation of the
noise. The noise level is estimated by mean absolute deviation.

To simulate a lower SNR in the sparse spiking experiments,
we took background signals from the dataset where no spiking
occurred and scale them by α and add them to our detected
spikes; this gives a total noise variance of σ2(1 + α2), and we
set the SNR to 2.5 and 1.5 for these experiments.

III. RESULTS

For these experiments, we used a truncation level of K = 40
dictionary elements, and the number of mixture components
was truncated to M = 20 (these truncation levels are upper
bounds, and within the analysis a subset of the possible dic-
tionary elements and mixture components are utilized). In
dictionary learning, the gamma priors for {ηt} and α0 were
set as Ga(10−6 , 10−6). In the context of the FMM, we set
a0 = b0 = 1, c0 = 0.1, and d0 = 0.1. Prior Ga(10−6 , 10−6)
was placed on parameter α related to the Indian Buffet Pro-
cess (see Appendix IV-B for details). None of these parameters
have been tuned, and many related settings yield similar results.
In all examples, we ran 6000 Gibbs samples, with the first 3000
discarded as burn-in (however, typically high-quality results are
inferred with far fewer samples, offering the potential for com-
putational acceleration).

A. Real Data With Partial Ground Truth

We first consider publicly available dataset hc-1. These data
consist of both extracellular recordings and an intracellular
recording from a nearby neuron in the hippocampus of an anes-
thetized rat [17]. Intracellular recordings give clean signals on
a spike train from a specific neuron, providing accurate spike
times for that neuron. Thus, if we detect a spike in a nearby
extracellular recording within a close time period (< 0.5ms)

Fig. 1. Accuracy of the various methods on d533101 data [17]. All abbrevia-
tions are explained in the main text (Section III-A). Note that dictionary learning
dominates performance over principal components. Moreover, modeling multi-
ple channels (as in MDP and FMM) dominates performance over operating on
each channel separately.

to an intracellular spike, we assume that the spike detected in
the extracellular recording corresponds to the known neuron’s
spikes.

We considered the widely used data d533101 and the same
preprocessing from [8]. These data consist of 4-channel extra-
cellular recordings and one-channel intracellular recording. We
used 2491 detected spikes and 786 of those spikes came from
the known neuron. The accuracy of cluster results based on mul-
tiple methods are shown in Fig. 1. We consider several different
clustering schemes and two different strategies for learning low-
dimensional representations of the data. Specifically, we learn
low-dimensional representations using either: dictionary learn-
ing (DL) or the first two principal components (PCs) of the
matrix consisting of the concatenated waveforms. For the mul-
tichannel data, we stack each waveform matrix to yield a vector,
and concatenate stacked waveforms to obtain the data matrix
upon which PCA is run. Given this representation, we consider
several different clustering strategies: 1) matrix Dirichlet pro-
cess (MDP), which implements a DP on the Xij matrices, as
opposed to previous DP approaches on vectors [9], [14]; 2)
FMM (as described above); 3) hierarchical DP (HDP) [9]; 4)
independent DP (the HDP and independent DP are from [9]); 5)
mixture of Kalman filters (MoK) [8]; 6) Gaussian mixture mod-
els (GMM) [7]; and 7) K-means (KMEANS) [21]. Although we
do not consider all pairwise comparisons, we do consider many
options. Note that all of the DL approaches are novel. It should
be clear from Fig. 1 that dictionary learning enhances the perfor-
mance over principal components for each clustering approach.
Specifically, all DL-based methods outperform all PC-based
methods. Moreover, sharing information across channels, as in
MDP and FMM (both novel methodologies), seems to further
improve the performance. The ordering of the algorithms is es-
sentially unchanged upon using a different number of mixture
components or a different number of principal components.

In Fig. 2, we visualize the waveforms in the first two principle
components for comparison. In Fig. 2(a), we show ground truth
to compare to the results we get by clustering from the K-means
algorithm shown in Fig. 2(b) and the clustering from the GMM
shown in Fig. 2(c). We observe that both K-means and GMM
work well, but due to the constrained feature space they incor-
rectly classify some spikes (marked by arrows). However, the
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Fig. 2. Clustering results shown in the 2 PC space of the various meth-
ods on d533101 data [17]. All abbreviations are explained in the main text
(Section III-A). “Known neuron” denotes waveforms associated with the neu-
ron from the cell with the intracellular recording, and “Unknown neuron” refers
to all other detected waveforms. Note that all methods are shown in the first two
PCs for visualization, but that the FMM-DL shown in (d) is jointly learning the
feature space and clustering.

proposed model, shown in Fig. 2(d), which incorporates dictio-
nary learning with spike sorting, infers an appropriate feature
space (not shown) and more effectively clusters the neurons.

Note that in Figs. 1 and 2, in the context of PCA features, we
considered the two principal components (similar results were
obtained with the three principal components); when we con-
sidered the 20 principal components, for comparison, the results
deteriorated, presumably because the higher order components
correspond to noise. An advantage of the proposed approach is
that we model the noise explicitly, via the residual Eij in (1);
with PCA the signal and noise are not explicitly distinguished.

B. Longitudinal Analysis of Electrophysiological Data

Fig. 3(a) shows the recording probe used for the analysis of
the rat motor cortex data. Fig. 3(b) shows assignments of data to
each of the possible clusters, for data measured across the 8 days,
as computed by the proposed model (for example, for the first
three days, two clusters were inferred). Results are shown for
the maximum-likelihood collection sample. As a comparison to
FMM-DL, we also considered the nonfocused mixture model
(NFMM-DL) methodology discussed in Section V-B, with the
b(i) set to all ones (in both cases we employ the same form
of dictionary learning, as in Section II-B). From Fig. 3(c), it is
observed that on held-out data the FMM-DL yields improved
results relative to the NFMM-DL.

In fact, the proposed model was developed specifically to
address the problem of multiday longitudinal analysis of elec-
trophysiological data, as a consequence of observed limitations
of HDP [which are only partially illuminated by Fig. 3(c)].
Specifically, while the focused nature of the FMM-DL allows

Fig. 3. Longitudinal data analysis of the rat motor cortex data. (a) Schematic
of the neural recording array that was placed in the rat motor cortex. The
red numbers identify the sensors, and a zoom-in of the bottom-eight sensors
is shown. The sensors are ordered by the order of the read-out pads, at left.
The presented data are for sensors numbered 1 to 8, corresponding to the
zoomed-in region. (b) From the maximum-likelihood collection sample, the
apportionment of data among mixture components (clusters). Results are shown
for 45 s recording periods, on each of 8 days. For example, D-4 reflects data on
day 4. Note that while the truncation level is such that there are 20 candidate
clusters (vertical axis in (b)), only an inferred subset of clusters are actually used
on any given day. (c) Predictive likelihood of held-out data. The horizontal axis
represents the fraction of data held out during training. FMM-DL dominates
NFMM-DL on these data.

learning of specialized clusters that occur over limited days,
the “non-focused” HDP-DL tends to merge similar but distinct
clusters. This yields HDP results that are characterized by fewer
total clusters, and by cluster characteristics that are less reveal-
ing of detailed neural processes. The patterns of observed neural
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activity may shift over a period of days due to many reasons,
including cell death, tissue encapsulation, or device movement;
this shift necessitates the FMM-DL’s ability to focus on subtle
but important differences in the data properties over days. This
ability to infer subtly different clusters is related to the focused
topic model’s ability [35] to discern distinct topics that differ
in subtle ways. The study of large quantities of data (8 days)
makes the ability to distinguish subtle differences in clusters
more challenging (the DP-DL-based model works well when
observing data from one recording session, like in Fig. 1, but
the analysis of multiple days of data is challenging for HDP).

Note from Fig. 3(b) that the number of detected signals is
different for different recording days, despite the fact that the
recording period reflective of these data (45 s) is the same for
all days. This highlights the need to allow modeling of different
firing rates, as in our model but not emphasized in these results.

Among the parameters inferred by the model are approxi-
mate posterior distributions on the number of clusters across
all days, and on the required number of dictionary elements.
These approximate posteriors are shown in Fig. 4(a) and (b),
and Fig. 4(c) shows example dictionary elements. Although not
shown for brevity, the {pi} had posterior means in excess of 0.9.

To better represent insight that is garnered from the model,
Fig. 5 depicts the inferred properties of three of the clusters,
from Day 4 [D-4 in Fig. 3(b)]. Shown are the mean signal for
the 8 channels in the respective cluster [for the 8 channels at the
bottom of Fig. 3(a)], and the error bars represent one standard
deviation, as defined by the estimated posterior. Note that the
cluster in the top row of Fig. 5 corresponds to a localized single-
unit event, presumably from a neuron (or a coordinated small
group of neurons) near the sensors associated with channels 7
and 8. The cluster in the middle row of Fig. 5 similarly corre-
sponds to a single-unit event situated near the sensors associated
with channels 3 and 6. Note the proximity of sensors 7 and 8,
and sensors 3 and 6, from Fig. 3(a). The HDP model uncovered
the cluster in the top row of Fig. 5, but not that in the middle
row of Fig. 5 (not shown).

Note the bottom row of Fig. 5, in which the mean signal
across all 8 channels is approximately the same (HDP also
found related clusters of this type). This cluster is deemed to
not be associated with a single-unit event, as the sensors are too
physically distant across the array for the signal to be observed
simultaneously on all sensors from a single neuron. This class
of signals is deemed associated with an artifact or some global
phenomena, (possibly) due to movement of the device within
the brain, and/or because of charges that build up in the device
and manifest signals with animal motion (by examining separate
video recordings, such electrophysiological data occurred when
the animal constituted significant and abrupt movement, such as
head hitting the sides of the cage, or during grooming). Note that
in the top two rows of Fig. 5, the error bars are relatively tight
with respect to the strong signals in the set of eight, while the
error bars in Fig. 5(c) are more pronounced (the mean curves
look smooth, but this is based upon averaging thousands of
signals).

In addition to recording the electrophysiological data, video
was recorded of the rat throughout the experiment. Robust PCA

Fig. 4. Posteriors and dictionaries from rat motor cortex data (the same data
as in Fig. 3).(a) Approximate posterior distribution on the number of global
clusters (mixture components). (b) Approximate posterior distribution of the
number of dictionary elements. (c) Examples of inferred dictionary elements;
amplitudes of dictionary elements are unit less.

[36] was used to quantify the change in the video from frame-
to-frame, with high change associated with large motion by
the animal (this automation is useful because 1 h of data are
collected on each day; direct human viewing is tedious and
unnecessary). On Day 4, the model infers that in periods of
high animal activity, 20% to 40% of the detected signals are
due to single-unit events (depending on which portion of data
are considered); during periods of relative rest 40% to 70% of
detected signals are due to single-unit events. This suggests that
animal motion causes signal artifacts, as discussed in Section I

In these studies, the total fraction of single-unit events, even
when at rest, diminishes with increasing number of days from
sensor implant; this may be reflective of changes in the system
due to the glial immune response of the brain [6], [27]. The dis-
cerning ability of the proposed FMM-DL to distinguish subtly
different signals, and analysis of data over multiple days, has
played an important role in this analysis. Further, longitudinal
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Fig. 5. Example clusters inferred for data on the bottom 8 channels of Fig. 3(a).
(a) and (b) Example of single-unit events. (c) Example of a cluster not attributed
to a single-unit-event. The 8 signals are ordered from left to right consistent with
the numbering of the 8 channels at the bottom of Fig. 3(a). The black curves
represent the mean, and the error bars are one standard deviation.

analyses like that in Fig. 5 were the principal reason for mod-
eling the data on all N = 8 channels jointly (the ability to dis-
tinguish single-unit events from anomalies is predicated on this
multichannel analysis).

C. Handling Missing Data

The quantity of data acquired by a neural recording system
is enormous, and therefore in many systems one first performs
spike detection (for example, based on a threshold), and then
a signal is extracted about each detection (a temporal window
is placed around the peak of a given detection). This step is
often imperfect, and significant portions of many of the spikes
may be missing due to the windowed signal extraction (and
the missing data are not retainable, as the original data are
discarded). Conventional feature-extraction methods typically
cannot be applied to such temporally clipped signals.

Returning to (1), this implies that some columns of the data
Xij may have missing entries. Conditioned on D, Λ, Sij , and
(η1 , . . . , ηT ), we have Xij ∼ N (DΛSij , diag(η−1

1 , . . . , η−1
T ).

The missing entries of Xij may be treated as random variables,
and they are integrated out analytically within the Gaussian
likelihood function. Therefore, for the case of missing data in
Xij , we simply evaluate (1) at the points of Xij for which
data are observed. The columns of the dictionary D of course
have support over the entire signal, and therefore given the
inferred Sij (in the presence of missing data), one may impute
the missing components of Xij via DΛSij . As long as, across
all Xij , the same part of the signal is not clipped away (lost)
for all observed spikes, by jointly processing all of the retained
data (all spikes) we may infer D, and hence infer missing data.

In practice, we are less interested in observing the im-
puted missing parts of Xij than we are in simply cluster-
ing the data, in the presence of missing data. By evaluat-
ing Xij ∼ N (DΛSij , diag(η−1

1 , . . . , η−1
T )) only at points for

Fig. 6. Our generative model elegantly addresses missing data. (a) Example
of a clipped waveform from the publicly available data (blue), original wave-
form (gray), and recovery waveform (black); the error bars reflect one standard
deviation from the posterior distribution on the underlying signal. (b) Relative
errors (with respect to the mean estimated signal). Note that we only show part
of the waveform for visualization purposes.

which data are observed, and via the mixture model in (4), we
directly infer the desired clustering, in the presence of missing
data (even if we are not explicitly interested in subsequently
examining the imputed values of the missing data).

To examine the ability of the model to perform clustering
in the presence of missing data, we reconsider the publicly
available data from Section III-A. For the first 10% of the spike
signals (300 spike waveforms), we impose that a fraction of the
beginning and end of the spike is absent. The original signals are
of length T = 40 samples. As a demonstration, for the “clipped”
signals, the first 10 and the last 16 samples of the signals are
missing. A clipped waveform example is shown in Fig. 6(a);
we compare the mean estimation of the signal, and the error
bars reflect one standard deviation from the full posterior on the
signal. In the context of the analysis, we processed all of the data
as before, but now with these “damaged”/clipped signals. We
observed that 94.11% of the nondamaged signals were clustered
properly (for the one neuron for which we had truth), and 92.33%
of the damaged signals were sorted properly. The recovered
signal in Fig. 6(a) is typical, and is meant to give a sense of
the accuracy of the recovered missing signal. The ability of the
model to perform spike sorting in the presence of substantial
missing data is a key attribute of the dictionary-learning-based
framework.

D. Model Tuning

As constituted in Section II, the model is essentially parameter
free. All of the hyperparameters are set in a relatively diffused
manner (see the discussion at the beginning of Section III),
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Fig. 7. Effect of manually tuning ω0 to obtain a different number of features
for the rat motor cortex data. (a) Waveforms projected down onto two learned
features based on cluster result with ω0 = 106 , the number of inferred clusters
is two. (b) Same as (a) with ω0 = 108 ; the number of inferred clusters is seven.

and the model infers the number of clusters and their compo-
sition with no parameter tuning required. Thus, our code runs
“out-of-the-box” to yield state-of-the-art accuracy on the dataset
that we tested. And yet, an expert experimentalist could desire
different clustering results, further improving the performance.
Because our inference methodology is based on a biophysical
model, all of the hyperparameters have natural and intuitive in-
terpretations. Therefore, adjusting the performance is relatively
intuitive. Although all of the results presented previously were
manifested without any model tuning, we now discuss how one
may constitute a single “knob” (parameter) that a neuroscientist
may “turn” to examine different kinds of results.

In Section II-B, the variance of additive noise (e1 , . . . , en )
are controlled by the covariance diag(η−1

1 , . . . , η−1
T ). If we set

diag(η−1
1 , . . . , η−1

T ) = ω−1
0 IT , then parameter ω0 may be tuned

to control the variability (diversity) of spikes. The cluster di-
versity encouraged by setting different values of ω0 in turn
manifests different numbers of clusters, which a neuroscientist
may adjust as desired. As an example, we consider the publicly
available data from Section III-A, and clusterings (color coded)
are shown for two settings of ω0 in Fig. 7. In this figure, each
spike is depicted in a 2-D learned feature space, taking two arbi-
trary features (because features are not inherently ordered); this
is simply for display purposes, as here feature learning is done
via dictionary learning, and in general more than two dictionary
components are utilized to represent a given waveform.

The value of ω0 defines how much of a given signal is asso-
ciated with noise Eij , and how much is attributed to the term
DΛSij characterized by a summation of dictionary elements
(see (1)). If ω0 is large, then the noise contribution to the signal
is small (because the noise variance is imposed to be small),

and therefore the variability in the observed data is associated
with the variability in the underlying signal (and that variability
is captured via the dictionary elements). Since the clustering is
performed on the dictionary usage, if ω0 is large we expect an
increasing number of clusters, with these clusters capturing the
greater diversity/variability in the underlying signal. By con-
trast, if ω0 is relatively small, more of the signal is attributed
to noise Eij , and the signal components modeled via the dic-
tionary are less variable (variability is attributed to noise, not
signal). Hence, as ω0 diminishes in size we would expect fewer
clusters. This phenomenon is observed in the example in Fig. 7,
with this representative of behavior we have observed in a large
set of experiments on the rat motor cortex data.

E. Sparsely Firing Neurons

Recently, several manuscripts have directly addressed spike
sorting in the present of sparsely firing neurons [2], [23]. We
operationally define a sparsely firing neuron as a neuron whose
spike count has significantly fewer spikes than the other isolated
neurons. Based on reviewer recommendations, we assessed the
performance of FMM-DL in such regimes utilizing the follow-
ing synthetic data. First, we extracted spike waveforms from
four clusters from the new dataset discussed in Section II-F.
We excluded all waveforms that did not clearly separate [see
Fig. 8(a1)] to obtain clear clustering criteria [see Fig. 8(a2)].
There were 2592, 148, 506, and 64 spikes in the first, sec-
ond, third, and fourth cluster, respectively. Then, we added real
noise—as described in Section II-G—to each waveform at two
different levels to obtain increasingly noisy and less-well sepa-
rated clusters [see Fig. 8(b1), (b2), (c1), and (c2)]. We applied
FMM-DL, Wave-clus [23] and Wave-clus “forced” (in which we
hand tune the parameters to obtain optimal results) and ISOMAP
dominant sets [2] to all three SNR regimes to assess our relative
performance with the following results.

The third column of Fig. 8 shows the posterior estimate of
the number of clusters for each of the three scenarios. As long
as SNR is relatively good, for example, higher than 2 in this
simulation, the posterior number of clusters inferred by FMM-
DL correctly has its maximum at four clusters. Similarly, for the
good and moderate SNR regimes, the confusion matrix is essen-
tially a diagonal matrix, indicating that FMM-DL assigns spikes
to the correct cluster. Only in the poor SNR regime (SNR=1.5),
does the posterior move away from the truth. This occurs be-
cause Unit 1 becomes oversegmented, as depicted in (c2). (c4)
shows that only this unit struggles with assignment issues, sug-
gestive of the possibility of a posthoc correction if desired.

Fig. 9(a) compares the performance of FMM-DL to previ-
ously proposed methods. Even after fine-tuning the Wave-clus
method to obtain its optimal performance on these data, FMM-
DL yields a better accuracy. In addition to obtaining better point-
estimates of spiking, via our Bayesian generative model, we
also obtain posteriors over all random variables of our model,
including number of spikes per unit. Fig. 9(b) and (c) shows
such posteriors, which may be used by the experimentalist to
assess data quality.
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Fig. 8. Sparse firing results on synthetic data based on the Pittsburgh dataset. The three rows correspond to three different (SNR levels: (a) 1, (b) 1.5, and
(c) 2.5. The four columns correspond to: (1) cluster results of spike waveforms with colors representing different clusters, (2) plots of learned features based on
cluster result, (3) approximate posterior distribution of cluster numbers, and (4) confusion matrix heatmap. Note that we accurately recover all the sparsely spiking
neurons except the sparsest one in the noisiest regime. (a) Original spikes. (b) SNR = 2.5. (c) SNR = 1.5.

Fig. 9. Performance analysis in the sparsely firing neuron case on synthetic data based on the Pittsburgh dataset. (a) Accuracy comparisons based on the
cluster results under the various SNR. (b) Approximate posterior distributions of error rate for FMM-DL in the different SNR levels. (c) Approximate posterior
distributions of spike waveform number for the unit 2, unit 3. and unit 4 under the various SNR regimes.

F. Computational Requirements

The software used for the tests in this paper were writ-
ten in (nonoptimized) MATLAB, and therefore computational
efficiency has not been a focus. The principal motivating fo-
cus of this study concerned the interpretation of longitudinal
spike waveforms, as discussed in Section III-B, for which the
computation speed is desirable, but there is not a need for real-
time processing (for example, for a prosthetic). Nevertheless, to
give a sense of the computational load for the model, it takes
about 20 s for each Gibbs sample, when considering analysis
of 170,800 spikes across N = 8 channels; computations were
performed on a PC, specifically a Lenevo T420 (CPU is an
Intel(R) Core (TM) i7 M620 with 4 GB RAM). Significant
computational acceleration may be manifested by coding in C,

and via development of online methods for Bayesian inference
(for example, see [32]). In the context of such online Bayesian
learning one typically employs approximate variational Bayes
inference rather than Gibbs sampling, which typically manifests
significant acceleration [32].

IV. DISCUSSION

A. Summary

A new FMM has been developed, motivated by real-world
studies with longitudinal electrophysiological data, for which
traditional methods like the hierarchical Dirichlet process have
proven inadequate. In addition to performing “focused” cluster-
ing, the model jointly performs feature learning, via dictionary
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learning, which significantly improves performance over princi-
pal components. We explicitly model the count of signals within
a recording period by pi . The rate of neuron firing constitutes
a primary information source [10], and therefore it is desirable
that it be modeled. This rate is controlled here by a parameter
φ

(i)
m , and this was allowed to be unique for each recording period

i.

B. Future Directions

In future research one may constitute a mixture model on
φ

(i)
m , with each mixture component reflective of a latent neural

(firing) state; one may also explicitly model the time dependence
of φ

(i)
m , as in the mixture of Kalmans work [8]. The inference

of this state could be important for decoding neural signals and
controlling external devices or muscles. In future work, one
may also wish to explicitly account for covariates associated
with animal activity [31], which may be linked to the firing rate
we model here (we may regress pi to observed covariates).

In the context of modeling and analyzing electrophysiolog-
ical data, recent work on clustering models has accounted for
refractory-time violations [8], [9], [14], which occur when two
or more spikes that are sufficiently proximate are improperly
associated with the same cluster/neuron (which is impossible
physiologically due to the refractory time delay required for the
same neuron to reemit a spike). The methods developed in [9]
and [14], may be extended to the class of mixture models de-
veloped previously. We have not done so for two reasons: 1) in
the context of everything else that is modeled here (joint feature
learning, clustering, and count modeling), the refractory-time-
delay issue is a relatively minor issue in practice; and 2) perhaps
more importantly, an important issue is that not all components
of electrophysiological data are spike related (which are associ-
ated with refractory-time issues). As demonstrated in Section III,
a key component of the proposed method is that it allows us to
distinguish single-unit (spike) events from other phenomena.

Perhaps the most important feature of spike sorting methods
that we have not explicitly included in this model is “overlap-
ping spikes” [1], [5], [13], [18], [30], [33], [37]. The preliminary
analysis of our model in this regime (not shown), inspired by re-
viewer comments, demonstrated to us that while the FMM-DL
as written is insufficient to address this issue, a minor modifica-
tion to FMM-DL will enable “demixing” overlapping spikes. We
are currently pursuing this avenue. Neuronal bursting—which
can change the waveform shape of a neuron—is yet another
possible avenue for future work.

APPENDIX

A. Connection to Bayesian Nonparametric Models

The use of nonparametric Bayesian methods like the Dirichlet
process (DP) [9], [14] removes some of the ad hoc character
of classical clustering methods, but there are other limitations
within the context of electrophysiological data analysis. The DP
and related models are characterized by a scale parameter α > 0,
and the number of clusters grows as O(α log S) [28], with S
the number of data samples. This growth without limit in the

number of clusters with increasing data is undesirable in the
context of electrophysiological data, for which there are a finite
set of processes responsible for the observed data. Further, when
jointly performing mixture modeling across multiple tasks, the
hierarchical Dirichlet process (HDP) [29] shares all mixture
components, which may undermine inference of subtly different
clusters.

In this paper, we integrate dictionary learning and cluster-
ing for analysis of electrophysiological data, as in [9] and [15].
However, as an alternative to utilizing a method like DP or
HDP [9], [14] for clustering, we develop a new hierarchical
clustering model in which the number of clusters is modeled
explicitly; this implies that we model the number of underly-
ing neurons—or clusters—separately from the firing rate, with
the latter controlling the total number of observations. This is
done by integrating the Indian buffet process (IBP) [16] with the
Dirichlet distribution, similar to [35], but with unique charac-
teristics. The IBP is a model that may be used to learn features
representative of data, and each potential feature is a “dish”
at a “buffet”; each data sample (here a neuronal spike) selects
which features from the “buffet” are most appropriate for its
representation. The Dirichlet distribution is used for clustering
data, and therefore here we jointly perform feature learning and
clustering, by integrating the IBP with the Dirichlet distribu-
tion. The proposed framework explicitly models the quantity of
data (for example, spikes) measured within a given recording
interval. To our knowledge, this is the first time the firing rate
of electrophysiological data is modeled jointly with clustering
and jointly with feature/dictionary learning. The model demon-
strates state-of-the-art clustering performance on publicly avail-
able data. Further, concerning distinguishing single-unit-events,
we demonstrate how this may be achieved using the FMM-DL
method, considering new measured (experimental) electrophys-
iological data.

B. Relationship to Dirichlet Priors

A typical prior for π(i) is a symmetric Dirichlet distribution
[15],

π(i) ∼ Dir(α̃0/M, . . . , α̃0/M). (16)

In the limit, M → ∞, this reduces to a draw from a Dirichlet
process [9], [14], represented π(i) ∼ DP(α̃0G0), with G0 the
“base” distribution defined in (4). Rather than drawing each π(i)

independently from DP(α̃0G0), we may consider the hierarchi-
cal Dirichlet process (HDP) [29] as

π(i) ∼ DP(α̃1G), G ∼ DP(α̃0G0) (17)

The HDP methodology imposes that the {π(i)} share the same
set of “atoms” {μmn ,Ωmn}, implying a sharing of the differ-
ent types of clusters across the time intervals i at which data
are collected. A detailed discussion of the HDP formulation is
provided in [9].

These models have limitations in that the inferred number of
clusters grows with observed data (here the clusters are ideally
connected to neurons, the number of which will not necessar-
ily grow with longer samples). Further, the above clustering
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model assumes the number of samples is given, and hence is
not modeled (the information-rich firing rate is not modeled).
Next we develop a framework that yields hierarchical clustering
like HDP, but the number of clusters and the data count (for
example, spike rate) are modeled explicitly.

C. Other Formulations of the FMM

Let the total set of data measured during interval i be repre-
sented Di = {Xij}Mi

j=1 , where Mi is the total number of events
during interval i. In the experiments below, a “recording inter-
val” corresponds to a day on which data were recorded for an
hour (data are collected separately on a sequence of days), and
the set {Xij}Mi

j=1 defines all signals that exceeded a threshold
during that recording period. In addition to modeling Mi , we
wish to infer the number of distinct clusters Ci characteristic
of Di , and the relative fraction (probability) with which the Mi

observations are apportioned to the Ci clusters.
Let n∗

im represent the number of data samples in Di that
are apportioned to cluster m ∈ {1, . . . , M} = S, with Mi =∑M

m=1 n∗
im . The set Si ⊂ S, with Ci = |Si |, defines the active

set of clusters for representation of Di , and therefore M serves
as an upper bound (n∗

im = 0 for m ∈ S \ Si).

We impose n∗
im ∼ Poisson(b(i)

m φ̂
(i)
m ) with the priors for b

(i)
m

and φ̂
(i)
m given in (6) and (7). Note that n∗

im = 0 when b
(i)
m = 0,

and therefore b(i) = (b(i)
1 , . . . , b

(i)
M )T defines indicator variables

identifying the active subset of clusters Si for representation of
Di . Marginalizing out φ̂

(i)
m , n∗

im ∼ NegBin(b(i)
m φm , pi). This

emphasizes another motivation for the form of the prior: the
negative binomial modeling of the counts (firing rate) is more
flexible than a Poisson model, as it allows the mean and variance
on the number of counts to be different (they are the same for a
Poisson model).

While the aforementioned methodology yields a generative
process for the number n∗

im of elements of Di apportioned to
cluster m, it is desirable to explicitly associate each member of
Di with one of the clusters (to know not just how many members
of Di are apportioned to a given cluster, but also which data
are associated with a given cluster). Toward this end, consider
the alternative equivalent generative process for {n∗

im}m=1,M

(see Lemma 4.1 in [39] for a proof of equivalence): first draw
Mi ∼ Poisson(

∑M
m=1 b

(i)
m φ̂

(i)
m ), and then

(n∗
i1 , . . . , n

∗
iM ) ∼ Mult(Mi ;π

(i)
1 , . . . , π

(i)
M ) (18)

π(i)
m = b(i)

m φ̂(i)
m /

M∑
m ′=1

b
(i)
m ′ φ̂

(i)
m ′ (19)

with φ̂
(i)
m , {φm}, {b(i)

m }, and {pi} constituted as in (6)–(7). Note
that we have Mi ∼ NegBin(

∑M
m=1 b

(i)
m φm , pi) by marginaliz-

ing out φ̂
(i)
m .

Rather than drawing (n∗
i1 , . . . , n

∗
iM ) ∼ Mult(Mi ;π

(i)
1 , . . . ,

π
(i)
M ), for each of the Mi data we may draw indicator variables

zij ∼
∑M

m=1 π
(i)
m δm , where δm is a unit measure concentrated

at the point m. Variable zij assigns data sample j ∈ {1, . . . ,Mi}
to one of the M possible clusters, and n∗

im =
∑Mi

j=1 1(zij = m),

with 1(·) equal to one if the argument is true, and zero otherwise.
The probability vector π(i) defined in (19) is now used within
the mixture model in (4).

As a consequence of the manner in which φ̂
(i)
m is drawn in

(6), and the definition of π(i) in (19), for any pi ∈ (0, 1), the
proposed model imposes

π(i) ∼ Dir(b(i)
1 φ1 , . . . , b

(i)
M φM ) (20)

D. Additional Connections to Other Bayesian Models

Equation (20) demonstrates that the proposed model is a gen-
eralization of (16). Considering the limit M → ∞, and upon
marginalizing out the {νm}, the binary vectors {b(i)} are drawn
from the Indian buffet process (IBP), denoted b(i) ∼ IBP(α).
The number of nonzero components in each b(i) is drawn from
Poisson(α), and therefore for finite α the number of nonzero
components in b(i) is finite, even when M → ∞. Consequently
Dir(b(i)

1 φ1 , . . . , b
(i)
M φM ) is well defined even when M → ∞

since, with probability one, there are only a finite number
of nonzero parameters in (b(i)

1 φ1 , . . . , b
(i)
M φM ). This model is

closely related to the compound IBP Dirichlet (CID) process
developed in [35], with the following differences.

Previously, we have explicitly derived the relationship be-
tween the negative binomial distribution and the CID, and
with this understanding we recognize the importance of pi ;
the CID assumes pi = 1/2, but there is no theoretical justifica-
tion for this. Note that Mi ∼ NegBin(

∑M
m=1 b

(i)
m φ

(i)
m , pi). The

mean of Mi is (
∑M

m=1 b
(i)
m φm )pi/(1 − pi), and the variance is

(
∑M

m=1 b
(i)
m φm )pi/(1 − pi)2 . If pi is fixed to be 1/2 as in [35],

this implies that we believe that the variance is two times the
mean, and the mean and variance of Mi are the same for all
intervals i and i′ for which b(i) = b(i′) . However, in the context
of electrophysiological data, the rate at which neurons fire plays
an important role in information content [10]. Therefore, there
are many cases for which intervals i and i′ may be characterized
by firing of the same neurons (i.e., b(i) = b(i′)) but with very
different rates (Mi �= Mi ′ ). The modeling flexibility imposed by
inferring pi therefore plays an important practical role for mod-
eling electrophysiological data, and likely for other clustering
problems of this type.

To make a connection between the proposed model and the
HDP, motivated by (6)–(7), consider φ̄ = (φ̄1 , . . . , φ̄M ) ∼
Dir(γ0 , . . . , γ0), which corresponds to (φ1 , . . . , φM )/∑M

m ′=1 φm ′ . From φ̄, we yield a normalized form of the vector
φ = (φ1 , . . . , φM ). The normalization constant

∑M
m=1 φm is

lost after drawing φ̄; however, because φm ∼ Ga(γ0 , 1), we
may consider drawing α̃1 ∼ Ga(Mγ0 , 1), and approximating
φ ≈ α̃1φ̄. With this approximation for φ, π(i) may be drawn
approximately as π(i) ∼ Dir(α̃1b

(i)
1 φ̄1 , . . . , α̃1b

(i)
M φ̄M ). This

yields a simplified and approximate hierarchy

π(i) ∼ Dir(α̃1(b(i) � φ̄))

φ̄ = (φ̄1 , . . . , φ̄M ) ∼ Dir(γ0 , . . . , γ0), α̃1 ∼ Ga(Mγ0 , 1) (21)

with b(i) ∼ IBP(α) and � representing a pointwise/Hadamard
product. If we consider γ0 = α̂0/M , and the limit M →



CARLSON et al.: MULTICHANNEL ELECTROPHYSIOLOGICAL SPIKE SORTING VIA JOINT DICTIONARY LEARNING 53

∞, with b(i) all ones, this corresponds to the HDP, with
α̂1 ∼ Ga(α̂0 , 1). We call such a model the NFMM. There-
fore, the proposed model is intimately related to the HDP,
with three differences: 1) pi is not restricted to be 1/2, which
adds flexibility when modeling counts; 2) rather than draw-
ing φ̄ and the normalization constant α̃1 separately, as in
the HDP, in the proposed model φ is drawn directly via
φm ∼ Ga(γ0 , 1), with an explicit link to the count of observa-
tions Mi ∼ NegBin(

∑M
m=1 b

(i)
m φm , pi); and 3) the binary vec-

tors b(i) “focus” the model on a sparse subset of the mixture
components, while in general, within the HDP, all mixture com-
ponents have nonzero probability of occurrence for all tasks i.
As demonstrated in Section III, this focusing nature of the pro-
posed model is important in the context of electrophysiological
data.

E. Proof of Lemma 3.1

Proof: Denote wj =
∑j

l=1 ul, j = 1, . . . ,m. Since wj is
the summation of j iid Log(p) distributed random variables,
the probability generating function of wj can be expressed as
GWj

(z) = [ln(1 − pz)/ln(1 − p)]j , |z| < p−1 , thus we have

Pr(wj = m) = G
(m )
Wj

(0)/m! =
dm

dzm
[ln(1 − pz)/ln(1 − p)]j

= (−1)m pj j!s(m, j)/[ln(1 − p)]j (22)

where we use the property that [ln(1 + x)]j = j!
∑∞

n=j
s(n,j )xn

n !
[19]. Therefore, we have

Pr(� = j|−) ∝ Pr(wj = n)Pois(j;−r ln(1 − p))

∝ (−1)n+j s(n, j)/n!rj = F (n, j)rj . (23)

�
The values F (n, j) can be iteratively calculated and each row

sums to one, e.g., the third to fifth rows are⎛
⎜⎝

2/3! 3/3! 1/3! 0 0 0 · · ·
6/4! 11/4! 6/4! 1/4! 0 0 · · ·
24/5! 50/5! 35/5! 10/5! 1/5! 0 · · ·

⎞
⎟⎠ .

To ensure numerical stability when φ > 1, we may also itera-
tively calculate the values of Rφ(n, j).
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