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Abstract— Objective: Histotripsy is a focused ultrasound 

therapy that ablates tissue via the action of bubble clouds. It is 
under investigation to treat a number of ailments, including renal 
tumors. Ultrasound imaging is used to monitor histotripsy, though 
there remains a lack of definitive imaging metrics to confirm 
successful treatment outcomes. In this study, a convolutional 
neural network (CNN) was developed to segment ablation on 
ultrasound images. Methods: A transfer learning approach was 
used to replace classification layers of the residual network 
ResNet-18. Inputs to the classification layers were based on 
imaging assessment of red blood cell phantoms that were ablated 
by histotripsy ablation, including ultrasound images and digital 
photographs that served as the ground truth. The efficacy of the 
CNN was compared to subtraction imaging, and manual 
segmentation of images by two board-certified radiologists. 
Results: The CNN had a similar performance to manual 
segmentation, though was improved relative to segmentation with 
subtraction imaging. Predictions of the network improved over the 
course of treatment, with the Dice similarity coefficient less than 
20% for fewer than 500 applied pulses, but 85% for more than 750 
applied pulses. The network was also applied to ultrasound images 
of ex vivo kidney exposed to histotripsy, which indicated a 
morphological shift in the treatment profile relative to the 
phantoms. These findings were consistent with histology that 
confirmed ablation of the targeted tissue. Conclusion: Overall, the 
CNN showed promise as a rapid means to assess outcomes of 
histotripsy and automate treatment. Significance: Data collected 
in this study indicate integration of CNN image segmentation to 
gauge outcomes for histotripsy ablation holds promise for 
automating treatment procedures.    
 

Index Terms — artificial intelligence, convolutional neural 
network, histotripsy, kidney ablation  
 

I. INTRODUCTION 
ENAL cell carcinoma (RCC) is a major burden on the 
American public, with an estimated incidence of ~ 600k 

patients in the United States projected for 2023 [1]. Surgery is 
the gold standard for kidney tumor management in localized 
cases [2], [3]. The number of patients eligible for surgery has 
decreased in recent years due to the aging, progressively co-
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morbid population [4], [5]. Ablation may be an alternative 
means to address RCC, though existing modalities are invasive, 
must be applied away from critical renal structures, and have 
higher recurrence rates compared to surgical management [6]. 
One potential alternative form of ablation gaining traction is 
histotripsy, a focused ultrasound therapy that disintegrates 
tissue via the nucleation and subsequent action of bubble clouds 
[7], [8]. Ultrasound pulses of more than 25 MPa peak negative 
pressure and less than 20 µs in duration are applied 
noninvasively to generate bubble clouds spontaneously within 
the tissue (i.e., without the need for exogenous agents) [9]. The 
efficacy of histotripsy for the treatment of renal tumors has been 
established in pre-clinical studies [10]–[12]. Further, a first-in-
human trial is underway to establish safety of the technology 
for patients with renal tumors (clinicaltrials.gov identifier 
NCT05820087), and has been cleared for liver lesions.  

The degree of histotripsy bubble activity necessary for 
ablation is not a priori known, and will depend on the tissue 
composition [13]. Histotripsy sources are outfitted with an 
ultrasound imaging system to confirm accurate targeting and 
assess treatment outcome [14], [15]. Following treatment, 
physicians must rely on computed tomography or MRI to 
confirm outcomes due to the variable appearance of ablation on 
ultrasound [16]. Additional imaging increases the time, 
complexity, and cost of the histotripsy procedure [17], making 
methods to improve the sensitivity and specificity of ultrasound 
imaging to ablation an active area of research. One potential 
solution is artificial intelligence, which is rapidly being 
integrated into medical imaging to aid analysis of pathological 
features [18]. Residual networks have become state-of-the-art 
for object recognition tasks [19], improving performance over 
classical convolutional neural networks [20]. Integration of a 
neural network into histotripsy image guidance systems will 
enable automation of the procedure, and allow real-time 
adjustment of the exposure duration to ensure successful 
outcomes. 

In this study, a residual network was developed to segment 
ultrasound images of histotripsy ablation. As an initial step to 
ensure feasibility, the network was trained using in vitro data to 
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enable accurate registration between ultrasound images and 
ground truth. The network performance was compared to 
manual segmentation of images by two interventional 
radiologists experienced with histotripsy technology. Outcomes 
for segmentation were also evaluated with subtraction imaging 
as a rudimentary means to segment images. Further, the 
network was applied to ultrasound images of ex vivo kidney 
exposed to histotripsy.  
 

II. METHODS 

A. In Vitro Phantoms and Ex Vivo Kidney  
Agarose red blood cell phantoms were produced using an 

established protocol [21], [22]. Briefly, blood was collected and 
anticoagulated from female farm raised pigs (40-50 kg). The 
blood was centrifuged at 3,000 RPM for 10 min to remove the 
plasma and buffy coat, leaving behind a volume of red blood 
cells. Low gelling temperature agarose powder (4 g, Sigma-
Aldrich, St. Louis, MO) and NaCa (3.6 g, Sigma-Aldrich, St. 
Louis, MO) were dissolved into 400 mL of 0.2 µm filtered, 
deionized water by heating in a microwave of 700 W power in 
30 second increments until clear. The agarose mixture was 
transferred to an ultrasonic cleaning bath heated to 55˚C while 
continuously evacuating (10 kPa) over the course of 30 min. 
After degassing, ~ 50 mL of the agarose solution was poured 
into a rectangular acrylic mold and allowed to solidify. A 5% 
v/v red blood cell/agarose mixture was pipetted onto the 
solidified agarose slab to form a layer ~ 500 µm thick. After the 
red blood cell layer solidified, the remainder of the mold was 
filled with agarose.  

Kidney samples were collected from female farm raised pigs 
(40-50 kg) following euthanasia and used within 72 hrs (N = 8). 
The samples were sectioned to ~ 2 cm x 2 cm x 2 cm, and 
embedded in low gelling temperature agarose. All samples (in 
vitro phantoms and ex vivo kidney) were submerged in isotonic 
solution (0.9% NaCl w/v) and degassed (10 kPa) for 2 hours 
prior to histotripsy exposure.   

 

B. Experimental Set Up  
An overview of the experimental set up is shown in Fig. 1. 

An eight element focused source was used to generate bubble 
clouds. The source had an outer diameter of 10 cm, focal length 
of 7.5 cm, and fundamental frequency of 1 MHz. Pulses of 
20 µs duration (20 acoustic cycles) and 35 MPa peak negative 
pressure were applied to each target. The source was driven 
with a custom class-D amplifier and matching network [23]. 
The focal pressure of the source was measured using a fiber 
optic hydrophone (HFO-690, Onda Corporation, Sunnyvale 
CA) up to pressure levels at the threshold for bubble nucleation 
(~ 25 MPa peak negative pressure [24]). A linear extrapolation 
between the voltage applied to the amplifier and focal peak 
negative pressure was used to estimate driving levels beyond 
the calibration as described previously [25], [26].  

The focus of the transducer was aligned to a depth of 2 cm in 
the sample. Bursts of 20 histotripsy pulses were applied at a rate 

of 50 Hz at a fixed location. A total of 2,000 or 4,000 pulses 
were applied to the in vitro phantoms or ex vivo tissue, 
respectively. These treatment durations produced visible 
ablation on the ultrasound image for each respective target. 
After each burst of 20 histotripsy pulses was applied, an 
ultrasound image was acquired with a curvilinear imaging 
probe (C5-2v, Verasonics, Inc, Kirkland, WA) controlled by a 
research ultrasound scanner (Vantage 128, Verasonics, Inc, 
Kirkland, WA). The imaging plane of the probe was along the 
central/elevational dimension of the therapy source (Fig. 1), 
and the probe to focal zone distance was 60 mm. At this depth, 
the peak negative pressure of the imaging pulse was 200 kPa 
(mechanical index of 0.1 [27]).  

For the in vitro phantoms, a 2.8 MP digital CMOS camera 
(LUCID Vision Labs, Inc., Elf Place, BC) was also triggered to 
capture a digital image of the red blood cell phantom after the 
application of every 20 histotripsy pulses (Fig. 1). The camera 
was fitted with a lens (50 mm focal length, f number 2.5 – 16, 
1stVision Inc, Andover, MA), resulting in an image resolution 
of ~ 5 µm per pixel. A pulsed light-emitting diode array 
(Luma10, HitLights, Chino, CA) was placed opposite the 
camera for illumination. In total, 100 ultrasound images and 
digital photographs were acquired for a given in vitro dataset. 
Images were downloaded and processed offline. Digital images 
of the phantom were segmented using Otsu’s method to 
determine the ablation area (Fig. 2). Ultrasound images were 
upsampled (256 x 1024 pixel dimensions) and co-registered 
with the digital images using a custom geometric 
transformation in MATLAB based on hyperechoic nylon 
filaments embedded within the phantom [28].  

C. Training the CNN 
Training and evaluation of the convolutional neural network 

(CNN) was performed on a iMAC (3.2 GHz Quad-Core Intel 
Core i5, 32 GB memory, OS 12.6.5). An overview of the CNN 
training is outlined in Fig. 3. A total of nine co-registered 

 
Fig. 1. (Top) Schematic of experimental set up. The coordinate axes refer to 
the therapy source. The elevational dimension of the therapy source is into the 
page. (Bottom) Timing diagram for collection of ultrasound imaging data and 
photographs of phantoms.   
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datasets comprised of 900 total images were used to train the 
CNN to identify ablation in ultrasound images. Training was 
done in MATLAB (version 2022b, Mathworks, Natick, MA) 
with the ‘trainNetwork’ function. The classification layers of 
the two-dimensional residual network ResNet-18 were replaced 
with binary classification based on segmentation of the digital 
images. The data set was split randomly using 60% for training 
(540 images), 20% for validation (180 images), and 20% for 
testing (180 images). Images were processed in a randomized 
order for training, validation, and testing to avoid integrating a 
bias into the CNN based on stage of treatment. To reduce the 
negative effect of class imbalance, the Dice loss function was 
maximized during training. The base learning rate was 0.001, 
and was decayed using a stochastic gradient descent over 30 
epochs. To avoid overfitting, data augmentation was conducted 
via random reflection and translation of the training data sets. 
Other hyperparameters were tuned based on a pilot study with 
a subset of 20 images.  

 

D. Additional Segmentation Methods 
Segmentation was also performed with a subtraction method. 

Images acquired over the course of histotripsy exposure were 
subtracted on a pixel-by-pixel basis from a baseline image. 
Pixels associated with changes in the phantom structure were 
determined in the subtraction image using Otsu’s method 
(Fig. 4). A subset of data were manually segmented by two 
board-certified interventional radiologists, each with over ten 
years of experience interpreting clinical images. The 
interventional radiologists were informed that images with and 
without ablation were included. The images were analyzed in a 
randomized order to limit potential biases in segmentation. A 
total of 132 images (44 in vitro and 88 ex vivo) were manually 
segmented with a custom script in MATLAB.  
 

E. Quantification of Segmentation 
Each segmentation method (CNN, subtraction imaging, and 

manual segmentation) was evaluated on four in vitro datasets 
comprised of 400 images that were not included in the training 
datasets. For each segmentation type, the number of true 
positive (TP), true negative (TN), false positive (FP), and false 
negative (FN) pixels were tabulated to report the accuracy:  
 

Accuracy	 = 	
TP

TP+FN
 (1) 

 
and Dice Similarity Coefficient (DSC): 
 

DSC = 
2TP

ASEG + ATruth
 (2)  

Fig. 3. Overview for training and testing the CNN to segment ablation on 
ultrasound images. 

Table I. Performance metrics of the CNN, subtraction imaging, and manual 
segmentation to gauge outcomes of histotripsy phantom ablation.    

Metric ----- CNN Subtraction Manual 
Accuracy Viable 0.99 0.96 0.99 

Ablated 0.63 0.44 0.64 
Average 0.81 0.70 0.82 

IoU Score Viable 0.95 0.90 0.95 
Ablated 0.58 0.31 0.58 
Average 0.92 0.73 0.92 

F1 Score  0.95 0.48 0.73 
AUROC  0.92 0.70 0.82 

Calculation 
Time/Image 

 0.5 ± 0.001 s 0.9 ± 0.8 ms > 15 s 

 

 
Fig. 2. (Top Row) Photographs of phantom (Middle Row) Segmentation of phantom images. White pixels indicate areas of ablation. (Bottom Row) Ultrasound 
images of phantom. Hyperintense pixels in the corners of the image correspond to fiducial wires within the phantom used to co-register ultrasound and camera 
images. The number of applied histotripsy pulses are indicated at the top of each column. 
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where A is area, and the subscripts indicate either segmentation 
(SEG) or truth (Truth). Over or under segmentation of the 
predictions were assessed with the IoU Score:  
 

IoU = 
TP

TP+FP+FN
 (3) 

 
The ability of each segmentation method to identify the ablation 
zone contours was evaluated with the boundary F1 (BF) 
matching score, based on the precision (TP/ TP + FP) and recall 
(TP/TP + FN) values as [29]: 
 

BF Score= 
2 x precision x recall

precision + recall
 

(4) 

 
The area under the receiver operator characteristics curve 
(AUC) was calculated to evaluated segmentation performance 
from contingency tables as [30]: 
 

AUC = 
TP

2(TP+FN)
+

TN
2(FP+TN)

 (5) 

 
The maximum and mean Hausdorff distance h were also 
computed to gauge the distance between the predicted and 
actual ablation areas [31]:  
 

h (ACNN, ATruth) 
= max or mean

a ∈ ASEG
{ min

b ∈ ATruth
{d(a, b)}} 

(6) 

 
where a/b are spatial locations of segmented/truth, and d(a,b) is 
the distance between these points.  
 

F. Evaluation of Ex Vivo Kidney 
Imaging data collected during histotripy insonation of the ex 

vivo samples were processed with the CNN, subtraction 
imaging, and manual segmentation. To confirm ablation, 
kidney samples exposed to histotripsy were fixed for 24 – 
36 hrs in 10% buffered formalin (Sigma-Aldrich, St. Louis, 
MO), transferred to 70% reagent alcohol (Thermo Scientific, 
Waltham, MA) for at least 72 hrs, and embedded in paraffin. 
Embedded tissues were sectioned to 5 µm thickness, and 
stained with hematoxylin and eosin (H&E). Stained tissues 
were then scanned at 20x magnification (Vs200, Olympus Life 
Sciences, Waltham, MA), and analyzed in QuPath [32].  

III. RESULTS 

A. Overall Performance of CNN 
A total of 1350 iterations were used to train the network, 

which had a final validation loss of 3.4% and accuracy of 
98.7%. The CNN required 0.5 ± 0.001 seconds per image for 
segmentation on an iMAC computer (3.2 GHz Quad-Core Intel 
Core i5, 32 GB memory, OS 12.6.5). Outcomes for accuracy, 
IoU Score, Boundary F1 Score, and AUROC over all 400 
testing images are indicated in Table I. The increase in 
AUROC relative to 0.5 indicated that the network did better 
than guessing in terms of predicting the ablation area (p < 0.05) 

[30]. Outcomes for the CNN were similar to those based on 
manual segmentation, but improved relative to subtraction 
imaging (Table I). 

Representative outcomes for the CNN evaluation of in vitro  
phantom datasets are shown in Fig. 5. There was good 
qualitative agreement between the CNN and truth during the 
later stages of treatment. The CNN tended to underpredict the 
ablation extent during the early stages of treatment. 
Interestingly, the appearance of the ablation zone changed over 
the course of histotripsy exposure from hyperintense to 
hypointense (Fig. 6). This change may have been a contributing 
factor to the observed behavior of the CNN.  

 

B. CNN Performance Over the Course of Histotripsy 
Exposure 

The ablation area relative to the number of applied histotripsy 
pulses, and predictions for each segmentation method are 
shown in Fig. 7. There was a rapid increase in the ablation area 
over the course of ~ 600 applied pulses, after which the rate of 
growth declined. A similar behavior was observed for the CNN, 
though the onset of rapid grow was delayed until the application 
of ~ 500 pulses. Predictions of the CNN coincided with the 
actual ablation area after ~ 750 pulses were applied (p = 0.21). 
Little to no agreement was observed between areas identified in 
subtraction imaging and the truth (Fig. 7).  
 Similar to the automated segmentation algorithms, manual 
segmentation generally underestimated the ablation area. 
Between two and four total false positives (i.e., no ablation 
identified when ablation was present) were noted at each 
treatment duration evaluated by the observers. The presence of 
total false positives increased the standard deviation for manual 
segmentation relative to the automated methods.  
 The histotripsy pulse dependence for accuracy, Dice 
Similarity Coefficient, and Hausdorff distance were also 
computed over the course of histotripsy exposure (Fig. 8). 
These parameters indicated the CNN had maximum efficacy 
when images were acquired after more than ~ 750 histotripsy 
pulses were applied. For subtraction imaging, the accuracy, 
DSC, and mean Hausdorff distance also had positive trends 
with the number of applied pulses, though were reduced relative 
to the CNN. The Hausdorff distances (both mean and 

 
Fig. 4. (Top) Ultrasound image of phantom ablation after 2,000 applied pulses. 
(Bottom) Corresponding subtraction image. White pixels are considered 
changes in echogenicity associated with ablation. 
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maximum) were improved for manual segmentation relative to 
the automated algorithms for ~ 250 to 550 applied pulses. Note 
that total false negatives were not be included in the analysis for 
Hausdorff distance (i.e., there is no ‘a’ term as input to (6)). 
These data indicate observers were able identify the ablation 
zone effectively when apparent on the image, though were less 
able to delineate subtle indications of ablation. 

C. Outcomes for Ex vivo Kidney  
Representative images of ex vivo kidney tissue over the 

course of histotripsy exposure are shown in Fig. 9. In contrast 
to the in vitro phantoms, targeted regions exhibited a general 
reduction in pixel intensity over the course of treatment for the 
ex vivo tissue. Regions of hypoechogenicity were generally well 
identified by the CNN and subtraction imaging, as noted in 
Fig. 9. The regions noted in subtraction imaging were generally 
larger than those outline by the CNN. 

Outcomes for all the segmentation methods over the course 
of histotripsy exposure are indicated in Fig. 10. Areas identified 
on subtraction imaging increased rapidly up to the application 
of 630 ± 395 pulses, after which there was little change. In 
contrast, areas identified by the CNN increased continuously 
over the course of histotripsy exposure. Outcomes for the CNN 
and subtraction imaging coincided after ~ 1280 pulses were 
applied (p = 0.09).  

Results for manual segmentation by two interventional 
radiologists were mixed. One interventional radiologist 
generated false positives for all negative control images (i.e., 

identified ablation in control images). Therefore, all ex vivo data 
generated by this interventional radiologist was excluded from 
analysis. Outcomes from the remaining interventional 
radiologist were consistent with outcomes for subtraction 
imaging and the CNN. All three significantly correlated with 
the treatment duration (p < 0.05). The Pearson correlation 
coefficient for the observer and CNN were nearly identical 
(~ 0.97). In contrast, the correlation coefficient for subtraction 
imaging was ~0.56.   

Histotripsy ablation was apparent on gross analysis of kidney 
samples (Fig. 11, Left Panel), with minimal structure remaining 
intact. Non-targeted kidney tissue had cortex structure 
consisting of intact glomeruli and tubule structures (Fig. 11, 
Middle Panel). Over a 100 µm distance into targeted portions 
of the sample, there was a loss of organization or defining 
features of glomeruli and tubules. Further, the treatment zone 
was devoid of nuclei, and contained interspersed regions 
without cellular structures (i.e., loss of hematoxylin and eosin). 
Blood vessels larger than ~ 100 µm in diameter were largely 
unaffected (Fig. 11, Right Panel).  

 

IV. DISCUSSION AND CONCLUSIONS 

A. Outcomes of the CNN 
Histotripsy is a promising approach to address limitations 

with current treatments for renal tumors in the adult and 
pediatric patient populations [12], [33]. The development of 
quantitative imaging markers to assess treatment outcomes will 
aid in the widespread clinical adoption of histotripsy. Multiple 
markers are under development for histotripsy, including 
passive imaging based on acoustic emissions generated by 
bubble activity [28], [34] and contrast-enhanced ultrasound 

 
Fig. 6. Representative change in the ultrasound pixel intensity for regions 
associated with ablation relative to the size of the ablation zone. During the 
early stage of insonation, ablated pixels appeared hyperintense on ultrasound 
images. After the ablation area has grown sufficiently large, the ablation area 
appeared hypointense. 
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Fig. 7. (Left) The pulse dependence for the ablation area (Truth) and prediction 
of the CNN relative to the number of applied histotripsy pulses. (Right) The 
pulse dependence for the ablation area (Truth) and prediction of subtraction 
imaging to the number of applied histotripsy pulses. Diamonds represent the 
mean and standard deviation for manual segmentation of images by 
interventional radiologists. Solid markers indicate the mean (N = 4) and 
shaded areas (bars for manual segmentation) indicate the standard deviation. 

 
Fig. 5. (Top Row) Ultrasound images of phantom ablation. (Middle Row) Truth images indicating locations of phantom ablation (white). (Bottom Row) Overlay 
of ultrasound images with predictions of ablation with the CNN (turquoise). The number of applied histotripsy pulses are indicated at the top of each column. 
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imaging [35]. Acoustic emission correlate with treatment 
outcomes, though are indirectly related to changes in tissue 
structure. Contrast imaging delineates non-perfusing regions 
that correlate with the ablated area. Histotripsy pulses cannot be 
applied concurrently with contrast imaging due to the 
administration of microbubbles, limiting its utility to provide 
real-time feedback during treatment.  

 Based on the success of artificial intelligence to segment 
medical images [36], this study developed a convolutional 
neural network (CNN) to rapidly segment non-contrast 
ultrasound images of histotripsy ablation. Overall, the CNN 
provided reasonable assessment of outcomes, with improved 
performance compared to an image subtraction method, and 
similar outcomes to manual segmentation by trained 
interventional radiologists (Table I). Interestingly, the AUROC 
and F1 scores were improved for the CNN relative to manual 
segmentation, which indicates the algorithm is adept at 
identifying the ablation zone boundary [29], and therefore 
therapy margins.   

Analysis based on the number of applied pulses provided 
additional insights for each segmentation method (Fig. 7 and 
8). The CNN was accurate to within 20% of the ablation area 
during the latter stages of treatment (> 750 applied pulses), 
consistent with “successful” imaging feedback outcomes for 
other ablative therapies [37]. The CNN consistently 
underestimated the ablation zone. Interestingly, this suggests 
there are some features of ablation that are not fully captured by 
the ultrasound image. There may be means to extract this 
information through multimodal ultrasound imaging, though it 
may be more difficult to execute such a sequence in real time. 
Nevertheless, the underestimation of the ablation area should be 
a consideration when overtreatment margins are included in the 
therapy protocol [38].  

In contrast, the accuracy of the CNN was significantly 
reduced over the first 750 applied pulses, which may impact 
what aspects of treatment can be monitored. In addition to 

ablation, histotripsy has been shown to promote an antitumor 
immune response in pre-clinical studies [39] and in a case report 
for in-human liver tumor ablation [40]. Exposures that do not 
fully ablate the target appear to be critical for inducing an 
immune response [41], and may not be accurately capture by 
the network developed here. The poor performance of the CNN 
early in the treatment may be due to the shifts in the appearance 
of ablation on ultrasound imaging (Fig. 6). Future work may 
aggregate multiple networks to address the change in ablation 
zone appearance over the course of treatment, or integrate time-
dependent information for training.  

 

B. Utility of the CNN 
A particular advantage of the CNN is its speed relative to 

manual segmentation (Table I). Future work will integrate 
GPU computing to execute the CNN, which is estimated to 
increase the processing speed to ~ 20 Hz (~ 50 ms interframe 
time). Histotripsy pulses can be applied at rates up to 1,000 Hz 
[42], though are generally applied at ~ 100 Hz [43]. Evaluation 
of the CNN at 20 Hz would therefore assess information over 
the application of every ~ 4 applied pulses. In this study, the 
ablation area increased at most ~ 5% over the course of four 
applied pulses.  

One confounding factor for real-time implementation is the 
influence of hyperechoic bubble clouds within the focal zone. 
Histotripsy bubble clouds can persist several seconds following 
insonation [44], whereas images analyzed here were collected 
> 10 s after histotripsy exposure to assess changes to the target. 
Contrast-specific imaging may provide a means to remove 
contribution of bubble activity prior to analysis with the CNN 
[45]. Further, bubble-deleting pulses could be applied to 
remove hyperechoic bubbles during image acquisition [46].   
 

C. Analysis of Ex Vivo Kidney  
The CNN was also applied to data collected from ex vivo 

porcine kidney. While ablation was confirmed following 
histotripsy exposure (Fig. 11), there was no ground truth for 
segmentation of the ex vivo samples due distortion of the tissue 
in preparation for staining and sectioning. The areas identified 
by the CNN increased slowly over the course of treatment, and 
were overall smaller than the areas identified in vitro. Further, 
areas identified by the CNN were 60% ± 28% smaller than 
those identified via manual segmented. Tissue effects may have 
affected outcomes of the CNN. The tissue sample has an 
increased attenuation and aberration relative to the agarose 
sample [47], which may affect visualization of the ablation zone 
and therefore the CNN. The phantom was a uniform media, 
whereas the tissue is heterogenous. Future studies will 
determine the influence of tissue structure on predictions of the 
CNN. It should be noted that outcomes in vivo will be affected 
by a reduction in image quality due to the combined effects of 
attenuation and aberration. Deep seated targets may be 
particularly challenging due to loss of signal and elevational 
scatter. For these cases, alternative imaging sequences 

 
Fig. 8. Assessment of the histotripsy pulse-dependence for the accuracy, Dice 
Similarity Coefficient, and Hausdorff distance (maximum and mean). 
Analysis was limited for datasets collected when less than ~ 250 applied pulses 
due to little to no actual ablation. solid markers indicate the mean (N = 4) and 
shaded areas (bars for manual segmentation) indicate the standard deviation. 
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developed for deep targets may be of interest, such as chirp-
coded excitation [45].  

Outcomes for manual segmentation were mixed and observer 
dependent. The interventional radiologists that performed 
manual segmentation were informed control images with and 
without ablation were included in the datasets, and that the 
image order was randomized to prevent potential biases in 
segmentation. One radiologist identified false positive ablation  
in all control images, and their analysis was excluded at all time 
points (i.e., control and ablation images) for the ex vivo datasets. 
First-in-human trials have highlighted the difficulty of 
identifying histotripsy ablation with standard B-mode 
ultrasound for highly trained radiologists [35]. For the 
remaining observer, no total false negatives were observed in 
the final stages of treatment (i.e., 4,000 applied pulses).  In 
contrast, observers assigned total false positives at all stages of 
treatment for the in vitro datasets (Fig. 7). While the in vitro 
phantoms mimic the appearance of tissue [21], it likely differs 
from common image features of real tissue evaluated by the 
observers.  

D. Limitations 
There are several limitations to this study that prohibit the 
generalizability of these findings. Here, the network was trained 
on in vitro phantoms, and tested on phantoms and ex vivo 
kidney. Fiducial markers enable accurate registration of the 
ultrasound images and phantom images [28]. These datasets 

represent a best case scenario, though may not reflect the CNN 
performance in vivo where bleeding and local inflammation due 
to ablation may confound strict delineation of outcomes [48]. 
Translation of this CNN in vivo will be a primary focus for 
future studies based on the information gathered in these in 
vitro and ex vivo datasets. To enable collection of both 
ultrasound and digital images, the imaging probe was placed 
perpendicular to the therapy source (Fig. 1). In practice, 
imaging probes used for treatment guidance are positioned in a 
coaxial opening within the therapy source [14], and visualize 
the target in a different plane. The ablation zone dimensions are 
nominally symmetric along the lateral and elevational 
dimensions of the focused transducer [49], and the network 
could be retrained by adjusting the orientation of the images. A 
transfer learning approach was used with a ResNet-18 
architecture [36]. Residual networks are state-of-the-art for 
object recognition tasks [19], with an improved performance 
over plain neural networks and traditional segmentation 
algorithms [20]. Future studies will evaluate the utility of 
training the network from scratch rather than a transfer learning 
approach. Here, the network was trained on images of ablation 
at a single location, whereas in practice a volume of tissue will 
be treated consisting of multiple overlapping treatment 
locations. The CNN is anticipated to have a similar 
performance volumetric lesions based on their similar 
hypoechoic appearance to the single focal lesions used for 
training [7], [50]. Future studies will investigate the CNN 
accuracy based on the lesion extent. The accuracy of the CNN 
was not investigated for ablation zones generated in different 
locations in the imaging plane. The distance between the 
imaging probe and ablation zone were fixed. Motion under 
respiration will cause variation in this distance in vivo, thereby 
altering the ablation location within the imaging plane. There 
are multiple methods that can be used to compensation for 
respiratory motion, including respiratory gating to trigger 

 
Fig. 10. The histotripsy pulse dependence for areas identified by the CNN, 
subtraction imaging, and manual segmentation (IR1) during kidney sample 
exposure. Solid markers indicate the mean (N = 8) and shaded areas (bars for 
manual segmentation) indicate the standard deviation. 

 
Fig. 9. (Top Row) Ultrasound images of kidney being exposed to histotripsy. Outcomes for subtraction imaging (Middle Row), and the CNN (Bottom Row) are 
also shown. The number of applied pulses are identified for each column at the top of the image. 

 
Fig. 11. (Left Panel) Gross observation of kidney ablation (arrow) following 
histotripsy exposure. (Middle Panel) Hematoxylin and eosin stains indicated 
viable (‘V’ above dashed line) kidney cortex comprised of tubules and 
glomeruli. In contrast, analysis of the ablation zone (‘A’ below dashed line) 
revealed absence of organized kidney cortex structures (e.g., removal of 
tubules and glomeruli), and few disorganized nuclei (*). (Right Panel) Higher 
magnification insert of blue box in middle image, highlighting viable vessels 
(arrowheads) and loss of nuclei (*) within the treatment zone.   
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image acquisition [51], active correction techniques under 
development for histotripsy [52], or high frequency jet 
ventilation [53]. Nevertheless, these data indicate the use of a 
CNN for segmenting images to gauge outcomes for histotripsy 
ablation holds promise for automating treatment procedures. 
 

DATASHARING 
Data in this project can be accessed via: 
https://figshare.com/projects/Machine_Learning_Code/174252 
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