
1

Digital twinning of cardiac electrophysiology
models from the surface ECG: A geodesic

backpropagation approach
Thomas Grandits, Jan Verhülsdonk, Gundolf Haase, Alexander Effland, and Simone Pezzuto

Abstract— The eikonal equation has become an indis-
pensable tool for modeling cardiac electrical activation ac-
curately and efficiently. In principle, by matching clinically
recorded and eikonal-based electrocardiograms (ECGs), it
is possible to build patient-specific models of cardiac elec-
trophysiology in a purely non-invasive manner. Nonethe-
less, the fitting procedure remains a challenging task.

The present study introduces a novel method, Geodesic-
BP, to solve the inverse eikonal problem. Geodesic-BP is
well-suited for GPU-accelerated machine learning frame-
works, allowing us to optimize the parameters of the eikonal
equation to reproduce a given ECG.

We show that Geodesic-BP can reconstruct a simulated
cardiac activation with high accuracy in a synthetic test
case, even in the presence of modeling inaccuracies. Fur-
thermore, we apply our algorithm to a publicly available
dataset of a biventricular rabbit model, with promising
results.

Given the future shift towards personalized medicine,
Geodesic-BP has the potential to help in future functional-
izations of cardiac models meeting clinical time constraints
while maintaining the physiological accuracy of state-of-
the-art cardiac models.

Index Terms— Cardiac Digital Twin, Eikonal Model, ECG,
Electrophysiology, Backpropagation, Machine Learning

I. INTRODUCTION

Cardiac digital twinning is a potential pillar of future’s

precision cardiology [1]. A digital twin is a computational

replica of the patient’s heart, from its anatomy and structure

up to its functional response. Commonly, it is obtained by

fitting the parameters of a generic computational model to

the clinical data of the patient. Here, we focus on cardiac

electrophysiology, where we aim at personalizing a cardiac
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conduction model based on the eikonal equation, from non-

invasive electrocardiographic (ECG) recordings [2], [3].

Eikonal-based propagation models are an excellent basis

for cardiac electrophysiology digital twins. They provide a

good balance between computational efficiency and physi-

ological accuracy for cardiac activation maps [4], [5], [6].

When supplemented with the lead field approach, they can

also provide accurate ECGs [7], [3]. Hence, the parameters

of eikonal-based models could be fitted from non-invasive

clinical data—surface potentials and cardiac imaging—in an

efficient manner. This goal can be achieved using optimiza-

tion methods based on stochastic sampling strategies [8],

[3], Bayesian optimization [9], gradient-descent [10], or deep

learning approaches [11].

The numerical efficiency of the optimization procedure

relies on two factors: the computational cost of the forward

problem, and the number of samples required to achieve

convergence within a given tolerance. Gradient-based methods

can address the latter, if gradient computation is efficient and

robust. For the former, many efficient eikonal solvers exist,

but not all of them are suitable for automatic differentiation. A

major criticality is that they internally solve a local optimiza-

tion problem [12], [13], one for each element of the grid and

for possibly many iterations. This may represent a bottleneck

in the computation of the gradient. A possible solution is to

compute the gradient for the continuous problem, which can be

shown is equivalent to the computation of geodesic paths [10],

[14], and then discretize. The optimize-then-discretize strategy

is however not ideal, because it may introduce numerical noise

in the gradient and degrade the convergence rate.

In this paper, we introduce a novel inverse eikonal solver—

named Geodesic-BP—and use it to efficiently solve the ECG-

based digital twinning problem for ventricular models. To this

end, we start by introducing a highly-parallelizable anisotropic

eikonal solver for triangulations in arbitrary dimension. The

key contribution is a novel approach for the solution of the

local optimization problem and based on a linear convex non-

smooth optimization method. Locally, the linear geodesic path

within each simplicial element is approximated with a guar-

anteed bound, similar to many presented eikonal solvers [12].

This solver can be implemented using current machine learn-

ing (ML) libraries to efficiently calculate the solution of

the eikonal equation. The forward solver is suitable for the

computation of the gradient via the backpropagation algo-
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Fig. 1. The anisotropic eikonal equation is an efficient tool to compute the electrical activation of a heart (A), here shown on a public rabbit torso
model. Many solvers utilize the relation of the eikonal equation to geodesic paths, which in the case of P1-meshes become piecewise-linear paths
γh between the initial conditions (xi, ti) and points on the surfaces x (B). By applying a non-linear transformation explained in Section II-D, we
can compute the measurable electrical activation on the torso surface and compute the mismatch against the measured potentials at sparse points
(C). Implementing the approach in a differentiable manner using a backpropagation framework such as pytorch, we can efficiently calculate the
gradient w.r.t. the initial conditions and use it to optimally choose (xi, ti) to match the measured potentials (D).

rithm, effectively enabling a discretize-then-optimize strategy

(Geodesic-BP: Geodesic Back-Propagation). We will show

that the backpropagation through such a solver is equivalent

to piecewise-linear geodesic backtracking [15], [16], [10].

Finally, we will demonstrate the potential of these methods for

the problem of estimating initial eikonal conditions to match

a given body surface potential map (BPSM) in a synthetic 2D

study, and real 3D torso model.

In summary, the major contributions are as follows:

1) A novel, highly-parallelizable anisotropic eikonal solver,

well-suited for GPGPU architectures and ML libraries.

2) A backpropagation-based gradient computation, inter-

nally related to the computation of geodesics.

3) An efficient implementation of the method.

4) We demonstrate how to use Geodesic-BP for the iden-

tification of cardiac activation sequence from the non-

invasive ECG recordings.

5) We show that the inverse procedure is robust to model

perturbations.

An outline of Geodesic-BP is provided in Figure 1.

II. MATERIAL AND METHODS

In this section, the modeling assumptions for the electrical

propagation inside the heart are introduced along with an

efficient method for computing this activation in a paral-

lelizable way. Then, we elaborate on the computation of the

electrical activation given measurements on the torso leads,

which ultimately leads to the formulation of the inverse ECG

problem used throughout all experiments.

A. Cardiac activation

We model cardiac activation with the anisotropic eikonal

equation (see [17], [7], [6]), which reads as follows
{

√

⟨M(x)∇φ(x),∇φ(x)⟩ = 1, in Ω,

φ(xi) = ti, for (xi, ti) ∈ X0,
(1)

where Ω ⊂ R
d, d ≥ 2, is a bounded domain, φ : Ω → R is

the activation map, ⟨·, ·⟩ is the inner product in R
d, and M :

Ω → Sd is a symmetric positive definite (s.p.d.) tensor field,

where Sd ⊂ R
d×d denotes the space of d-times s.p.d. tensors,

used to account for the orthotropic conduction velocity inside

the heart [17]. The onset of activation is determined by the set

of initial conditions: X0 =
{

(xi, ti)
}K

i=1
, where xi ∈ Ω and

ti are respectively the location and the onset timing of the i-
th activation site. For convenience, we additionally define the

norm in the metric D, i.e. ∥x∥
D

=
√

⟨Dx,x⟩ for D ∈ Sd.

Next, we discretize the domain Ω (assumed polytopal) by

a simplicial triangulation. We denote by V = {vi}
nv

i=1
and

E = {Ej}
ne

j=1
respectively the set of vertices and elements of

the triangulation. Each element Ej ∈ E is a d-simplex (triangle

in 2-D, tetrahedron in 3-D) with d+1 vertices. We also define

Ej\i ⊂ ∂Ej as the (d − 1)-dimensional face of Ej opposite

to vertex vi. Note that Ej\i is a (d − 1)-simplex (triangle

in 3-D, segment in 2-D). For a general unstructured grid, we

can approximate the activation time with a piecewise linear

finite element function φ : Ω → R, see [18]. (For the sake of

simplicity, we use the same symbol as for the continuous case.)

For the nodal values we use the shorthand notation φi = φ(vi).
Following [12], [19], [20], we approximate D(x) = M

−1(x)
as a piecewise-constant function and set Dj = D(x)|Ej

.

We numerically solve the anisotropic eikonal equation (1)

by locally enforcing the following optimality condition for the

nodal values:

φi = min
Ej∈ωi

φ∗
j\i, (2)

where ωi = {E ∈ E : vi is a vertex of E} is the set

of elements containing vi and φ∗
j\i is the minimum of the

following optimization problem:

φ∗
j\i = min

x∈Ej\i

φ(x) + ∥vi − x∥
Dj

. (3)

The optimality condition (2) is known as Hopf-Lax formula. It

is possible to show that, under regularity assumptions on Ω, D,
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Fig. 2. Conceptual visualization of a linear upwind discretization (5)
on the example of a single tetrahedron (left). Finding the minimum
upwind origin x =

∑
n αnvjn can be cast into a non-smooth linear

optimization problem, solvable using the FISTA algorithm (right).

and the triangulation, the numerical solution of (2) correctly

convergences to the unique viscosity solution of (1) when the

triangulation is refined [21]. As explained later, this principle

is at the basis of Geodesic-BP.

B. Solution of the local problem

In what follows, we show how to efficiently and in a

parallelizable way solve (3). We observe that eqs. (2) and (3)

consists of a series of constrained minimization problems, one

for each element of the patch. Clearly, each local problem

in (3) is convex, because the objective function is convex in x

(note that φ is linear on Ej\i) and the constraint is a simplex,

thus convex as well. Instead of relying on exact formulas, e.g.,

available in 2-D and 3-D from [20], we propose here a new

dimension-independent algorithm for the solution of (3).

With no loss of generality, we suppose that in (3) the

vertices of Ej are {vj1 , . . . ,vjd+1
} and ordered such that the

last vertex vjd+1
always corresponds to vi. Next, we consider

the set of barycentric coordinates for the face Ej\i:

Cd =
{

α ∈ R
d : ⟨α,1⟩ = 1 ∧α ≥ 0

}

, (4)

such that each point x in a face Ej\i can be uniquely written

as x =
∑d

n=1 αnvjn . Similarly, the P1 function φ(x) on

Ej\i is given by the linear combination of the vertex values:

φ(x) =
∑d

n=1 αnφjn . Thus, Eq. (3) becomes

φ∗
j\i = min

α∈Cd

d
∑

n=1

αnφjn +
∥

∥

∥

d
∑

n=1

vjnαn − vi

∥

∥

∥

Dj

= min
α∈Cd

〈

α,Φj\i
〉

+
∥

∥Aj\iα
∥

∥

2
,

(5)

where Φj\i = (φj1 , . . . , φjd)
⊤

is the vector of nodal values

of φ|Ej
, except for φi, and

Aj\i = D
1/2
j



vj1 − vi . . . vjd − vi



 .

A graphical representation of the local optimization problem

is given in Figure 2.

Eq. (5) now takes a common form of forward/backward-

splitting algorithms, where the function to minimize is a linear

combination of two convex functions with one potentially

being non-smooth. Such problems can be minimized using the

FISTA algorithm [22], which alternatingly optimizes using a

proximal step into the non-smooth function and a gradient step

in the direction of the smooth function. The smooth part of (5)

was thus chosen as h(α) = ∥Aα∥2, and the non-smooth part

as g(α) = ⟨α,Φ⟩+δCd
(α), where δC is the indicator function

on the set C such that

δC(x) =

{

0, if x ∈ C,

∞, otherwise.

The gradient of the smooth part h(α) is given by

∇h(α) =
A

⊤
Aα

h(α)
, (6)

which is well-defined since h(α) > 0 for α ∈ Cd and non-

collapsed elements. The proximal step in the non-smooth part

g(α) is then

prox 1
L
g(α̃) = argmin

α

g(α) +
L

2
∥α− α̃∥

2

= projCd

(

α̃− L−1
Φ
)

,

where L is a constant. The projection projCd
onto simplices is

available in closed form [23, Figure 1]. The ISTA algorithm

consists of the following update step:

αk+1 = projCd

(

(

αk − L−1∇h(αk)
)

− L−1
Φ

)

. (7)

An optimal choice of L in the algorithm is the Lipschitz

constant of ∇h, which we can bound as

L ≤

∥

∥A
⊤
A
∥

∥

h

(

1 +
∥A∥

h

)

, (8)

where ∥·∥ in (8) refers to the spectral norm of the operator

and h = 1
d
√
d
σmin (A) ≤ ∥Ax∥2 = h(x) is a lower bound

of h(x), for σmin (A) being the smallest singular value of A.

Note that A is constant in each element, so the local Lipschitz

constants can be efficiently pre-computed.

Algorithm 1: Solution of the local problem in Eq. (5)

Data: A, L, Φ = (φ1, . . . , φd)
⊤

Result: αnf

1 α̂0 = 1
d1

2 for k = 1 to nf do #FISTA main loop

3 h = ∥Aα̂k−1∥
4 ∇h = h−1

A
⊤
Aα̂k−1 #Eq. (6)

5 α̃k = (α̂k−1 − L−1∇h)− L−1
Φ

6 αk = projCd
(α̃k) #See [23, Figure 1]

7 α̂k = αk + βk(αk −αk−1) #Acceleration

We summarize the solution of the local problem in Algo-

rithm 1, where we also include the acceleration on Line 7

with βk = k−1
k+1 , as per the FISTA method, see [22]. Note

that Algorithm 1 works for arbitrary spatial dimension d ∈ N.

Since the local problem is convex, it has a unique minimum

α
∗. The rate of convergence is (see [22, Theorem 4.4])

φk
j\i − φ∗

j\i ≤
2L ∥α0 −α

∗∥2

(k + 1)2
. (9)
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Finally, we compute the global eikonal solution by itera-

tively applying Algorithm 1 to each element Ej ∈ E and for

all vertices vi ∈ Ej , and then take minimum: see Algorithm 2.

Algorithm 2: Geodesic-BP

Data: P1 mesh M = (V, E), piecewise-constant metric

D, initial conditions X0 =
{

(xi, ti)
}K

i=1
Result: Geodesic distances φK

1 ∀v ∈ V : φ−1(v) = φ0(v) = ∞
2 ∀ (xi, ti) ∈ X0 : φ−1(xi) = φ0(xi) = ti
#Compute all simplex upwind directions towards

each vertex i inside element j

3 Ẽ =
⋃d+1

i=1

⋃

j Ej\i Compute for each element

Aj\i, Lj\i #see Eqs. (5) and (8)

4 for k = 1 to K do

5 φk := φk−1

#Compute all updates in parallel

6 for parallel Ẽj\i ∈ Ẽ do
#Collect the simplex vertices opposite

of the vertex i

7 (vj1 , . . .vjd) = Ẽj\i
#Optional: Only compute updates when

necessary

8 if ∃vjn ∈ Ẽj\i : (φk−2(vjn)− φk−1(vjn)) ≥ ε
then

9 Φ = (φk(vj1), . . . , φk(vjd))
⊤

10 αnf
= Algorithm 1(Aj\i, Lj\i,Φ)

11 With enabled gradient computations
#Eq. (5)

12 φj\i =
〈

αnf
,Φ

〉

+
∥

∥Aj\iαnf

∥

∥

13 With enabled gradient computations

14 for parallel vi ∈ V do
#see Eq. (2)

15 φk(vi) = minEj∈ωi
φj\i

#ε-convergence criterion

16 if ∀v ∈ V : (φk−1(v)− φk(v)) < ε then

17 φK = φk

18 break

C. Geodesic-BP

To utilize the computed eikonal solution in an inverse

approach, we want to compute the gradients of the eikonal

solution w.r.t. some quantity of interest, e.g., the initial con-

ditions X0. More precisely, we are interested in the gradient

∇(xi,ti)φ(x) and its efficient computation. This can be done

analytically for (1), or algorithmically from Algorithm 2.

The former (see e.g. [10]) relies on a optimize-then-discretize

strategy. whereas the latter employs a discretize-then-optimize

approach. Following the latter, we compute ∇(xi,ti)φ(v) for

all vertices v ∈ V and observe that

∇(xi,ti) (φ(x)) =
〈

α,∇(xi,ti)

(

φj1 , . . . , φjd+1

)⊤〉
, (10)

for x ∈ Ej . Note that we neglect the derivative of α w.r.t. X0

as a consequence of the first variation of the geodesic distance

[24, Chapter 10]. The nodal values φjn in succession are

then derived through (3), until we terminate at the simplex

containing the initial condition xi ∈ Ek. By defining xi in

a continuous fashion (as was done in [10]), such that for all

vertices vjn of the element Ej containing xi it holds that

φjn = ti + ∥vjn − xi∥Dj
, (11)

the derivative readily follows:

∇xi
φjn = −

Dj (vjn − xi)

∥vjn − xi∥Dj

, ∇tiφjn = 1,

which can be effectively calculated using automatic differen-

tiation of (11), or subsequent nodes (10) which are connected

by a geodesic path to (xi, ti). In particular, we use the back-

propagation algorithm implemented in many ML libraries.

More technical aspects are provided in Section II-E.

D. ECG computation

We describe the torso with a domain Ω0 ⊂ R
d, whereas the

heart is denoted by Ω, that is assumed to be well contained

in Ω0. The full heart-torso domain is ΩT = Ω̄0 ∪ Ω̄T , and the

torso surface is Σ = ∂ΩT . The electrodes are placed on the

torso at fixed locations X̃e = {xei}
N
i=1 ⊂ Σ. Each lead Vle(t)

of the ECG is defined as the zero-sum of the electric potential

at multiple locations. Thanks to the lead-field formula, we have

the following representation:

Vle(t) =

∫

Ω

⟨Gi(x)∇Zle(x),∇Vm(x, t)⟩ dx, (12)

where Gi : Ω → Sd is the intracellular conductivity tensor,

Vm(x, t) : Ω×[0, T ] → R is the transmembrane potential, and

Zle : ΩT → R is the le-th lead field, solution of the problem:










−∇ ·
(

(Gi +Ge)∇Zle

)

= 0, in ΩT ,

−∇Zle · n = δxle
−

1

|XW |

∑

y∈XW

δy, on Σ. (13)

The set XW contains the electrodes at the left/right arm and

left foot, used to form the Wilson’s Central Terminal (WCT).

Eq. (13) can be solved once, since the problem is time-

independent. The bulk conductivity of the torso, Gi+Ge, also

depends on the extracellular conductivity tensor Ge : Ω → Sd.

The derivation of this problem and exact formulation of (13)

can be found in further detail in [5], [25], [10].

Next, we assume that the transmembrane potential is trav-

elling wave with activation times dictated by φ(x):

Vm(x, t) = U(t− φ(x)) = U(ξ). (14)

Since we are only interested in the depolarization sequence,

we use the following template action potential, see [10], [7]:

U(ξ) = K0 +
K1 −K0

2
tanh (2ξ/τ) , (15)

where K0 and K1 are respectively the minimum and maximum

transmembrane potential.

Additionally, we precompute the discretized integral ECG
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operator (12) by means of a 2nd order simplicial Gaussian

quadrature scheme. We used the library scikit-fem [26] to as-

semble this operator for our P1 mesh, automatically interpolat-

ing and integrating Vm at the Gaussian quadrature points. This

way, we can compute the leads as Vle(t) = (BU(t− φ))le
where B : Rnv×N is the mentioned discretized, precomputed

lead field integration operator of (12), nv = |V | are the number

of vertices and N is the number of leads.

For optimizing the inverse ECG problem, we want to fit Vle

of (12) against a measured V̂le . We consider for that purpose

the minimization problem

min
(xi,ti)∈X0

1

N |T |

∑

le

∫

T

(

Vle(φX0
, t)− V̂le(t)

)2

dt, (16)

where φX0
is the eikonal solution for given initial conditions

and N defines the number of measured/computed leads. Note

that with B computed from (12), we can easily conclude

for ξ = t − φ that ∇(xi,ti)Vle(t) = −B⊤ ∂U(ξ)
∂ξ ∇(xi,ti)φ,

where ∇(xi,ti)φ can be computed using Algorithm 2 as

discussed in Section II-C. Note that backpropagation through

∇(xi,ti)Vle will yield the equivalent result. The resulting

gradients were then used for a gradient-based optimization

utilizing ADAM [27].

E. Implementation aspects

There are a few practical remarks when implementing Algo-

rithms 1 and 2 that are important to consider: When computing

the local update in Algorithm 1, the number of iterations nf is

the dominating factor for performance. Since the local problem

is strictly convex with a precomputed Lipschitz constant LE ,

the exact error bounds (see (9)) towards the global minimum

in (5) are known and could be used to compute nf on an

element basis. Note that Lj only depends on Aj\i, which is

strongly related to the mesh geometry and may increase as

element quality decreases.

Furthermore, The upper bound presented in (8) is not tight

and might lead to slow convergence of the local FISTA

updates in Algorithm 1. In practice, we thus recomputed h by

minimizing α
∗ through Algorithm 1 with Φ = 0 and using

the estimate h = h(α∗)/1.1.

When considering Algorithm 2, note that the parallelization

denoted in line 6 is more descriptive for CPU-parallel imple-

mentations. In ML frameworks, in contrast, the parallelization

comes from the vectorization of single implemented opera-

tions, which might require re-ordering of some operations.

Still, all operations inside the loop starting from line 6 can be

parallelized, where only a special parallelization is required

for Line 14 (scatter operation). This makes it well-suited for

vectorized implementations on a GPU in frameworks such as

PyTorch [28].

The optional performance optimization denoted in line 8

already significantly cuts down on the required memory for

backpropagation, only computing updates when the solutions

of simplex elements have changed. Checking for an ε change

in activations before the update can also avoid unwanted

gradient eliminations in cases where the old and new values

of φ take the same value.

Note that the local problem in Algorithm 1 could also

be solved using the exact formulation derived for low-

dimensional cases (d ≤ 4) and fixed simplex dimensions as

in previous works [12], [20]. In practice, however, the paral-

lelization of this explicit solution is limited by the required

condition to satisfy the constraint in (4). Such branching leads

to unwanted performance losses in SIMD architectures when

parallelizing over multiple elements.

Note that the number of activation sites is never modified by

Algorithm 2. Some activation sites may however be overshad-

owed by the surrounding activation, thus effectively providing

no contribution to the overall activation. When this happens,

the gradient w.r.t. the overshadowed site is simply zero, thus

the point is ignored by the algorithm. If an initial condition

(x, ti) is overshadowed as described at the final iteration of

the optimization, we often refer to it as inactive.

III. RESULTS

In this section, details of the dataset and results of applying

our method for matching an ECG for both a synthetic 2-D and

a real 3-D case are provided.

A. Simulation study

1) Setup: To test and analyze our algorithm, we first start

with a simple 2-D simulation study. We designed a simple

setup consisting of an idealized torso with 8 electrodes dis-

tributed around the surface, with left and right arm electrodes

composing Wilson’s central terminal (WCT) (see Figure 3).

Seven lead fields were then computed each w.r.t. WCT.

Fig. 3. The 2D simulation setup. We consider a simple symmetrical
left ventricular slice Ω to be located in a heterogeneous torso ΩT , con-
taining the blood pool ΩB and lungs ΩL, with different conductivities. 8
electrodes xei

(blue circles) are circularly distributed around the torso,
two of which are chosen as the WCT xW ∈ XW .

The LV, meshed at a resolution of 0.9 mm (≈ 2700 DoFs),

contained 4 initial condition tuples (xi, ti), located throughout

half of the LV myocardium with timings between 2.5 ms and

10 ms. For computing the ground truth, we use another model

with a 0.45 mm space resolution and perturbed conductivities

in all sub-domains of the torso. As an initial guess, we consider

8 activation sites, all with 0 ms timing and evenly distributed at

the transmural center. The optimization was performed using

ADAM [27] for 400 epochs using a learning rate of 0.5, taking

≈ 5 min on a AMD Ryzen 7 3800X 8-core processor.
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Fig. 4. Result of the ECG optimization on the idealized torso experiment using 7 leads. The initial model (left) uses a simple simultaneous
activation, evenly spread throughout the myocardium. The optimization reduces the number of initial conditions and is able to match both φ and Vl

closely (middle and right). The transparent red lines in the middle plot show the optimization path of initial conditions (xi, ti), which are inactive in
the final solution.

2) Results: The results of the optimization against the initial

and ground-truth solution and parameters are shown in Fig-

ure 4. We can nearly perfectly fit the ECG and approximately

recover the initial conditions. Overall, the total root mean

squared error (RMSE) w.r.t. the eikonal solution φ is only

5.8 ms. We tested the algorithm also for a varying number

of initial conditions and found that it is a hyperparameter of

importance, but need not be chosen exactly: A cross-validation

on the 2-D torso revealed that the worst match is achieved, by

underestimating the number of initial conditions. In such a

case, the achievable activations are not complex enough and

the model is unable to faithfully replicate both the ECG and

unobservable eikonal solution. Increasing the number of initial

conditions beyond the ground truth’s number is neither able

to better match the ECG by a significant margin, but will

also not overfit and significantly increase the error on the

eikonal solution. The most common cause of high errors on the

eikonal solution is related to getting trapped in local minima

when optimizing for the ECG, circumventable by batched

optimization (not utilized in any of the shown experiments).

B. Body Potential Surface Map Reconstruction

1) Setup: The second anatomy is from a public rabbit ECGi

model [29]. The anesthetized rabbit was equipped with a 32-

lead ECG vest during normal sinus rhythm and the signals

were recorded with a frequency of 2048 Hz. The ECG was

recorded for 10 seconds, filtered, and averaged over all beats

to produce a single beat. From this beat, we extracted the QRS

duration to match the biventricular activation. The biventricu-

lar mesh consisted of 508 975 DoFs and 2 522 501 tetrahedra,

roughly equivalent to a mean edge length of 0.82 mm in a

human heart (assuming a size factor of 3 between rabbit and

human hearts). Note that we also tested the optimization with

a lower resolution of 143 564 DoFs and 591 975 tetrahedra,

roughly equivalent to a mean edge length of 1.25 mm.

We use the electrophysiological parameters from [30], in-

cluding cardiac fiber orientation, lead fields Zl, and conduc-

tion velocity. In the conducted experiment, we chose K0 =
−85mV, K1 = 30mV, τ1 = 1ms in (15). The extracted

QRS sequence was chosen during the time interval t ∈

[100, 165]ms. We optimized for the initial conditions (xi, ti)
of the model, i.e. X0 in Algorithm 2. For this purpose, we

randomly distributed 100 points on the biventricular surface

(xi ∈ ∂Ω) and with all timings initialized to the approximate

Q onset ti = 20ms.
2) Results: The experiment was run for 400 epochs using a

learning rate of 0.5 on an Nvidia A100 GPU (40GB), taking

approximately 1.8 h (or 0.7 h on the reduced resolution). The

computed results can be found on Zenodo [31].

The results for optimizing (16) with 400 epochs of ADAM

using Algorithm 2 can be seen in Figure 5. The intial and

optimized activation are shown in the left upper and lower

side of the image. is shown together with the comparison of

all ECGs (right). The initially randomly sampled points evenly

cover the domain Ω, to allow for a fast excitation of the whole

domain, though this leads to overexpressed deflections in

many leads initially. The optimization significantly changes the

activation of the heart and is able to achieve a promising match

of the ECG in many leads. The loss in (16) converges after

≈ 250 epochs, with only minor variations in the parameters

thereafter. Of the initial 100 points, only 91 are still active at

the end of the optimization, meaning that the corresponding

ti is contained in the final solution and not earlier activated

by closer initial conditions.

IV. DISCUSSION

We presented Geodesic-BP, an algorithm to efficiently solve

the inverse ECG problem while being very efficient on a single

GPU. We are able to fit the parameters of a patient-specific

model only from the surface ECG and the segmented anatomy.

The fitted model faithfully reproduced the recorded ECG in an

animal experiment. In a synthetic case (Section III-A), Geode-

sic-BP is able to recover the ground-truth solution with high

accuracy, even in the presence of perturbation in the forward

model and in the lead field. The resolution of the considered

3-D heart model consists of > 105 DoFs, which is sufficiently

accurate for a high-fidelity eikonal solution in a human heart,

as it would correspond to roughly 0.8 mm edge length. At full

resolution, all computations only take 16 s.

The considered cardiac parameter estimation problem is of

high-relevance [32], [33], [1], [34], yet only a few works are
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Fig. 5. Result of the ECG optimization on the rabbit heart model. We compare the initial and final model (blue/red) and show the computed
activations φ(x) (left) and BPSM Vl(t) for each model (right). The computed ECGs (solid lines) are shown on top of the measured ECGs (dashed
blue line). We show the first 30 of 31 available leads to save an extra row.

able to efficiently solve this problem using solely non-invasive

ECG measurements. The considered heart model and ECG

originates from a real-world rabbit rather than a human model

since it is (to the knowledge of the authors) the only publicly

available full torso and heart model, captured with this high-

level detail and including preprocessed electrophysiological

measurements. Such animal models share many properties

of human cardiac electrophysiology [35]. Furthermore, the

algorithm and equations involved translate 1:1 to human

cardiac electrophysiology. Likewise, the methods involved are

not restricted to biventricular models, and can be extended

to atrial, or whole heart models under sinus rhythm. We

also foresee the future possibility of functionalizing publicly

available human heart and torso models, currently missing

parameterization [36].

The runtime in the full rabbit heart model of 1.8 h for

the computed 400 iterations is still expensive but it reduces

to 0.7 h for a coarser resolution (see Section III-B.2). Two

main advantages of our novel method are the high number

of parameters that can be simultaneously optimized, allowing

for many initial sites in contrast to other works [3], [2], and

having no spatial restrictions on the onset location [9]. The

first advantage is a consequence of utilizing backpropagation

to compute the gradient w.r.t. our parameters, resulting in the

runtime not being dependent on the number of parameters and

the convergence being dictated by properties of the underlying

function to optimize [37]. Thus, compared to existing works

based on derivative-free optimization with the same objective,

our algorithm will scale much better in terms of spatially-

varying parameters such as conduction velocities [38]. The

latter advantage of arbitrary onset locations follows from the

use of the volumetric description of the eikonal equation and

lead fields, from which we can compute parameters and the

local activation times not only on the heart surface, but also

transmurally. In conjunction, both of these advantages allow us

to model potentially more complex activations than previously

were able by other works.

From an implementation point of view, Algorithm 2 can be

readily applied to optimizing the conduction velocity tensor D

with little modification. Based on our previous research [32],

[16], however, optimizing conduction velocities either requires

strong prior information in the form of regularization, or

multiple activation sequences to create meaningful results. The

question how well such information can be reconstructed from

the BSPM, and the space of possible solutions w.r.t. initial

conditions both remain topics for future research.

One major limitation of Geodesic-BP is that it cannot han-

dle re-entry phenomena such as tachycardia and fibrillation,

because it relies on the eikonal equation with focal boundary

conditions. However, the eikonal model can be reformulated to

allow re-entry, see [39] and it could be used in an optimization

problem where the initial condition is to be identified from the

ECG. Finally, we also foresee many practical improvements

for reducing the computational time of the local solver as

outlined Section II-E.

V. CONCLUSIONS

This paper presents Geodesic-BP, an efficient method to

compute piecewise linear geodesics, and demonstrated its

performance for solving the inverse ECG problem in a limited

parameter setting. By creating the link between backprop-

agation through a FEM-solver with geodesic backtracking,

we were able to show that our previous FEM-based inverse

eikonal models [15], [16] are linked to our recent work [10]

working with geodesic backtracking. Such inverse procedures

are current research topics of high-relevance and efficient

inverse eikonal models such as the present one may help in ad-

vancing patient-specific cardiac electrophysiology to practical

real-world scenarios in the near future.
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