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Abstract—Optical coherence tomography angiography 

(OCTA) is a non-invasive imaging modality for analyzing skin 
microvasculature, enabling non-invasive diagnosis and treatment 
monitoring. Traditional OCTA algorithms necessitate at least 
two-repeated scans to generate microvasculature images, while 
image quality is highly dependent on the repetitions of scans (e.g., 
4-8). Nevertheless, a higher repetition count increases data 
acquisition time, causing patient discomfort and more 
unpredictable motion artifacts, which can result in potential 
misdiagnosis. To address these limitations, we proposed a 
vasculature extraction pipeline based on the novelty vasculature 
extraction transformer (VET) to generate OCTA images by using 
a single OCT scan. Distinct from the vision Transformer, VET 
utilizes convolutional projection to better learn the spatial 
relationships between image patches. This study recruited 15 
healthy participants. The OCT scans were performed in five 
various skin sites, i.e., palm, arm, face, neck, and lip. Our results 
show that in comparison to OCTA images obtained by the 
speckle variance OCTA (peak-signal-to-noise ratio (PSNR): 
16.13) and eigen-decomposition OCTA (PSNR: 17.08) using four 
repeated OCT scans, OCTA images extracted by the proposed 
pipeline exhibit a better PSNR (18.03) performance while 
reducing the data acquisition time by 75%. Visual comparisons 
show that the proposed pipeline outperformed traditional OCTA 
algorithms, particularly in the imaging of lip and face areas, 
where artifacts are commonly encountered. This study is the first 
to demonstrate that the VET can efficiently extract high-quality 
vasculature images from a single, rapid OCT scan. This 
capability significantly enhances diagnostic accuracy for patients 
and streamlines the imaging process.   
 

Index Terms—Image reconstruction, Optical coherence 
tomography angiography, Deep-learning.  
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I. INTRODUCTION 
KIN microvascular mapping can not only help identify 
skin pathological conditions but also provide insights into 

systemic diseases [1]–[3]. For instance, decreased 
microvascular density has been associated with cardiovascular 
and metabolic diseases, such as hypertension, diabetes, 
obesity, and metabolic syndrome, as well as an increased risk 
of coronary artery disease [4]–[7]. Optical coherence 
tomography angiography (OCTA) is an extension function 
based on OCT, providing a microvascular image by extracting 
the moving red blood cell signals from the surrounding 
relatively static biological tissue signal [8]–[10]. In scholarly 
research, OCTA has been substantiated as a method for 
identifying skin disease by assessing the distribution of 
vasculature [11]; in particular, it has emerged as a valuable 
tool for analyzing skin microvasculature, allowing for non-
invasive diagnosis and monitoring of treatment in skin 
diseases and cancer [12]–[14]. As the clinical application of 
OCTA increases, enhancing its imaging speed and quality will 
drive precise diagnostics and treatment plans, while also 
widening its potential clinical applications, such as in oral and 
endoscopic procedures.  

Among the conventional OCTA algorithms that utilize the 
differentiation of information (e.g., phase and complex 
information) present in OCT signals, speckle variance (SV)-
OCTA [15] and eigen-decomposition (ED)-OCTA [16] are 
highly efficient methods for extracting vasculature images [9]. 
However, in vivo skin OCTA imaging faces challenges that 
can significantly compromise the quality of vascular signals. 
These include the speckle noise inherent to the OCT system, 
bulk tissue motion-induced artifacts, and light wave scattering 
due to the complex structure of skin tissues. Moreover, in vivo 
skin OCTA scan requires a flexible scanning probe to 
approach various sites of sun-exposed skin (e.g., face, hand, 
and arm areas with higher skin cancer risk [17]). This method 
introduces additional motion artifacts due to patient and probe 
movement.  

    Implementing a higher repetition of OCT scans (e.g., 6 
times) can improve the quality of OCTA images generated 
through conventional algorithms [18]. Nevertheless, this 
method also lengthens the data acquisition time, thereby 
introducing a greater likelihood of unpredictable motion 
artifacts from both the scanning probe and the patient. Such 
artifacts can adversely affect the overall image quality. An 
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additional option to reduce motion artifacts and scanning time 
is to increase the swept rate of the swept laser. However, this 
solution comes with its own drawbacks. Upgrading the laser 
system can be expensive, and a higher swept-rate laser 
requires a higher-performance gravo-mirror for effective 
adaptation.  

    A series of convolution neural network (CNN)-based 
methods were proposed to reconstruct the high-quality OCTA 
images by using two- or four-repeated OCT scans [19]–[21]. 
Those approaches have been successful in reconstructing high-
quality OCTA images with low repetition of OCT scans, but 
they have largely been applied to the study of mice brains 
through invasive OCTA scans. Instead of exclusively focusing 
on OCTA image reconstruction, it is critical for the models to 
relearn the distinct characteristics of skin vasculatures in the 
field of dermatology. In addition, these require a minimum of 
two repeated OCT scans for high-quality vasculature imaging. 

In this study, we propose a vasculature extraction 
transformer (VET)-based pipeline designed to facilitate in vivo 
skin OCTA scan speed and mitigate motion artifacts 
associated with the use of a flexible scanning probe. Contrary 
to previous deep-learning methods that require at least two 
repeated scans, our proposed pipeline targets the extraction of 
skin micro-vasculature images from a single OCT scan. Our 
pipeline enables real-time OCTA imaging as it eliminates the 
need for an offline process to extract vasculature signals. This 
allows for OCTA images to be directly procured from single-
scan-based structural OCT images. As for the deep neural 
network applied in OCTA image restoration, VET employs 
the strengths of convolutional projection [22] and Transformer 
for vasculature feature extraction. Varied from the linear 
projection used in Transformer, convolutional projection uses 
a convolution operation to obtain the key, value, and query 
sequences, providing spatial relationships between the image 
patches.  

Consequently, our study has the following contributions: (1) 
To the best of our knowledge, we are the first to introduce a 
single-scan-based OCTA imaging pipeline that significantly 
reduces the data acquisition time by up to 75%, while improve 
the peak-signal-to-noise ratio performance as compared to 
four-repeated OCTA images produced by ED-OCTA and SV-
OCTA algorithms. (2) We proposed a novel VET model that 
uses convolutional projection to help the model learn the 
spatial relationships between the image patches. (3) As far as 
we are aware, this is the first competitive study of neural 
networks in skin OCTA imaging to extract vasculature images 
based on a single OCT scan. (4) We evaluate the performance 
of the proposed pipeline with a flexible scanning probe for 
five different scan positions.  

A. Related Work 
CNN-based approaches have demonstrated their capability 

to reconstruct high-quality skin OCTA images using only two 
repeated scans. These include techniques utilizing denoising 
deep convolution neural network (DnCNN) [19], residual deep 
neural networks [21], [23], residual densely deep neural 
network [24], and U-shape deep neural network [25]. 
However, current CNN models fall short of the requisite 
capabilities needed for high-quality reconstruction of skin 
OCTA images in this study. Since the CNN-based methods 

are difficult to learn the global and long-term information 
[26], [27], and they also have a high dependency on the 
locality convolution operation.  

Recently, vision transformer (ViT) has gained attention as 
an alternative to CNNs for image classification tasks due to 
their scalability, flexibility, and ability to handle long-range 
dependencies [28]. In Liu et al. work [29], a hierarchical shift 
window (Swin)-transformer was proposed and achieved state-
of-the-art results in image classification. Based on the Swin-
transformer, SwinIR [26] was proposed to reconstruct the 
high-quality nature images from the counterpart degraded 
images, and Swin-UNet [27] for medical image segmentation, 
and both of them achieved better competitive results than the 
CNN models. ViT and Swin-Transformer architectures use a 
linear projection layer (also referred to as a fully connected 
layer) to generate query, key, and value sequences for multi-
head self-attention. However, this can result in a significant 
increase in the number of parameters, which can affect the 
efficiency and practicality of these models. Besides, the 
limitation of the linear projection layer is that it does not take 
into account the spatial relationships between the patches, 
which can be important for OCTA image reconstruction in this 
study. 

II. VASCULATURE EXTRACTION METHODS 

A. Conventional OCTA Algorithms  
Speckle variance (SV) algorithm based on consecutive B-

scans is performed to obtain motion-contrast information, 
which can be formulated as the (1): 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑧𝑧) =
1
𝑁𝑁𝑁𝑁

�|(𝐴𝐴𝑖𝑖+1(𝑥𝑥, 𝑧𝑧) − 𝐴𝐴𝑖𝑖(𝑥𝑥, 𝑧𝑧)|
𝑁𝑁

𝑖𝑖=1

 (1) 

where NR is the number of repeated scans at the same 
location. 𝐴𝐴𝑖𝑖(𝑥𝑥, 𝑧𝑧) indicates the amplitude signal in 𝑖𝑖-th B-
scans at lateral location 𝑥𝑥 and depth position 𝑧𝑧. 

Eigen decomposition (ED) algorithm is following the 
principle of orthogonality. Orthogonality gave the idea that an 
autocorrelation matrix, containing noise subspace eigenvectors 
is orthogonal to the signal eigenvectors. By suppressing the 
eigenvectors with a large numerical value that represents the 
static tissues, the clarity vascular image is extracted, according 
to [8]. The procedure is in (2), (3): 

𝐸𝐸 ∧ 𝐸𝐸𝐻𝐻 = � 𝜆𝜆𝐵𝐵(𝑖𝑖)𝑒𝑒𝐵𝐵(𝑖𝑖)𝑒𝑒𝐵𝐵𝐻𝐻(𝑖𝑖)
𝑁𝑁

𝑖𝑖=1
 (2) 

where 𝐸𝐸 = [𝑒𝑒𝐵𝐵(1), 𝑒𝑒𝐵𝐵(2), … , 𝑒𝑒𝐵𝐵(𝑁𝑁)] is the 𝑁𝑁 × 𝑁𝑁 unitary 
matrix of eigenvectors, ∧= [𝜆𝜆𝐵𝐵(1), 𝜆𝜆𝐵𝐵(2), … , 𝜆𝜆𝐵𝐵(𝑁𝑁)] is the 
𝑁𝑁 × 𝑁𝑁 diagonal matrix of eigenvalues, and 𝐻𝐻 is the Hermitian 
transpose. The eigenvalues ∧ are sorted in descending order. 
By subtracting the first 𝑘𝑘𝑡𝑡ℎ eigenvectors which mainly are 
tissue signals, the extraction of the vessel signals 𝑋𝑋𝑣𝑣 under 𝐾𝐾-
repeat scans OCT signal 𝑋𝑋 can be written as (3): 

𝑋𝑋𝑣𝑣 = �𝐼𝐼 −� 𝑒𝑒𝐵𝐵(𝑖𝑖)𝑒𝑒𝐵𝐵𝐻𝐻(𝑖𝑖)
𝐾𝐾

𝑖𝑖=1
� 𝑋𝑋  (3) 

where 𝐼𝐼 is the identity matrix. 𝑒𝑒𝐵𝐵(𝑖𝑖) is the 1 × 𝑁𝑁 unitary 
matrix of eigenvectors. 

B. Single-Scan Vasculature Extraction Pipeline 
A schematic diagram of the single-scan vasculature 

extraction pipeline and neural network training pipeline is 
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shown in Fig. 1. In the training stage, the input of neural 
networks is generated based on the first repeat of multi-
repeated OCT signals. The high-quality vascular signal for 
neural network loss calculation is extracted by the all-repeated 
OCT signal with the ED-OCTA algorithm. In the test stage, 
the trained network utilizes the structural image generated 
based on the single-scan OCT signal and outputs the predicted 
vascular signal. The data preprocessing for neural network 
training, validation, and testing will be described in the 
following paragraph. 
 

 
Fig. 1. The vasculature extraction pipeline for single-scan OCT 

image, including the model training pipeline. In the training stage, the 
predicted vascular signal from the model is used to calculate the loss 

for the vasculature extraction model’s trainable weights updating. 

 
Fig. 2. The architecture of the proposed vasculature extraction transformer.

C. Vasculature Extraction Transformer 
Vasculature Extraction Transformer (VET) consists of three 

modules: shallow feature extraction, residual vasculature 
feature extraction (RVFE), and feature combination and 
output block, as shown in Fig. 2.  

Shallow feature extraction. The shallow feature extraction 
layer (𝑓𝑓𝑠𝑠) is composed of a 3 × 3 convolution layer (64 filters 
and strides 1) with a LeakyReLU activation layer. Given a 
single scan OCT signal (i.e., structural image) input 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with 
shape H × W × C, where H, W, and C are image height, width, 
and channel, respectively, and the processing of the shallow 
feature extraction layer can be written as: 

𝐹𝐹𝑠𝑠 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑓𝑓𝑠𝑠(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)� (4) 
where 𝐹𝐹𝑠𝑠 is the obtained shallow feature of the input structural 
image. According to [30], incorporating an early convolution 
layer in a transformer architecture model for visual processing 
can improve optimization stability and lead to improved 
results. 

Residual vasculature feature extraction. The residual 

vasculature feature extraction (RVFE) consists of four VFE 
layers (𝜙𝜙) and leverages a residual scaling parameter (β) to 
establish an identity connection between VFE layers and the 
reconstruction module, allowing the aggregation of different 
levels of features. The forward processing of a VFE layer and 
a residual connection in RVFE can be written as: 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐹𝐹𝑖𝑖𝑖𝑖 ∗ β + 𝜙𝜙(𝐹𝐹𝑖𝑖𝑖𝑖) (5) 
where 𝐹𝐹𝑖𝑖𝑖𝑖 is the input feature from the previous layer, and 
𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 is the output feature, residual scaling parameter β is set as 
0.4. The architecture of the VFE layer is illustrated in Fig. 2 
(a), while Fig. 2 (b) depicts the convolutional projection layer, 
inspired by [22]. To mitigate the computing cost of multi-head 
self-attention, in the VFE layer, we employ a 3 × 3 
convolution layer (𝑓𝑓𝑐𝑐1) with a stride of 2 that downsample the 
input feature (𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) shape from H × W × C to H/2 × W/2 × 
C.  

𝐹𝐹𝑐𝑐1 = 𝑓𝑓𝑐𝑐1(𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) (6) 
where 𝐹𝐹𝑐𝑐1 is the output downsampled features with shape H/2 
× W/2 × C, and 𝐹𝐹𝑐𝑐1 is then used as the input of the 
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convolutional projection layer. To ensure both training 
effectiveness and stability, we opt for a different approach 
than the squeezed convolutional projection layer used in [22]. 
Instead, we implement a 3 × 3 convolution projection layer 
(𝑓𝑓𝐶𝐶𝐶𝐶) to obtain query (Q), key (K), and value (V) sequences. 
This processing procedure (Fig. 2 (b)) can be formulated as: 

𝑄𝑄,𝐾𝐾,𝑉𝑉 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�𝑓𝑓𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝐹𝐹𝑐𝑐1) )� (7) 
where LN is the layer normalization layer, and output 𝑄𝑄,𝐾𝐾, 
and 𝑉𝑉 are then used as the input for multi-head self-attention 
(MSA). After Flatten processing, the shape of Q, K, and V 
sequences is (HW/4) × C, and each sequence is split with 
multi-head by reshaping from (HW/4) × C to M × (HW/4) × 
C/M, where M is the number of heads. The attention score of 
each head (M) is then computed using the self-attention 
mechanism as (8). We perform the attention function in 
parallel M times and concatenate the resulting scores to 
achieve multi-head self-attention. 

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 �
𝑄𝑄𝐾𝐾𝑇𝑇

√𝑑𝑑
� ∗ 𝑉𝑉 (8) 

where d is a rescale parameter with a numerical value of 
1/�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑄𝑄. After the multi-head self-attention operation, 
the shape of the feature map is (HW/4) × C. Then, a feed-
forward network (FFN) that consists of two fully-connected 
layers with a GELU non-linearity activation layer between 
them is used for feature transformations. A 2D reshape layer is 
used to reshape the output of FFN from (HW/4) × C to H/2 × 
W/2 × C. Finally, a 3 × 3 transpose convolution layer (𝑓𝑓𝑡𝑡𝑡𝑡1) 
with a stride of 2 is used to upscale the shape of the feature 
map from H/2 × W/2 × C to H × W × C. Generally, the whole 
process of a VFE layer is formulated as (9) and (10): 

𝑌𝑌 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑓𝑓𝑐𝑐1(𝑋𝑋))) + 𝑓𝑓𝑐𝑐1(𝑋𝑋) (9) 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑓𝑓𝑡𝑡𝑡𝑡1(𝐹𝐹𝐹𝐹𝐹𝐹(𝐿𝐿𝐿𝐿(𝑌𝑌)) + 𝑌𝑌) (10) 

 
Fig. 3. The schematic of the lab-built swept-source optical coherence tomography system. The Laser wavelength is 1310 nm with 100nm 

bandwidth. The A-scan swept rate is 200 kHz. The flexible hand-held scan probe (sample lens) is demonstrated in the right figure.

    Reconstruction module. We reconstruct the vascular signal 
by aggregating the shallow features (𝐹𝐹𝑠𝑠) from shallow feature 
extraction module and deep features (𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) from residual 
vasculature feature extraction module: 

𝐼𝐼𝑉𝑉 = 𝐻𝐻𝑅𝑅(𝐹𝐹𝑠𝑠 + 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) (11) 
where 𝐼𝐼𝑉𝑉 is the reconstructed vascular signal, and 𝐻𝐻𝑅𝑅 is the 

reconstruction module as depicted in Fig. 2. Shallow features 
primarily contain low-frequency details, whereas deep features 
concentrate on recovering lost high-frequency vascular 
signals. To enhance the ability of feature integration and 
increase the non-linearity of VET, a convolution layer with a 
ReLU activation layer is used to combine low-frequency and 
high-frequency details extracted from the shallow feature 
extraction module and RVFE module, respectively. Besides, a 
convolution layer with a filter size of 1 is used as the output 
layer of VET to output the reconstructed vascular signal. 
Notably, VET utilizes a global skip connection from the 
shallow feature extraction module to transmit low-frequency 
information directly to the reconstruction module. This 
enables the deep feature extraction module to focus on high-
frequency information and stabilize training [26]. 

III. EXPERIMENT SETUP 

A. Data Acquisition and Pre-Processing 
A lab-built 200 kHz swept rate swept-source (SS)OCT scan 
system was utilized to non-invasively collect the OCT data 
with a hand-held probe, as demonstrated in Fig. 3. More 
details of the SSOCT system were demonstrated in [31]. The 
data collection of the volunteers was approved by the School 
of Science and Engineering Research Ethics Committee of 
University of Dundee, which also conformed to the tenets of 
the Declaration of Helsinki. All participants had to give their 
informed consent before entering the lab for the data 
collection, and the data collected in this article obtained the 
informed consent of the participants. To develop a 
comprehensive assessment of the proposed VET, the scan 
positions were palm and arm (representative ‘thick’ skin), and 
face, lip, and neck (representative ‘thin’ skin) taken from 26 
subjects ages between 20 and 35 years old. Among them, 22 
subjects are healthy and none of them have any disease 
condition, 3 subjects have lip ulcers, and 1 subject has face 
acne.  

In terms of imaging protocol for data acquisition, one 
OCTA scan can acquire data with a pixel size of NR × 600 × 
600 × 300 (NR × x × y × z). Here, NR refers to the number of 
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repeated scans, while x and y represent the transverse axis, 
and z represents the axial axis. During the OCTA data 
acquisition for healthy subjects, 12 repeated scans were 
performed for the palm and arm area, and 6 for the face, neck, 
and lip areas. Regarding the subjects with lip ulcers or face 
acne, the repetition of the OCT scan is set as 8. Each repeated 
scan took approximately 1.8 seconds. The spatial interval in 
the transverse axis is ~8.6 µm/pixel and ~ 7.4 µm/pixel in the 
axial axis. After manually removing the low-quality and high-
motion artifacts data, we finally collected a total of 42 OCT 
raw data (14 palm, 5 face, 4 neck, 2 arm, 13 lip, and 3 lip with 
ulcers, and 1 face with acne). 21 raw data (9 palm, 2 face, 2 
neck, 1 arm, and 7 lip) were randomly selected to generate 
train datasets. 6 raw data (2 palm, 1 face, 1 neck, and 2 lip) 
were for validation. In terms of the test set, the remaining 11 
raw data from healthy subjects (3 palm, 2 face, 1 neck, 1 arm, 
and 4 lip) were used to generate a healthy test set. 3 raw data 
with lip ulcers and 1 raw data with face acne were used as a 
disease test set. The training dataset was used to train models 
in this study, while validation sets were used to monitor the 
model training and prevent overfitting. The separated test set 
was used to evaluate the performance of the trained models, 
preventing data leakage.  

The flowchart for dataset pre-processing is shown in Fig. 4. 
To better describe the data pre-processing, we define that one 
OCT raw data consists of NR volumes, and each volume has a 
size of 1 × 600 × 600 × 300 (1 × x × y × z), where NR is the 
number of repeated OCT scans. Firstly, all NR volumes are 
processed by frame-to-frame registration based on the fast 
Fourier transform (FFT), and then an FFT-based per A-lines 
alignment is used to reduce the motion artifacts [32], [33]. The 
ground-truth high-quality OCTA images are generated by 
using all NR volumes with ED-OCTA algorithms mentioned 
in (3). Since the ED-OCTA has an outstanding performance in 
suppressing static tissue while preserving vascular signals 
[34]. The input skin structural images for neural networks are 
then generated by using only one OCT volume. The baseline 
OCTA images are obtained by SV-OCTA and ED-OCTA 
algorithms with the first four OCT volumes. Since the four-
repeated OCTA scans are most frequently used in clinical 
setups, based on the consideration of imaging acquisition 
efficiency. 

Fig. 4. Flow chart of the scanning and processing strategy to create 
ground-truth OCTA results using twelve-repeated scans, baseline 

OCTA results using four-repeated scans, and the strategy to obtain 
input structural images based on a single OCT scan. The frame-to-
frame registration consists of fast Fourier transfer (FFT) to obtain 

structural volume and FFT-based per A-lines alignment (V-1 is used 
as reference) to reduce the motion artifacts. 

After the data pre-processing for all 42 OCT raw data (21 
for training, 6 for validation, and 15 for testing), 25200 B-
frames were extracted (42 × 600 frames/data). An image crop 
box with a size of 192 × 192 is then used to extract image 
patches from each B-frame image. Finally, a total of 75600 
pairs of images are generated for the ground-truth, baseline, 
and input datasets. Among them, 37800 images (from 21 raw 
data) are used as training datasets for neural network training, 
and 10800 images (from 6 raw data) are used as the validation 
set. The remaining 19800 images (from 11 health raw data) 
are selected as the healthy test set, and 7200 images (from 3 
lip ulcers raw data and 1 face acne raw data) are selected as 
the disease test set.  

B. Implementation Details 
The VET is trained based on TensorFlow 2.9.0. To enhance 

data diversity during the training phase, data augmentation 
techniques such as flipping and rotations were employed, 
contributing to the improved generalization of the trained 
model and mitigating overfitting. The filter size for all 
convolution layers in the VET is set to 64, with the exception 
of the final output convolution layer. Within the feed-forward 
network, the first fully-connected layer comprises 256 hidden 
units, while the second fully-connected layer contains 64 
units. All other aspects of the VET implementation remain 
consistent with the methodology described in the 
corresponding section.  

The VET model was optimized using an Adam optimizer 
[35] (with a 0.0001 learning rate, 0.8 for beta1, and 0.999 for 
beta2) on an Nvidia A100 with 40GB memory. The training 
process utilized a batch size of 4 and ran for 200 epochs, using 
mean-square-error (MSE) as the loss function because it can 
provide a better performance and training stability over the 
mean-absolute-error loss function in this study. 

C. Comparison with the Networks 
    To assess the performance of our proposed VET model 

for vasculature extraction, we conducted a comparative 
analysis of the image quality between OCTA images extracted 
using various neural networks, including DnCNN [36], U-Net 
[37], SRGAN [38], ESRGAN [39], TransUNet [40], SwinIR 
[26], Swin-UNet [27], UFormer [41], Restormer [42], and 
Lightweight U-shape Swin-Transformer (LUSwin-T) [43]. 
The image quality evaluation of the OCTA images was 
performed both quantitatively and qualitatively. Additionally, 
we provide the total number of parameters and floating-point 
operations (based on a 192 × 192 image size). 

Notably, SRGAN and ESRGAN were originally designed 
for natural image super-resolution; therefore, we removed the 
upsample layers from these two networks. To minimize the 
influence of network training specifics, we maintained the 
implementation details for DnCNN, SRGAN, ESRGAN, 
SwinIR, UFormer, Restormer and LUSwin-T as per the 
published sources. As for U-Net, TransUNet, and Swin-UNet, 
which were initially developed for image segmentation, we 
utilized the mean squared error (MSE) loss function with 
supervised training (i.e., the same as the VET implementation 
details). Regarding the optimizer, epochs, batch size, and data 
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augmentation, all compared networks follow the same 
configuration as described in Section III.B. 

D. Ablation Study Setup 
To investigate the reconstruction performance of the 

proposed VET under different settings of the model, we 
further performed an ablation study in terms of head number, 
the number of VFE layers in RVFE, and the filter size of all 
convolution layers. The details setup of different parameters 
are depicted in Table 1, and the setups with the underline are 
the control group, which has the same implementation details 
as this study proposed.  

Table 1. Experiment setup for the ablation study 

Study Parameter Setup 
VFE Layer 2 4 6 8 
Heads 2 4 8 16 
Filter Size 32 48 64 80 
 
E. Evaluation Metrics 

To conduct a quantitative performance comparison of 
various methods, including SV-OCTA, ED-OCTA, and deep-
learning-based methods, this study utilized peak-signal-to-
noise ratio (PSNR), structural similarity (SSIM) [44] and 
multi-scale (MS)-SSIM [45] as objective evaluation metrics.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 20𝑙𝑙𝑙𝑙𝑙𝑙10(
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
√𝑀𝑀𝑀𝑀𝑀𝑀

) (12) 

The mean-square-error, also called MSE, is defined as below: 

MSE =
1
𝑀𝑀𝑀𝑀

� � (𝐼𝐼𝐺𝐺𝐺𝐺(𝑚𝑚,𝑛𝑛) − 𝐼𝐼𝑅𝑅(𝑚𝑚,𝑛𝑛))2
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 (13) 

where 𝐼𝐼𝐺𝐺𝐺𝐺 and 𝐼𝐼𝑅𝑅 are the ground truth and the reconstructed 
OCTA images, respectively. The term 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 is set as 1 in this 
evaluation, which refers to the maximum value in the image. 
The SSIM evaluates image quality in terms of structural 
similarity. A Higher SSIM shows a better structural similarity 
of model outputs to ground-based real-world data.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
(2𝜇𝜇𝐺𝐺𝐺𝐺𝜇𝜇𝑅𝑅 + 𝑘𝑘1)(2𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑘𝑘2)

(𝜇𝜇2𝐺𝐺𝐺𝐺 + 𝜇𝜇2𝑅𝑅 + 𝑘𝑘1)(𝜎𝜎2𝐺𝐺𝐺𝐺 + 𝜎𝜎2𝑅𝑅 + 𝑘𝑘2)
 (14) 

Here, 𝜇𝜇𝐺𝐺𝐺𝐺 and (𝜎𝜎𝐺𝐺𝐺𝐺) and 𝜇𝜇𝑅𝑅 and (𝜎𝜎𝑅𝑅) are the mean 
(variance) of the underlying truth and the output image using a 
different strategy, respectively; 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 shows the covariance 
between these two data. 𝑘𝑘1 and 𝑘𝑘2 are used to stabilize the 
division with a weak denominator.  

Additionally, to offer a more comprehensive analysis of the 
vasculature extraction performance, we utilized enface OCTA 
images generated using the maximum intensity projection 
(MIP) for visual comparison. These enface OCTA images 
were compared against a baseline image (Fig. 4 purple blocks) 
to assess the performance of the methods in terms of vascular 
connectivity and vasculature extraction. This visual evaluation 
approach provided an additional perspective to complement 
the quantitative analysis, allowing for a more nuanced and 
accurate assessment of the extraction methods.  

IV. RESULTS 
After training all of the networks including the proposed 

VET model and compared-used networks, we then applied 
them to extract vascular signals from a set of test data. The 
quantitative comparison is based on the cross-sectional images 

from the healthy test set and the disease test set, and the visual 
comparison is based on the enface OCTA images generated by 
different methods. In this section, we discuss the advantages 
of using neural networks for single-scan OCTA image 
generation. 

A. Quantitative Comparison between Various Methods 
Table 2 demonstrates a quantitative comparison of different 

methods, with all methods improving the image quality of 
single-repeated structural OCT images in terms of PSNR, 
SSIM, and MS-SSIM performance. The ED-OCTA method 
with four repetitions achieves the best performance in terms of 
SSIM (0.465) and MS-SSIM (0.702) in the healthy test set. 
Among the results from the various methods, VET has the 
highest PSNR performance in the healthy test set (18.03) and 
disease test set (17.42), while the FLOPs is the fourth smallest 
(27.57G). In terms of the SSIM performance, Restormer has 
the best performance in the healthy test set (0.340), and Swin-
UNet has the highest results in the disease test set (0.220). 
Regarding the MS-SSIM, Restormer has the best performance 
in the health test set (0.592) and SwinIR is the best (0.525) in 
the disease test set. In the disease test set, the PSNR 
performance between the VET (17.42) and SwinIR (17.40) is 
similar while VET has relatively lower FLOPs (27.57G < 
103.5G). In the comparison between Restormer and VET, the 
Restormer has a better SSIM (0.340 > 0.328) than the VET in 
the healthy test set; however, the VET can provide a better 
SSIM (0.212 > 0.208) performance than Restormer in the 
disease test set, while the FLOPs is approximately 5 times 
smaller (27.57G < 142.7G). Besides, the SSIM and MS-SSIM 
performance among the Swin-UNet (0.220, 0.516), SwinIR 
(0.211, 0.525), Restormer (0.208, 0.516), UFormer (0.209, 
0.520), and VET (0.212, 0.519) are similar, and the difference 
between them is slight, while the Swin-UNet has the lowest 
FLOPs (16.12G) and VET is the second-lowest FLOPs 
(27.57G).   

B. Visual Comparison Result 
Visual results of vasculature extraction by the different 

methods in various positions, including palm, face (with acne), 
and lip (health and with ulcer), are demonstrated in this 
section. The visual comparison and quantitative comparison 
between the different methods are based on enface images 
generated by the maximum intensity projection method.  

Fig. 5 demonstrates the visual results based on the skin 
palm area. The result generated by ED-OCTA (C) has fewer 
micro-vasculature details, while the SV-OCTA (D) presents 
more micro-vasculature details. In terms of network 
performance, results from DnCNN (E), SRGAN (F), U-Net 
(H), and Trans-UNet (I) have good vascular connectivity, but 
none of them have an SSIM performance higher than 0.25, 
and PSNR higher than 13.0. The result from ESRGAN (G) has 
a poor vasculature extraction performance, based on the visual 
observations and quantitative results (i.e., lowest SSIM: 0.217, 
and lowest PSNR: 11.671). Among them, the results from 
Swin-UNet (K), Swin-IR (M), UFormer (L), Restormer (N), 
and VET (O) have a relatively better vascular connectivity and 
vessel contrast, based on visual observation. The results from 
the VET (O) have the best quantitative results (PSNR: 0.342; 
SSIM: 15.132). 
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Fig. 6 is a visual comparison based on the face area with 
acne. The acne area is marked with a red-dot-line box in the 
structural image (A), thereby the acne area contains fewer 
vasculature signals in the ground truth (B). In Fig. 6, the result 
generated by ED-OCTA (C) has fewer vasculature details than 
SV-OCTA (D). In the comparison between the neural network 
results, the SRGAN (F), ESRGAN (G), U-Net (H), and Swin-
UNet (K) have relatively poor vascular connectivity and 
vasculature details; furthermore, the boundary between the 
acne area and the nearby normal area is hard to classify based 
on visual observation. Among them, the results from DnCNN 
(E), Swin-IR (M), Restormer (N), and VET (O) have a clearer 
and relatively better vasculature extraction result in terms of 
visual observation. The VET (O) has the highest SSIM (0.251) 
and PSNR (12.399) in this face acne comparison group.   

Fig. 7 demonstrates the vasculature extraction results based 
on a normal lip subject, and Fig. 8 is a visual comparison of 
results based on lip ulcer. In Fig. 7, the motion artifact of 
ground-truth (B) is relatively higher than the results in Fig. 5. 
Those artifacts are presented as bright light artifacts in the 

results (e.g., red allows in Fig. 7 (B)). In this stage, the results 
from neural networks (i.e., (E)-(O)) perform a better 
vasculature extraction than ED-OCTA (i.e., (C)) while 
reducing the bright line artifacts, based on visual observations. 
Among them, the DnCNN (E), SRGAN (F), SwinIR (M), 
Restormer (N), and VET (O) can provide relatively more 
vasculature details and clearer enface OCTA images. The 
VET (O) has the highest SSIM (0.388) and the second-highest 
PSNR (13.228).  

In Fig. 8, the ulcer area is marked with a red dot box in the 
structural image (A), and the ground-truth (B) results show the 
site with fewer vasculature details. Expect the ESRGAN (G), 
the edge of the lip ulcer is clear in all neural network results. 
The results by SRGAN (F), ESRGAN (G), U-Net (H), 
LUSwin -T (J), and Swin-UNet (K) show relatively fewer 
vasculature details in the right bottom of the enface OCTA 
image. The results from SwinIR (M), Restormer (N), and VET 
(O) perform less noise, better vascular connectivity, and more 
vasculature details. The VET (O) has the highest SSIM 
(0.469), and SwinIR (M) has the highest PSNR (14.485). 

Table 2. Quantitative Comparison of the vasculature images (Mean ± Standard Deviation) Extracted by Different Methods (Bold means the 
highest numerical value among the neural network results. Params means the parameters of each network. R stands for repetitions of scan) 

METHODS PARAMS 
(M) 

FLOPS 
(G) R HEALTHY TEST SET DISEASE TEST SET 

PSNR SSIM MS-SSIM PSNR SSIM MS-SSIM 
Inputs N/A N/A 1 10.11±0.89 0.106±0.114 0.141±0.162 11.58±0.58 0.102±0.031 0.255±0.047 

SV-OCTA [15] N/A N/A 4 16.13±0.68 0.278±0.030 0.591±0.056 15.63±0.68 0.257±0.024 0.611±0.038 
ED-OCTA [16] N/A N/A 4 17.08±1.50 0.465±0.108 0.702±0.102 15.81±0.91 0.384±0.029 0.682±0.038 

DnCNN [36] 0.557 40.92 1 17.05±1.36 0.318±0.063 0.502±0.071 16.20±0.85 0.180±0.057 0.449±0.072 
SRGAN [38] 0.567 41.68 1 17.10±1.40 0.319±0.068 0.524±0.075 16.31±0.79 0.170±0.056 0.457±0.081 

ESRGAN [39] 3.506 258.5 1 17.45±0.87 0.318±0.062 0.505±0.065 16.78±0.73 0.179±0.055 0.451±0.072 
U-Net [37] 34.56 59.88 1 17.30±1.06 0.302±0.069 0.550±0.108 16.98±0.72 0.196±0.059 0.494±0.076 

TransUNet [40] 52.35 23.01 1 16.86±0.95 0.292±0.059 0.525±0.082 16.59±0.72 0.199±0.058 0.491±0.082 
LUSwin-T [43] 11.92 3.930 1 17.28±1.00 0.288±0.062 0.548±0.081 17.32±0.78 0.208±0.067 0.513±0.088 
Swin-UNet [27] 50.28 16.12 1 16.87±1.03 0.268±0.055 0.519±0.086 17.26±0.79 0.220±0.067 0.516±0.082 
UFormer [41] 24.38 38.89 1 17.64±1.12 0.321±0.063 0.576±0.075 17.10±0.79 0.209±0.064 0.520±0.084 
SwinIR [26] 1.739 103.5 1 17.83±1.05 0.328±0.058 0.587±0.079 17.40±0.73 0.211±0.062 0.525±0.078 

Restormer [42] 16.24 142.7 1 17.79±1.08 0.340±0.059 0.592±0.084 17.12±0.74 0.208±0.059 0.516±0.070 
VET (ours) 0.929 27.57 1 18.03±1.07 0.328±0.059 0.576±0.077 17.42±0.65 0.212±0.061 0.519±0.074 

Table 3. Quantitative Comparison of the Different VET Parameters Setup. (Bold means the highest numerical value among the neural network 
results. Params means the parameters of each network). 

ABLATION 
STUDY 

FILTER 
SIZE HEAD VFE 

LAYER 
PARAMS 

(M) 
FLOPS 

(G) 
HEALTHY TEST SET DISEASE TEST SET 

PSNR SSIM MS-SSIM PSNR SSIM MS-SSIM 

VFE Layer 64 4 

2 0.485 15.28 17.46±1.13 0.314±0.057 0.518±0.091 17.07±0.63 0.186±0.059 0.478±0.076 
4 0.929 27.57 18.03±1.07 0.328±0.059 0.576±0.077 17.42±0.65 0.212±0.061 0.519±0.074 
6 1.374 39.85 18.06±1.14 0.333±0.045 0.584±0.066 17.37±0.67 0.199±0.061 0.510±0.073 
8 1.818 52.13 18.11±1.43 0.339±0.062 0.594±0.085 17.25±0.68 0.194±0.060 0.515±0.073 

Heads 64 

2 

4 

0.929 23.49 18.01±1.31 0.336±0.062 0.569±0.101 17.12±0.63 0.191±0.059 0.492±0.074 
4 0.929 27.57 18.03±1.07 0.328±0.059 0.576±0.077 17.42±0.65 0.212±0.061 0.519±0.074 
8 0.929 35.72 17.90±1.15 0.303±0.049 0.572±0.083 17.35±0.64 0.196±0.059 0.503±0.073 
16 0.929 52.03 17.76±1.06 0.289±0.055 0.537±0.072 16.83±0.87 0.197±0.061 0.489±0.076 

Filter Size 

32 

4 4 

0.234 19.15 17.54±1.38 0.312±0.056 0.541±0.086 17.22±0.67 0.197±0.060 0.507±0.073 
48 0.524 22.23 17.65±1.07 0.317±0.057 0.553±0.098 17.35±0.66 0.186±0.060 0.493±0.074 
64 0.929 27.57 18.03±1.07 0.328±0.059 0.576±0.077 17.42±0.65 0.212±0.061 0.519±0.074 
80 1.450 44.00 18.04±1.18 0.329±0.056 0.576±0.075 17.38±0.69 0.201±0.062 0.513±0.074 
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Fig. 5. Visual comparison of the hand-held skin palm area. (A) to (O) are enface OCTA images of Input structural image (A), Ground-truth (B), ED-OCTA with 
four-repeated scan (C), SV-OCTA with four-repeated scan (D), DnCNN (E), SRGAN (F), ESRGAN (G), UNet (H), TransUNet (I), LUSwin-T (J), Swin-UNet 

(K), UFormer (L), SwinIR (M), Restormer (N), and VET (O). The white scale bar is 1 mm. 
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(SSIM: 1.00; PSNR: Inf)
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(D) SV-OCTA (4 Repe��ons)
(SSIM: 0.340; PSNR: 14.916)

(E) DnCNN
(SSIM: 0.250; PSNR: 12.933)

(F) SRGAN
(SSIM: 0.247; PSNR: 12.747)

(G) ESRGAN
(SSIM: 0.217; PSNR: 11.671)

(H) U-Net
(SSIM: 0.241; PSNR: 12.462)

(I) TransUNet
(SSIM: 0.243; PSNR: 12.540)

(J) LUSwin-T
(SSIM: 0.290; PSNR: 14.210)

(K) Swin-UNet
(SSIM: 0.298; PSNR: 13.248)

(L) UFormer
(SSIM: 0.301; PSNR: 14.608)

(M) SwinIR
(SSIM: 0.300; PSNR: 14.887)

(N) Restormer
(SSIM: 0.283; PSNR: 13.153)

(O) VET (ours)
(SSIM: 0.342; PSNR: 15.132)
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(SSIM: 0.433; PSNR: 16.911)

(E) DnCNN
(SSIM: 0.212; PSNR: 11.781)

(F) SRGAN
(SSIM: 0.203; PSNR: 11.472)

(G) ESRGAN
(SSIM: 0.174; PSNR: 12.238)
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(SSIM: 0.176; PSNR: 10.933)

(I) TransUNet
(SSIM: 0.197; PSNR: 11.879)

(J) LUSwin-T
(SSIM: 0.213; PSNR: 10.164)

(K) Swin-UNet
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(L) UFormer
(SSIM: 0.231; PSNR: 11.849)

(M) SwinIR
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(N) Restormer
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(O) VET (ours)
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Fig. 6. Visual comparison of the hand-held skin face area with acne. (A) to (O) are enface OCTA images of Input structural image (A), Ground-truth (B), ED-
OCTA with four-repeated scan (C), SV-OCTA with four-repeated scan (D), DnCNN (E), SRGAN (F), ESRGAN (G), UNet (H), TransUNet (I), LUSwin-T (J), 

Swin-UNet (K), UFormer (L), SwinIR (M), Restormer (N), and VET (O). The white scale bar is 1 mm. 

 
Fig. 7. Visual Comparison of the healthy lip area. (A) to (O) are enface OCTA images of Input structural image (A), Ground-truth (B), ED-OCTA with four-

repeated scan (C), SV-OCTA with four-repeated scan (D), DnCNN (E), SRGAN (F), ESRGAN (G), UNet (H), TransUNet (I), LUSwin-T (J), Swin-UNet (K), 
UFormer (L), SwinIR (M), Restormer (N), and VET (O). The white scale bar is 1 mm. Red allows are used to point out the bright light artifact area.  

1mm

(A) Input - Structural Image
(SSIM: 0.001; PSNR: 6.416)

(B) Ground-Truth
(SSIM: 1.00; PSNR: Inf)

(C) ED-OCTA (4 repe��ons)
(SSIM: 0.623; PSNR: 16.545)

(D) SV-OCTA (4 repe��ons)
(SSIM: 0.406; PSNR: 13.893)

(E) DnCNN
(SSIM: 0.351; PSNR: 13.001)

(F) SRGAN
(SSIM: 0.361; PSNR: 13.094)

(G) ESRGAN
(SSIM: 0.231; PSNR: 10.225)

(H) U-Net
(SSIM: 0.286; PSNR: 11.785)

(I) TransUNet
(SSIM: 0.360; PSNR: 14.561)

(J) LUSwin-T
(SSIM: 0.328; PSNR: 12.040)

(K) Swin-UNet
(SSIM: 0.338; PSNR: 13.224)

(L) UFormer
(SSIM: 0.346; PSNR: 11.945)

(M) SwinIR
(SSIM: 0.343; PSNR: 12.362)

(N) Restormer
(SSIM: 0.330; PSNR: 11.603)

(O) VET (ours)
(SSIM: 0.388; PSNR: 13.228)
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Fig. 8. Visual Comparison of the lip with ulcer area. (A) to (O) are enface OCTA images of Input structural image (A), Ground-truth (B), ED-OCTA with four-
repeated scan (C), SV-OCTA with four-repeated scan (D), DnCNN (E), SRGAN (F), ESRGAN (G), UNet (H), TransUNet (I), LUSwin-T (J), Swin-UNet (K), 

UFormer (L), SwinIR (M), Restormer (N), and VET (O). The white scale bar is 1 mm. 
C. Ablation Study 

Table 3 shows the quantitative results of the ablation study 
based on the VET. In the healthy test set, the study shows that 
the more VFE layers used in the VET model, the higher the 
performance of the VET model (PSNR from 17.46 to 18.11, 
and SSIM from 0.314 to 0.339). Furthermore, the performance 
of VET is proportional to the filter sizes (PSNR from 17.54 to 
18.04, and SSIM from 0.312 to 0.329). Regarding the 
influence of head number, compared with the control group 
that has a head number of 4, the smaller or higher the 
numerical value of the head will decrease the performance of 
VET. Distinct from the results in the healthy test, in the 
disease test set, the increase of the VFE layer and filter size 
will decrease the performance in terms of PSNR (VFE layer: 
from 17.42 to 17.25; Filter Size: from 17.42 to 17.38) and 
SSIM (VFE layer: from 0.212 to 0.194; Filter Size: from 
0.0.212 to 0.201). The proposed control group has the best 
PSNR (17.42) and SSIM (0.212) performance in the disease 
test set while maintaining relatively low FLOPs (27.57G).  

V. DISCUSSION 
In this study, we present a fast end-to-end vasculature 

extraction pipeline based on a single in-vivo skin OCT scan 
that requires only ~2 s for data acquisition. Our pipeline 
employs a novel vasculature extraction transformer (VET), 
which provides moderate quality OCTA images with a single 
OCT scan, as opposed to conventional OCTA algorithms like 
ED-OCTA and SV-OCTA that necessitate at least two-

repeated scans. With the proposed single-scan OCTA pipeline, 
real-time OCTA imaging is available by utilizing the trained 
VET to extract vascular signals from each single-scan OCT 
structure signal. Furthermore, the single-scan OCTA pipeline 
is faster than the ED-OCTA algorithm since it does not require 
eigen decomposition calculations and can be directly 
processed on the graphics processing unit (GPU). Notably, the 
VET utilizes convolutional projection to generate query, key, 
and value sequences for multi-head self-attention 
computations, preserving spatial relationships between image 
patches better than fully connected layers used in Trans-UNet, 
SwinIR, and Swin-UNet. The results exhibit that our proposed 
pipeline has significant potential for clinical applications, as it 
reduces motion artifacts and accelerates imaging speed by 
reducing the repeated scan of OCTA imaging.  

Table 2 demonstrates a quantitative comparison of different 
methods. Compared with ED-OCTA with four-repeated scans, 
the VET model can provide a higher PSNR performance 
(18.03 > 17.08), but the SSIM (0.328 < 0.465) and MS-SSIM 
(0.576 < 0.702) results are lower than ED-OCTA. Among 
deep learning-based approaches, our VET model strikes a 
balance between the number of network parameters (0.929M), 
FLOPs (26.57G), and performance metrics (PSNR: 18.03 in 
healthy test set, and 17.42 in disease test set). Although 
Restormer has the highest SSIM (0.340) and the highest MS-
SSIM (0.592), Restormer has high FLOPs (142.7G), compared 
with the models used in this study. In the disease test set, 
mostly transformer-based models (i.e., LUSwin-T, Swin-
UNet, UFormer, SwinIR, Restormer, and VET) outperform 

1mm

(A) Input - Structural Image
(SSIM: 0.019; PSNR: 6.791)

(B) Ground-Truth
(SSIM: 1.00; PSNR: Inf)

(C) ED-OCTA (4 Repe��ons)
(SSIM: 0.695; PSNR: 19.950)

(D) SV-OCTA (4 Repe��ons)
(SSIM: 0.651; PSNR: 19.219)

(E) DnCNN
(SSIM: 0.341; PSNR: 12.953)

(F) SRGAN
(SSIM: 0.361; PSNR: 13.823)

(G) ESRGAN
(SSIM: 0.228; PSNR: 12.395)

(H) U-Net
(SSIM: 0.274; PSNR: 13.466)

(I) TransUNet
(SSIM: 0.354; PSNR: 13.768)

(J) LUSwin-T
(SSIM: 0.350; PSNR: 13.359)

(K) Swin-UNet
(SSIM: 0.308; PSNR: 13.823)

(L) UFormer
(SSIM: 0.364; PSNR: 14.074)

(M) SwinIR
(SSIM: 0.418; PSNR: 14.485)

(N) Restormer
(SSIM: 0.368; PSNR: 14.074)

(O) VET (ours)
(SSIM: 0.469; PSNR: 14.131)

Lip Ulcer Area
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CNN-based models (i.e., DnCNN, SRGAN, ESRGAN, U-
Net) in terms of PSNR, SSIM, and MS-SSIM metrics. 
Regarding network architecture, end-to-end architectures (e.g., 
SwinIR, VET) achieve relativity higher PSNR performance 
than encoder-decoder architectures (e.g., Swin-UNet, 
UFormer). Nevertheless, transformer-type models with 
encoder-decoder architectures offer smaller FLOPs.  

Visual inspection of Fig. 5 reveals that most transformer-
type models (i.e., Swin-UNet, UFormer, SwinIR, Restormer, 
and VET) can correctly extract the vasculature signals from 
the single-scan OCT signals, and provide good vasculature 
details and vascular connectivity. Compared to ground truth 
which was generated by twelve repetitions of scan, VET has 
the highest SSIM (0.342) and PSNR (15.132) performance. 
Fig. 6 presents vasculature extraction performance based on an 
abnormal face acne area. In the results generated by SwinIR, 
Restormer, and VET, the boundary between the acne and the 
normal area is clear to classify based on visual observation. In 
this stage, the trained model is proof that can classify 
abnormal areas.  

Fig. 7 and Fig. 8 present vasculature extraction results based 
on normal lip and lip ulcer areas. In Fig. 7, results from the 
networks exhibit fewer motion artifacts than the ground-truth, 
which uses six-repeated OCT scans, as motion artifacts due to 
the scanning probe and participants lead to low-quality OCTA 
images. Moreover, the results from SwinIR, UFormer, and 
VET show better vasculature extraction and connectivity than 
the ground truth, based on visual performance. In Fig. 8, 
except for the ESRGAN, all results from neural networks 
provide a clear boundary of the lip ulcer area. Among the 
neural networks, UFormer, SwinIR, Restormer, and VET can 
provide relatively more vasculature details (e.g., in the right-
bottom of enface OCTA images). Besides, VET has the 
highest SSIM (0.469) and PSNR (14.131), compared to 
ground truth.  

Our study has limitations. First, the performance of the 
proposed VET model may be impacted when using OCT data 
from additional diseased subjects, as our training data is from 
healthy participants. In the future, we plan to collect skin 
OCTA data from participants with various skin conditions and 
investigate the vasculature extraction pipeline for both healthy 
and diseased OCT data. Second, we did not apply adversarial 
training (e.g., generative adversarial network (GAN) [46]) to 
the VET model training, as it is challenging and can lead to 
unstable training. We aim to further explore adversarial 
training for the VET model using conditional GAN [47] and 
relativistic average (Ra)-GAN [48] to enhance vasculature 
extraction performance. Thirdly, based on the visual result 
comparison in this study, all neural network results struggle 
with micro-vasculature extraction when compared to high-
quality ground truth images. In the future, we aim to develop a 
new architecture that can better extract micro-vasculature 
features by combining the advantages of local convolution 
layer and global attention mechanisms.  

VI. CONCLUSION 
In this study, we propose an end-to-end vasculature 

extraction pipeline and VET model that only uses a single 
OCT scan, demonstrating promising results for clinical 

applications. The VET model outperforms other deep-learning 
approaches in terms of efficiency (FLOPs: 27.57G) and 
performance metrics (PSNR: 18.03 in the healthy set, and 
17.42 in the disease set). Despite the limitations in this study, 
our findings indicate that the proposed pipeline significantly 
reduces data acquisition time by 75%, while providing similar 
high-quality OCTA images compared to those obtained by the 
conventional ED-OCTA algorithm with four-repeated OCT 
scans. This makes it a valuable tool for fast skin OCTA 
imaging in clinical settings. In terms of network generalization 
and robustness, the VET consistently performs stable 
vasculature extraction across different positions (e.g., face, 
and lip) with varying conditions. In future work, we plan to 
introduce this fast OCTA scan pipeline to retinal scans, aiming 
to achieve high-quality OCTA imaging with minimal motion 
artifacts and rapid acquisition.  
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