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DuKA: A Dual-Keyless-Attention Model for
Multi-modality EHR Data Fusion and Organ

Failure Prediction
Zhangdaihong Liu, Xuan Wu, Yang Yang, David A. Clifton

Abstract— Objective: Organ failure is a leading cause of
mortality in hospitals, particularly in intensive care units.
Predicting organ failure is crucial for clinical and social rea-
sons. This study proposes a dual-keyless-attention (DuKA)
model that enables interpretable predictions of organ fail-
ure using electronic health record (EHR) data. Methods:
Three modalities of medical data from EHR, namely diag-
nosis, procedure, and medications, are selected to predict
three types of vital organ failures: heart failure, respira-
tory failure, and kidney failure. DuKA utilizes pre-trained
embeddings of medical codes and combines them using
a modality-wise attention module and a medical concept-
wise attention module to enhance interpretation. Three or-
gan failure tasks are addressed using two datasets to verify
the effectiveness of DuKA. Results: The proposed multi-
modality DuKA model outperforms all reference and base-
line models. The diagnosis history, particularly the pres-
ence of cachexia and previous organ failure, emerges as
the most influential feature in organ failure prediction. Con-
clusions: DuKA offers competitive performance, straight-
forward model interpretations and flexibility in terms of
input sources, as the input embeddings can be trained
using different datasets and methods. Significance: DuKA
is a lightweight model that innovatively uses dual attention
in a hierarchical way to fuse diagnosis, procedure and
medication information for organ failure predictions. It also
enhances disease comprehension and supports personal-
ized treatment.

I. INTRODUCTION

Organ failure is the main cause of death in the Intensive
Care Units (ICUs) [1], [50]. The heart, kidneys and the respira-
tory system are vital organs with high failure prevalence which
leads to unplanned ICU admissions. Heart failure (HF) affects
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over 20 million people globally and has one-year mortality of
around 20% [6], [46]; kidney failure (KF) has a similarly high
one-year mortality rate and much higher incidence (over 50%)
of patients who require dialysis. Moreover, KF patients also
have prolonged hospital stays [23], [38]. Respiratory failure
(RF) has the highest incidence rate in ICU and the in-hospital
(short-term) mortality can rise 40% depending on the aetiology
[21], [47]. Therefore, early identification of these vital organ
failures not only has clinical significance but also alleviates
national health expenditure burdens. However, current works
mostly focus on single-organ failure prediction [3], [22], [34],
[54]; little research is available on the multiple-organ failure
states.

Electronic health record (EHR) systems store rich medi-
cal information of patients during their hospital admissions
including medical histories, diagnoses, surgeries, etc. In par-
ticular, diagnosis information has been shown to have strong
predictive power for diseases such as heart failure, mortality or
readmission in multiple studies [9], [10], [22], [49], [53]. To
improve the prediction accuracy, other information is added to
the model input such as procedures [8], [48], [51], medications
[52], [57] and demographics [22].

With such multi-modal high-complex data embedded in
EHR, extracting informative representations for these medical
concepts is a key for clinical tasks. Advances in representa-
tion learning methods for natural language processing have
stimulated the development of models such as Word2Vec
[35], GloVe [43], Transformers [55] and BERT [11], which
have been successfully applied to clinical settings [9], [22],
[49]. The learnt representations can be used directly as input
features or in model initialisation for different kinds of down-
stream tasks.

Another critical part of these successes comes from the
application of deep learning models. These models can fur-
ther construct non-linear representations which are specif-
ically tuned for the downstream tasks [4]. However, their
lack of interpretability is the main limiting factor preventing
widespread application of deep learning models to popularise
in the clinical settings. Attention mechanisms emerged as a
consequence [7], [39]. With attention integrated into a neural
network, we are able to see interpretable results at the same
time highly achieving models [9], [33], [48].

In this work, we incorporated the aforementioned modalities
in EHR, the medical concepts of diagnoses, procedures and
medications, as well as demographics to predict organ failures.
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We further designed a neural network model DuKA (DUal
Keyless Attention) that facilitates the fusion of data at both the
modality and concept levels. This model leverages attention
mechanisms to learn the contributions of different modalities
and concepts to the clinical tasks. DuKA employed attention
modules in a hierarchical fashion that are designed specifically
for modeling structured multi-modal EHR data. Notably, these
attention modules enable straightforward interpretability of the
model’s predictions, allowing for ease of application in clinical
practice across various levels of data granularity.

Most of the previous works require multiple historical
hospital visits of patients for prediction which is demanding
for data storage/collection. In our setting, we simplified the
tasks to be one-time-step predictions, i.e. only information
within one hospital visit is needed for prediction. This setting
is more applicable for use in low/mid-income countries where
health records systems are typically not connected between
hospitals, making it difficult to track the full medical records
of patients treated at different hospitals.

We validated our model on the MIMIC-IV [19] and eICU
Collaborative Research Database [45] datasets with three or-
gan failure tasks: a multi-class prediction task, predicting the
organ failure type among organ failure patients, and two binary
prediction task, predicting organ failure among essential hyper-
tension patients and ICU patients. Being able to distinguish the
three organ failure types requires a comprehensive background
in the medical specialty of each organ failure and is clinically
challenging. This is the motivation for designing the first task.
Moreover, essential hypertension is highly prevalent in our
population and the dataset. It is also regarded as a risk factor
of the considered organ failures [18]. Therefore, the second
task aims to identify the risk of essential hypertension patients
developing organ failures. The third task validates the model
on a different dataset and targets at ICU patients which is
a group of patients with high probabilities to suffer organ
failures, especially respiratory failure [28], [41].

In practical applications, clinical datasets often pose chal-
lenges due to their limited sample sizes and complex struc-
tures. These challenges can lead to the over-parameterization
of large models or models that are not well-suited to the data.
Furthermore, neural network models with intricate architec-
tures often lack interpretability. In light of these issues, this
study demonstrates how DuKA addresses these challenges in
the context of three important clinical tasks. The contributions
of our work can be summarized in three main aspects: 1) In-
troduction of DuKA: We propose DuKA as a dedicated model
for modeling multi-modal EHR data. DuKA is designed to be
a lightweight model that enables the fusion of medical con-
cepts, modalities, and offers interpretability. 2) Dual-keyless
attention incorporation: We are the first to incorporate keyless
attention in a dual manner for the purpose of EHR data fusion.
This innovative approach allows for the effective integration of
information from various modalities in a cohesive manner. The
resulting attention scores can aid clinical practice by indicating
the information that holds greater importance for organ failure
predictions. 3) Novelty in predicting vital organ failures: To the
best of our knowledge, this work represents the first attempt
at predicting multiple vital organ failures simultaneously by

utilizing fused information from diagnoses, procedures, and
medications.

II. RELATED WORK

There are two key components in DuKA: the medical
concept representation learning and interpretable multi-modal
fusion using neural attention. The second component in fact
has two fundamentals, multi-modal fusion and interpretable
neural network.

Previous works have shown that simple multi-hot encoding
of the medical codes may be inferior to the pre-trained dense
vector embeddings due to the pre-trained embeddings’ ability
of capturing local/global information [26], [58]. Therefore,
extracting informative representations from EHR data is vital
for clinical tasks, therefore, has been extensively studied in
recent research. One highly-cited early work used GloVe
[43] to train diagnosis code embeddings (representations) and
gained success in several downstream tasks including heart
failure prediction [9]. GloVe is a context-free representation
learning method that is particularly good at capturing global
information since it uses global co-occurrence of codes to
generate embeddings. In clinical settings, the co-occurrence
information is a valuable source of information for learning
medical code embeddings since relationships between diseases
are complicated and the co-occurrence of diseases reveals
the latent pattern to some extent. Therefore, GloVe has been
widely-applied in recent studies [25], [58]. BERT [11] is
another popular method for training medical concept embed-
dings due to its huge success in natural language processing.
Studies such as [22], [49], [52] all adapted BERT for medical
code pre-training and downstream tasks. BERT gained its
popularity in clinical applications due to its strong ability
to extract contextual information, allowing patterns hidden
between medical codes/concepts to be utilized. Moreover, the
high complexity of the model architecture brings superior
performance to the tasks. Other methods such as Word2Vec
[36] and ELMo [44] are also widely applied in learning con-
cept/code representations. Comparatively, GloVe and BERT
have the most competitive performance and can be considered
as good representatives for the context-free and contextual
model categories, respectively [14], [20], [58].

Neural network models have shown promising perfor-
mances in tackling clinical tasks such as disease predic-
tion/classification and achieved high accuracies. Since clini-
cal applications are demanding for interpretability, attention
mechanisms were invented for improving the interpretability
of neural network models. Both [9] and [52] proposed graph-
based attention models to pre-train medical code embeddings;
[10] used recurrent neural network with attention to pre-train
medical code embeddings. Another way to embed attention
is to directly use it in predictive models. Models like the
Transformers and BERT have in-house attention modules.
Although BERT models can achieve high performance, having
multiple attention heads at each layer requires integration
approach for attention interpretation and thus, is not straight-
forward. Moreover, they work on sequential data and are
computationally expensive. Notably, all attention mechanisms
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applied in the aforementioned works require a key-value pair
or key-query-value triplet. There are application scenarios
where such requirements can not be satisfied.

Many previous studies used multi-modal EHR data as input
for clinical prediction tasks. One early work [8] used diag-
nosis, procedure, and medication codes to predict diagnosis
and/or medications, however, these codes were simply put
together and treated equally. We lose the modality-specific
information contained between these codes. [10] used diag-
nosis codes and treatment (medication/procedure) codes in
a hierarchical fashion to predict heart failures. [52] used
medication, diagnosis codes and their ontologies to predict
medications. The more recent work [22] incorporated diagno-
sis and demographics together to predict diagnoses. Almost all
works that utilized medical codes used pre-trained or randomly
initialised embeddings to represent them. If embeddings from
different modalities are pre-trained using different methods
or trained separately, they cannot be fused directly since the
embeddings learnt represent different latent spaces. When
the embeddings from different modalities/data spaces were
concatenated, which was a common choice in most of the
multi-modal works, it was assumed that these modalities
contribute equally to the task which is also a limited way
of achieving fusion [17], [27]. Attention mechanism is a good
remedy for multi-modal fusion and has been widely applied for
this purpose in the areas of computer vision, natural language
processing as well as biomedical engineering [17], [24], [29],
[37], [59].

III. METHOD

A. Embedding Pre-train
Taking MIMIC dataset as an example, for each hospital

visit, we extracted three sets of medical codes/concepts rep-
resenting the diagnoses, procedures and medications that a
patient acquired during a visit. In particular, for diagnosis and
procedure, we used ICD-9-CM (International Classification of
Diseases, Ninth Revision, Clinical Modification) codes; we
used the medication names directly instead of any drug codes
so that they can be easily matched to any coding system.
Notably, the pre-trainings for diagnosis and procedures were
performed over the whole MIMIC-IV cohort that used ICD-9
codes; the dataset used for pre-training medication embeddings
was the whole MIMIC-IV cohort.

1) GloVe: For each of the three modalities, we further
constructed a co-occurrence matrix based on each set of the
medical codes/concepts separately. Taking diagnosis as an
example, the training data was D = [v1,v2, ...,vk], where vi

represents a hospital visit and k is the total number of hospital
visits in the dataset. Moreover, vi = [c1, c2, ..., cd] where ci
represents a diagnosis code and d is the total number of codes
occurred in that visit. If two codes occurred together within a
visit, the value at the corresponding entry in the co-occurrence
matrix got updated. Lastly, we applied GloVe [43] separately
to the three co-occurrence matrices and set the embedding
dimensionality as 128.

2) BERT: For each of the three modalities, the BERT model
received patients’ visiting sequences encoded in this modality

as patient-level pre-training data. Specifically, the pre-training
data was Dpatient = [p1,p2, ...,pk], where pi = [vi,1, ...,vi,ik ]
represents the chronically ordered ith patient’s visit sequence;
i 2 [1, k], ik is the length of his visit sequence, and each vi,j ,
j 2 [1, ik] is a training-sample in GloVe described above. We
adopted the structure of the model in Med-BERT [49] pre-
trained with masked language model (MLM) objective. Dpatient
was augmented by adding ‘[SEP]’ token between two visits
and ‘[CLS]’ token in the beginning of each pi. 15% of codes in
each pi sequence were masked, 80% of which were replaced
with ‘[MASK]’ token, 10% were replaced with random token
except ‘[MASK]’, and the rest part remained unchanged.
Each patient’s visit sequence was then embedded into two
embeddings – code embedding and segment embedding. In
particular, codes belonging to the same visit would have
the same segment embedding, e.g. codes in vi1 were all
embedded with the first segment embedding, for all i 2 [1, k].
Through training, the MLM objective led the code embedding
to learn the contextual information in each patient’s visits
and to predict the co-occurrence between these codes. The
dimensionality of code embedding was also set as 128.

Similarly, we used the aforementioned methods to pre-train
medical concept embeddings for the eICU dataset following
the same processing pipeline. Notably, for procedure informa-
tion, we selected the surgeries/operations from the ‘treatment’
table and used the procedure names directly rather than ICD
codes 1.

B. Dual Keyless Attention Model
DuKA aims to model the multi-modal EHR data by uti-

lizing medical concept/code embeddings that have been pre-
trained using the methods discussed in the previous section.
It then outputs the probability of a clinical event based on
the specific task. In this study, the inputs consists of embed-
dings from three medical modalities (diagnosis, procedure,
and medication) that occurred within a patient’s hospital
visit/ICU admission, and the output is the probability of
experiencing organ failure during the patient’s subsequent
hospital visit or ICU admission. This scenario involves two
levels of complexity. Firstly, within each modality, there are
numerous medical codes, resulting in a large number of high-
dimensional embeddings that need to be integrated. Secondly,
the embeddings from different modalities cannot be integrated
(e.g. by taking the average) directly since they are pre-trained
in the context of the single modality and therefore not in a
shared common space. To address the first level of complexity,
the code-wise keyless attention mechanism is employed to
fuse multiple code embeddings into a single representation that
captures the information of the modality to which the codes
belong. To tackle the second level of complexity, the modality-
wise keyless attention mechanism is utilized to integrate all
modality-level embeddings into a unified representation that
captures cross-modality information.

As illustrated in Fig. 1, DuKA fuses multi-modality input
and simultaneously offers interpretation at two different data
levels, code/concept-level and modality-level. DuKA takes in

1https://eicu-crd.mit.edu/eicutables/treatment/
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Fig. 1: Illustration for the Dual Keyless Attention (Duka) Model. The e in the Model Input box represents the pre-trained
embeddings and its subscriptions d, p and m represent the number of diagnosis, procedure and medication codes in a visit,
respectively. Notably, the age and gender embeddings are randomly initialised which follows the practices implemented in
[22].

three sets of pre-trained embeddings that are matched with the
visit-level information (the three sets of codes occurred during
a visit). They are then fed into keyless attention modules
separately to generate modality-level embedding and learn the
code importance. Notably, since this study incorporates three
different data modalities, the keyless attention mechanism is
invoked three times at the code-level, once for each data
modality. Secondly, the modality-level embeddings are further
fed into a second attention module to generate visit-level
embedding which is lastly used to perform the task. This
completes the dual attentions. The keyless attention module
handles missing modality/code by using masked attention,
attending the non-empty modalities/codes only. Moreover,
we can also choose to include patients’ age and gender as
predictors. Finally, the model input features are the pre-trained
embeddings for diagnosis, procedure, medication and random
initialised, trainable age and gender embeddings.

1) Keyless attention: We adopted a keyless attention mech-
anism in DuKA to fuse embeddings from different modalities
and learn embedding importance. The original attention that
was first proposed in LSTM (Long-short term memory) [2],
[32] requires a key/anchor to calculate the attention scores.
More recently, a popular attention mechanism was proposed
in the Transformer work [55] which requires a key-query pair
to learn attention scores. These different attention mechanisms
are illustrated in Fig. 2. More detailed differences are ex-
plained in Appendix II.

Specifically, the keyless attention is calculated as follows:
taking the code-level attention as an example, the attended
output embedding which we denote as the modality-level

embedding, z, is computed as

z =
X

i

↵iei, (1)

where ei is the pre-trained code embedding within a modality;
↵i is the attention score and calculated as

↵i =
exp(hi)P
j exp(hj)

. (2)

hi is a function of ei and has the same form as the paper that
first proposed attention ( [2]), a multi-layer perceptron (MLP)
with tanh as the activation function, specifically,

hi = f(ei) = v>i tanh(w>
i ei), (3)

where wi and vi are the trainable weight vectors of the two
hidden layers in the MLP. Note that function f(·) in Eqn. 2
now acts only on one object ei, instead of a pair or a triplet
which the usual attention mechanisms operate on.

Similarly, the second-level (modality-level) of attention is
computed in the same way using Eqns. 2 and 3. The attended
embedding z in Eqn. 2 is now the visit-level embedding (the
top grey dotted box in Fig. 1), and the input ei become the
modality-level embeddings, i.e. the z output from the previous
attentions.

We found similar usage of the keyless attention in the area of
computer vision [29], [31]. In our use cases, complex models
such as BERT that employs the key-value-query attention
struggled to converge, potentially due to over-paramerization.
Large and complex models typically involve a large number
of parameters, which can make them challenging to train and
optimize on smaller datasets. The key-value-query attention
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Fig. 2: Illustration of the different attention mechanisms. (a) shows the keyless attention adopted in this work which learns
the attention score by operating on the input data itself. (b) is a form of key-value attention in which the attention score is
calculated by requiring a Key matrix. (c) illustrates the self-attention introduced in the Transformer model [55] where the
attention score is obtained via the key-query relationship and then mapped to the Value matrix. Together, the key-query pair
can be regarded as the ‘key’ in the attention mechanism.

mechanism, while powerful, may exacerbate this problem by
introducing additional parameters and increasing model com-
plexity. In contrast, keyless attention offers a more efficient
alternative for modeling smaller clinical datasets. By elimi-
nating the need for explicit keys, values, and queries, keyless
attention reduces the parameter overhead. This streamlined
approach simplifies the model architecture and improves its
ability to generalize to limited data.

The computational complexity is detailed in Appendix III.

C. Ablation study
For ablation studies, we compared DuKA with the

single-modality single-attention models. The model in-
put is simply the pre-trained embeddings of diagno-
sis/procedure/medication. The model naturally becomes a
single-attention model since it does not require modality-level
attention. Notably, not every visit has all three modalities’
information. We trained the single-modality models using data
without missingness. Therefore, the sample size for the single-
modality models is different.

D. Baseline models
We also tested several baseline models including random

forest classifier (RFC), gradient boosting classifier (GBC),
stochastic gradient descent classifier (SDGC) and one versus
the rest classifier (OVRC). The model input is the concatena-
tion of the averaged embeddings of each modality.

E. Model Assessments
To assess the above model, we split the respective dataset

into training, test and validation sets. The test set separation is
at the patient level to avoid leaking of intra-subject patterns:
we split the patients into a training+validation cohort and a test
cohort at the ratio of 0.8:0.2. The training+validation cohort is
further unwrapped to visit-level samples and split into training
and validation sets with the same ratio (0.8:0.2). Finally, the
test cohort is unwrapped to visit-level samples to allow model
testing. The class distributions between the three sets were
ensured to be similar.

We assessed the model performance using the weighted
and macro averages of precision, recall and F1-score of each

class, area under receiver operating characteristic (AUROC)
and confusion matrix. We ran each set of experiments 10 times
to obtain the mean and standard deviation of the assessment
measures. All results will be reported for the test set only, and
all models were trained and tested on the same splits of data.

IV. MIMIC TASK1: MULTI-CLASS ORGAN FAILURE TYPE
PREDICTION

A. Data and Task Setting
We set the task to predict which one of the three organ

failures will occur on the next visit. We further constrained
that the next visit happens within six months. We labelled each
visit based on the diagnosis code and the label can be one of
the three organ failure types, HF, RF or KF. Notably, we did
not consider patients with multiple organ failures. To simplify
the application in the real world, we assumed that the most
recent visit has the strongest impact on the next visit for organ
failure patients, therefore, only information in the most recent
visit was used to predict the organ failure label of the next
visit. The task is thus visit-based and we further enlarged the
dataset by unwrapping patients’ visits. For example, a patient
with three visits can construct two training samples: visit 1 to
predict the label of visit 2 and visit 2 to predict the label of
visit 3.

In MIMIC-IV, we selected hospital admissions whose diag-
nosis codes are stored using the ninth version of ICD (ICD-
9). To identify patients with the three types of organ failure,
we worked with clinicians and selected 28 ICD codes related
to these three organ failures (a full list of ICD codes can be
found in Appendix Table V). The data pre-processing pipeline
is shown in Fig. 7a. For the purpose of prediction, we selected
patients with at least two hospital visits and excluded patients
with multiple organ failures.

The data summary is shown in Table. I and the pre-
processing pipeline is shown Appendix Fig. 7. We denote
these patients as the target cohort. We later found that if we
process the data following the pipeline in Fig. 7a, every of
the 8306 visits has an organ failure diagnosis, i.e. we have no
negative samples. Label-wise, the dataset is very imbalanced
with HF:RF:KF ⇡ 15:1:13.

The model implementation details can be found in Appendix
III.
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TABLE I: Data summaries for the two datasets and three tasks. ‘#’ represents the ‘number of’.

# patients # visits class ratio # diagnosis # procedure # medication
MIMIC Task 1 2927 8306 HF:RF:KF ⇡ 15:1:13 2958 576 1359
MIMIC Task 2 9486 22323 Negative:Positive ⇡ 3:1 5196 1315 2381

eICU 2583 6658 Negative:Positive ⇡ 1:4 508 388 1178

(a) Confusion Matrix (b) Modality-wise attention score

Fig. 3: The confusion matrix and modality-wise attention
score for Task 1. These results are drawn from the DuKA
model with the highest AUROC.

B. Results
We show the results without adding demographics to inputs

in Table II, since adding demographics did not improve
model performance in this task. We attach the results with
demographics in Appendix Table VI. Table II also gives the
comparison between GloVe and BERT embeddings. For all
baseline models and DuKA, GloVe embeddings outperformed
BERT embeddings based on the AUROCs. Therefore, BERT
embeddings were not further tested in the ablation study.
DuKA model with GloVe embedding as input gives the
best results with the mean AUROC being 90.978 which is
significantly better than the second best – the diagnosis single-
modality single-attention model (p-value = 0.009 in one-tail
t-test). Moreover, among all single-modality models, using
procedure information on its own has the worst predictive
power.

By investigating the code-level attention scores, we found
that cachexia, endoscopic retrograde cholangiopancreatogra-
phy (ERCP) and furosemide are the heaviest-loaded vari-
ables for diagnosis, procedure and medication, respectively.
Cachexia is a complex syndrome that is associated with many
severe diseases such as heart failure, chronic pulmonary and
kidney diseases and cancer [13], [56]. ERCP is a procedure
used to treat the bile ducts and main pancreatic duct, and
furosemide is a common medication used to treat heart failure,
liver or kidney diseases. We attach the code-wise attention
scores in Appendix Fig. 8.

We extracted the DuKA model with the highest AUROC and
show its interpretations as an example. The confusion matrix
in Fig. 3(a) and the modality-wise attention is shown Fig.
3(b). Due to the small sample size in RF, it has the worst
performance among the three organ failures. The modality
rank of the attention scores is in line with the single-modality
models’ performances with diagnosis having the most predic-
tive strength and procedure having the least.

V. MIMIC TASK2: ORGAN FAILURE PREDICTION FOR
ESSENTIAL HYPERTENSION PATIENTS

A. Data and Task Setting

The second task we performed is a binary classification
task – predicting organ failures among essential hypertension
patients. We identified patients with essential hypertension
if any of their diagnosis codes start with ‘401’ (Essential
Hypertension). The data selection was very similar to the
first task apart from using the essential hypertension ICD
rather than organ failure ICD codes (Appendix Fig. 7b). The
prediction is still visit-based. We labelled a patient’s visit as
an organ failure instance if the visit contains any of the organ
failure ICD codes that were used in Task 1 without specifying
which kind of organ failure.

Table. I shows the data summary for this dataset and
the pre-processing pipeline is shown Appendix Fig. 7. More
specifically, the positive rate is about 25.9% – 5792 out of
23223 total visits are organ failure visits.

Same with Task 1, we fed both GloVe and BERT embed-
dings with and without trainable age and gender embeddings
as input to the models. The model implementation details are
shown in Appendix III.

B. Results

Notably, the baseline models yielded closer results for the
settings with and without using demographic measures. Fig.
4 shows that apart from SVM, all other models have GloVe
embeddings with demographics as the best input setting, and
Logistic Regression with GloVe embeddings and demograph-
ics has the highest AUROC.

Fig. 4: The average AUROC for the four baseline models.
We compared four sets of input, GloVe embeddings without
demographics (‘GloVe w/o Demo’), GloVe embeddings with
demographics (‘GloVe w/ Demo’), BERT embeddings without
demographics (‘BERT w/o Demo’) and BERT embeddings
with demographics (‘BERT w/ Demo’).
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TABLE II: Organ failure type prediction results for the baseline (RFC, XGB, SGDC, and OVRC), DuKA and ablation study
(the bottom block). The weighted scores are weighed by the number of labels in each class; the macro scores are the arithmetic
means of the individual classes. ‘Diagnoses’, ‘Procedure’ and ‘Medication’ indicate the single-modality single-attention models
in the ablation study. Due to the poor performance of BERT embeddings from the baseline and DuKA models, they were not
tested for further ablation study. The AUROC for this multi-class setting is calculated by the ‘one versus rest’ approach due
to the imbalance of the class labels. The numbers shown in the table are the average and standard deviation (in brackets) of
the 10 random repetitions. ‘*’: there is no randomness involved in XGB, therefore, no standard deviation is shown.

Model Recall (%) Precision (%) F1-score (%) AUROC (%)
weighted (accuracy) macro weighted macro weighted macro

RFC GloVe 82.61 (0.59) 57.79 (0.41) 81.79 (1.13) 73.45 (8.07) 81.42 (0.57) 57.76 (0.41) 86.06 (0.75)
BERT 84.14 (0.43) 57.95 (0.30) 81.48 (0.42) 56.13 (0.29) 82.75 (0.43) 57.00 (0.29) 84.28 (0.81)

XGB⇤ GloVe 84.86 62.01 83.84 70.20 84.08 63.44 87.00
BERT 85.78 59.08 83.22 57.32 84.44 58.16 83.38

SGDC GloVe 72.20 (3.11) 65.81 (2.06) 85.16 (0.84) 61.38 (0.81) 82.21 (2.10) 57.81 (2.00) 85.98 (1.35)
BERT 71.83 (2.05) 60.67 (2.20) 84.58 (1.04) 60.16 (0.83) 77.08 (1.52) 56.33 (1.23) 83.47 (1.16)

OVRC GloVe 83.99 (1.69) 62.47 (2.93) 83.34 (1.95) 68.04 (4.85) 83.38 (1.81) 63.46 (3.16) 87.15 (1.85)
BERT 86.20 (0.84) 61.24 (1.21) 84.81 (0.85) 65.77 (3.95) 85.28 (0.79) 61.68 (1.64) 84.38 (1.56)

DuKA GloVe 89.56 (0.25) 67.94 (0.81) 85.95 (1.06) 74.94 (1.08) 87.47 (0.65) 69.15 (1.16) 90.98 (0.56)
BERT 88.36 (0.22) 65.92 (0.47) 84.34 (0.81) 71.60 (1.00) 86.07 (0.50) 66.62 (0.72) 86.02 (1.12)

Diagnosis GloVe 89.23 (0.23) 67.64 (1.07) 86.23 (1.16) 73.26 (1.07) 87.51 (0.75) 68.77 (1.38) 90.13 (0.80)
Procedure GloVe 73.96 (0.52) 55.96 (0.32) 64.05 (1.05) 61.12 (1.04) 67.72 (0.74) 54.07 (0.73) 78.01 (1.07)

Medication GloVe 80.00 (0.75) 59.42 (0.55) 74.01 (0.78) 66.58 (1.76) 76.43 (0.52) 59.39 (0.60) 85.83 (0.41)

For DuKA, unlike the baseline models, we found that with-
out using demographic embeddings gave better performance
(Table III). Therefore, they were not tested in the ablation
study. In the ablation study, single-modality model using
only diagnosis codes has shown competitive performance
with DuKA, the second-best in AUROC. However, it is still
significantly worse than DuKA (p-value = 0.009 in one-tail
T-test).

1) attention scores interpretation: We extracted the attention
scores for the two attention modules of DuKA. The mean
attention scores for diagnosis, procedure and medication are
0.604, 0.223 and 0.173, respectively. We notice that the contri-
bution of diagnosis is significantly higher than procedure and
medication, and the order of contribution between procedure
and medication has changed from Task 1.

For the code-level attention scores, we take diagnosis as
an example. Fig. 5 shows the top 20 most-weighted diagnosis
codes. The top code is ‘unspecified essential hypertension’
which is not surprising since the target cohort in this task
is patients with essential hypertension and it is indicative
towards organ failure. We also see many organ failure-related
historical diagnoses such as ‘congestive heart failure’ and
‘unspecified acute renal failure’, which suggests patients with
organ failure histories are more likely to develop organ failure
again. Moreover, high-prevalence chronic diseases such as
diabetes, hyperlipidemia and anaemia also appear at the top
of the list which is suggested by literature to have correlations
with HF and KF [5], [15], [16]. The attention scores also reveal
‘tobacco use disorder’ as a highly-weighted diagnosis, which
is reported to be related to RF [12]. Interestingly, ‘unspecified
depressive disorder’ appears on the list which indicate its
associations with organ failures.

The attention scores for procedure and medication are listed
in Appendix Fig. 9. Notably, furosemide is the most attended
medication again which is the same in the Task 1.

We further separated the organ failure positive and negative
patients and interpreted their attention scores. Fig. 6 presents

Fig. 5: Top 20 code-wise attention scores for diagnosis aver-
aged across 10 repetitions of DuKA.

the top 10 most-weighted diagnosis codes for patients that
developed organ failures (Fig. 6a) and did not develop organ
failures (Fig. 6b). From these attention scores we can see
that although the top diagnoses overlap largely between the
two groups of patients, for patients that developed organ
failures, having a congestive heart failure history is regarded
as being most important by the model whereas for organ
failure negative patients, congestive heart failure ranks sixth,
weighing much lower than having hypertension.

We attach the same attention scores for procedure and
medication in Appendix Figs. 10 and 11.

Notably, the subject-specific attention scores can be ex-
tracted from the model (illustrated in Appendix Figs. 12 and
13). These scores can assist with personalized treatment by
guiding clinicians to prioritize specific diagnoses, procedures,
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TABLE III: Task 2 results for DuKA (top block) and ablation study (bottom block). The weighted scores are weighed by the
number of labels in each class; the macro scores are the arithmetic means of the individual classes. ‘Diagnoses’, ‘Procedure’ and
‘Medication’ indicate the single-modality single-attention models. Due to the inferior performance of BERT and demographic
embeddings, they were not tested for the ablation study. The best model and AUROC are highlighted with bold font.

Model Recall (%) Precision (%) F1-score (%) AUROC (%)
weighted (accuracy) macro weighted macro weighted macro

DuKA-
BERT

w/ demo. 77.77 (0.64) 70.42 (1.28) 76.64 (1.44) 71.91 (0.60) 77.08 (1.17) 70.98 (1.09) 78.20 (0.64)
w/o demo. 78.06 (0.73) 70.82 (1.61) 76.93 (1.56) 72.22 (0.58) 77.34 (1.21) 71.30 (1.71) 79.03 (0.35)

DuKA-
GloVe

w/ demo. 78.50 (0.41) 70.92 (0.72) 76.90 (0.79) 73.18 (0.47) 77.50 (0.66) 71.76 (0.65) 79.49 (0.47)
w/o demo. 78.30 (0.35) 70.72 (0.62) 76.75 (0.68) 72.90 (0.41) 77.34 (0.56) 71.54 (0.54) 79.82 (0.28)

Diagnosis-GloVe w/o demo. 78.20 (0.56) 70.56 (1.33) 76.46 (1.68) 72.70 (0.46) 77.07 (1.36) 71.27 (1.20) 79.49 (0.29)
Procedure-GloVe w/o demo. 66.86 (0.70) 54.89 (0.98) 60.08 (3.98) 56.04 (1.04) 62.18 (3.40) 53.91 (2.12) 59.58 (1.06)

Medication-GloVe w/o demo. 71.25 (0.47) 63.19 (0.72) 65.22 (2.01) 65.67 (0.74) 66.68 (1.86) 62.61 (1.44) 72.77 (0.43)

(a) Patients with organ failures

(b) Patients without organ failures

Fig. 6: Diagnosis attention score interpretation by different
groups of patients. (a) shows the top 10 diagnosis codes
for patients that develop organ failures; (b) are the top 10
diagnoses for patients without organ failure.

or medications that play a more crucial role in precipitating
organ failure.

VI. DUKA VALIDATION ON EICU DATABASE

Lastly, we tested the DuKA model on the eICU database.
This dataset contains only ICU admissions over multiple
centres in the US. Similar to the previous two tasks, we
selected patients with one of the three organ failures based
on the ICD-9 diagnostic codes. We further removed patients
with only one ICU admissions. The data processing pipeline
is shown in Fig. 7. The task is to predict whether a patient
would experience one of the three organ failures in their
next ICU admission, utilizing information collected from their
previous ICU admission. The data summary is shown in Table
I. Notably, more than 95% of the organ failures happened in

ICU were respiratory failures. Given the nature of this dataset,
the training unit was defined as the ICU admission rather than
the hospital visit. The same model architecture and training
pipeline used for the MIMIC datasets were maintained.

The results are shown in Table IV. Overall, DuKA shows
satisfying performance on the independent eICU dataset in
predicting organ failures in ICUs. The average modality-level
attention weights across 10 random repetitions for diagnosis,
procedure and medication are 0.54, 0.23, 0.24, respectively.
The importance ranking between the three modalities remains
similar to the two tasks on the MIMIC dataset.

VII. DISCUSSIONS

The construction of DuKA takes two important factors into
account. Firstly, DuKA is designed to fuse pre-trained medical
code/concept embeddings originating from different modal-
ities, which are trained separately. Leveraging pre-trained
embeddings is a widely adopted approach due to their ability
to provide meaningful data representations. By incorporating
embeddings trained from diverse datasets or tasks, the model
gains flexibility and facilitates transfer learning. Secondly,
DuKA aims to maintain a simple model structure while
maximizing interpretability. This is crucial for clinical appli-
cations where model interpretability holds significant value.
By offering straightforward and simple feature importance, we
prevent ’over-modeling’ of relatively small clinical datasets
by neural networks. Hence, instead of employing the multi-
head module, we embed the keyless attention mechanism into
DuKA. The resulting attention scores could aid the person-
alized treatment and specific task understanding in clinical
practice. Additionally, we conducted an investigation into the
attention scores from different repetitions and observed high
stability. Overall, the proposed DuKA model addresses the
challenges specific to modeling tabular EHR data.

However, we did not explore/optimise the form of the
keyless attention. For example, one can try other forms such
as taking the inner product of the feature itself. Moreover,
we can use different attention forms/dimensions for the two
attention modules. We are confident that these can improve the
performance of DuKA and are interesting future directions to
explore.

Another emphasis of this work was to compare two popular
presentation learning methods and their pre-trained embed-
dings. We found that in almost all models we considered,

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3331305

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Z. LIU et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (2022) 9

TABLE IV: DuKA validation results on the eICU dataset. Since the previous tasks showed that GloVe embeddings without
demographic features have superior performance. This table shows the results for this setting only. The experiment was repeated
for 10 random initialisations. The mean scores are shown for each assessment measure with the standard deviations in the
brackets.

Recall (%) Precision (%) F1-score (%) AUROC (%)
weighted (accuracy) macro weighted macro weighted macro
83.90 (2.01) 64.57 (0.92) 69.72 (3.67) 73.76 (2.48) 73.08 (3.09) 63.26 (1.86) 81.55 (0.68)

GloVe embeddings had better performance than BERT. We
found similar results in another work that performed repre-
sentation learning comparison [58]. The poor performance of
BERT might be caused by that we used BERT to pre-train the
embeddings with the masked language model only and did not
fine-tune it using the downstream tasks. Besides, although this
pre-train enables BERT to capture the contextual information
within a patient’s visit sequence, the global information about
the medical codes of pathology is limited. By comparison,
GloVe explicitly models the global co-occurrence information,
which can give results that are more consistent with intuition.

We worked with clinicians and selected three types of vital
organ failures to perform the tasks. We designed two prediction
tasks, a multi-class organ failure type prediction and a binary
organ failure prediction. These tasks only use information in
one time step to predict the event in the next time point. We
are aware that using less historical information may reduce
the model’s performance. However, this setting reduces the
requirement for data acquisition and better suits the real-
world scenarios in low to middle-income countries where no
advanced EHR systems are in place or the EHR systems are
not connected among hospitals and therefore, it is harder to
track people’s health history. Moreover, we also tried adding
trainable age and gender embeddings using the same way with
[22]. It is surprising to find that in most cases, adding them
did not bring extra gain to the model performance, especially
for DuKA. It may indicate that this way of incorporating
demographic embeddings is not suitable for these tasks. It is
also possible that for the tasks we conducted, age and gender
are confounded with the diagnosis/procedure/medication infor-
mation. We only considered two of the demographic measures.
Future work can take more demographic/clinical features into
consideration and apply more sophisticated approaches to
handle them such as learning pre-trained embeddings.

In the conducted ablation studies, we observed that using
single diagnosis modality as input achieved similar levels of
performance in AUROC compared with the proposed DuKA
model. However, through T-tests, we still identified significant
improvements by employing DuKA. Moreover, one significant
advantage offered by DuKA is that it allows clinicians to
trace the contribution of variables from different sources of
input (diagnosis/procedure/medication), which is meaningful
in clinical practice. The modality-level attention scores offer
valuable guidance to clinicians, encouraging them to prior-
itize diagnosis information when dealing with organ failure
patients. This advice becomes especially crucial in time-
constraining scenarios, such as admitting/treating patients in
ICUs. The presented average code-level attention scores (e.g.
Fig 5) could help with specific task understanding. The model

can also generate subject-specific attention scores (Appendix
Figa. 12 and 13), facilitating personalized treatment. This en-
ables healthcare providers to proactively address the prioritized
diagnostic, procedural, or medication requirements of each
patient.

DuKA also allows incorporation of other data modalities
which could potentially increase the performance gap from
the single-modality models. This is a worthwhile direction for
future investigations. One other limitation of this work is the
selection of the target cohort. Although we worked closely
with two clinicians to select the ICD codes, it is possible that
some organ failure patients are omitted. This may cause biased
data labelling and model results.

VIII. CONCLUSIONS

In this work, we introduce the Dual-Keyless Attention
(DuKA) model for modeling tabular Electronic Health Record
(EHR) data. The effectiveness of DuKA is demonstrated
through its application on two datasets and three clinical tasks.
The AUROCs received over these tasks range from 0.800 to
0.910. DuKA could further offer diagnostic, procedural and
medication-related clinical interpretations that are relevant to
the organ failures considered. Its ability to fuse embeddings
from diverse EHR data modalities, provide interpretable re-
sults, and maintain simplicity in model architecture while
maximizing interpretability showcases its potential value in
clinical applications.
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