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Toward Impedance Control in Human–Machine
Interfaces for Upper-Limb Prostheses

Laura Ferrante , Mohan Sridharan , Claudio Zito , and Dario Farina , Fellow, IEEE

Abstract—Objectives: Adaptation of upper-limb impeda-
nce (stiffness, damping, inertia) is crucial for humans
to physically interact with the external environment dur-
ing grasping and manipulation tasks. Here, we present a
novel framework for Adaptive Impedance Control of Upper-
limb Prosthesis (AIC-UP) based on surface electromyogra-
phy (sEMG) signals. Methods: AIC-UP uses muscle-tendon
models driven by sEMG signals from agonist-antagonist
muscle groups to estimate the human motor intent as joint
kinematics, stiffness and damping. These estimates are
used to implement a variable impedance controller on a
simulated robot. Designed for use by amputees, joint torque
or stiffness measurements are not used for model calibra-
tion. AIC-UP was evaluated with eight able-bodied subjects
and a transradial amputee performing target-reaching tasks
in simulation through wrist flexion-extension. The control
performance was tested in free space and in the presence
of unexpected perturbations. Results: We show that AIC-UP
outperformed a neural network that regresses the desired
kinematics from sEMG signals, in terms of robustness to
muscle coactivations needed to complete the task. These
results were in agreement with the qualitative feedback
from the participants. Additionally, we observed that AIC-
UP enables the user to adapt the stiffness and damping to
the tasks at hand.

Index Terms—Myocontrol, impedance control, human
motor intent, muscle-skeleton models, prostheses.

I. INTRODUCTION

HUMANS use coactivation of agonist-antagonist muscles
to modulate the limb impedance in a time- and task-

dependent manner, independently from the limb kinematics [1].
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Estimation of the motor intent in terms of joint kinematics
and impedance would therefore be relevant when substituting
missing limbs with artificial ones. However, enabling a user to
voluntarily control the impedance of even just a single Degree
of Freedom (DoF) of an upper-limb prosthesis is still an open
problem. Our work aims to enable variable impedance control of
upper-limb prostheses; we describe a framework that comprises
simplified muscle-tendon models to extract three degrees of
control (kinematics, stiffness, and damping) for a single DoF
using low-density surface electromyographic (sEMG) signals,
in the absence of a reference joint torque and stiffness. Here,
we first review methods that use low-density sEMG signals to
control a (simulated) prosthesis, including methods that estimate
the motor intent only as kinematics (Section I-A), and those
that also estimate and use the joint impedance parameters in the
controllers (Section I-B). We then describe our contributions
(Section I-C).

A. Estimation of Motor Intent as Kinematics

Many methods have been developed to learn a mapping from
sEMG signals to target kinematics (i.e., joint kinematics or mo-
tion classes). These include pattern-recognition methods [2], [3],
regression-based [4], [5], [6], and unsupervised ones [6], [7], [8].
In recent times, deep learning methods are increasingly being
used to extract sEMG features and learn complex non-linear
mapping between sEMG signals and target kinematics [4], [9],
[10], [11], [12], [13], [14]. However, the robustness of these
methods has not been tested during control tasks that require
substantial changes in the coactivation of muscles (i.e., limb
impedance), making it unclear whether the control performance
of the algorithms deteriorates in these tasks. In addition to
data-driven approaches, progresses in musculoskeletal mod-
elling have provided physiologically accurate kinematics and
motion dynamics predictions. Muscle-tendon models (MTUs)
are used to estimate muscle-tendon forces, and predict the body
kinematics and dynamics of motion given the input sEMG
signals. The complexity of such simulations, determined by the
number of MTUs and the approach used to model MTUs, is a
trade-off between physiological accuracy in the predictions [15],
[16], [17] and computational cost [18], [19], [20]. This is crucial
in applications that have real-time constraints, such as prosthesis
control. Moreover, the inability to measure physiological param-
eters (e.g., moment arms) needed for model identification, makes
complex MTUs-based simulations impractical when muscles
may be (partly) missing. Lumped muscle-tendon models have
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been introduced to limit the modelling complexity by reducing
the number of MTUs and thus the number of sEMG recording
sites [21], [22], [23]. In these methods, muscles with the same
functionality (e.g., agonist muscles) are modelled as a single
MTU. As a result, the actuation of a DoF can be simplified
to only two MTUs. In addition to evaluating these methods in
simple motions in free space, recent studies have explored the
robustness of lumped MTUs to different arm loadings [24] and
postures [25] for able-bodied subjects. Preliminary results on
the offline prediction of kinematics during 3-DoF motion have
also been presented in [26] for an able-bodied subject. While
promising for prosthesis control applications, these methods do
not compute and use information about the muscle and joint
impedance available from MTUs models.

Our approach makes use of lumped muscle-tendon models.
However, in a departure from existing work, we define an
optimization framework for training such models to estimate
the user motor intent in terms of joint kinematics, stiffness, and
damping without using a reference joint torque or stiffness.

B. Impedance Control of Upper-Limb Prostheses

Given the association between cocontraction of ago-
nist/antagonist muscles and joint impedance [1], a signal defin-
ing the level of coactivation of agonist and antagonist muscles
is typically used in control schemes that attempt to adapt the
stiffness of the prosthesis. The coactivation index, also defined
as stiffness index, is computed as the weighted sum of the
amplitude of processed sEMG signals from agonist and an-
tagonist muscles [27]. Difficulties in discriminating changes
in sEMG signals associated with changes in joint position
or joint stiffness were avoided by using sEMG signals from
different muscle groups (chest and upper-limb) [28]. In [29],
a cocontraction index and a task-specific threshold on muscle
coactivation were used to limit the sensitivity of velocity-based
proportional control to variations in muscles coactivation and
enable an amputee to simultaneously control the velocity and
stiffness of one DoF by only using a pair of sEMG sensors.
Moreover, it was shown that the amputee preferred variable
stiffness control to a fixed-gain high-stiffness controller. Other
methods used reference joint torques and kinematics to learn
a model of joint stiffness and damping (polynomial function of
sEMG signals) [30], [31]. While these models have been used to
implement an admittance filter to estimate the DoF kinematics
from joint torque [31], the estimated stiffness and damping were
not employed to implement a variable impedance controller on
the robot.

Methods that use MTUs, do not estimate the joint stiffness
from the muscle-tendon model’s state and contraction dynamics;
typically, the joint stiffness is either computed as a weighted
sum of the amplitude of sEMG signals from agonist-antagonist
muscles, or as the weighted sum of the joint torque generated
by each muscle-tendon unit [32]. In [32], the stiffness index was
linearly mapped by calibration to the desired stiffness range (i.e.,
joint stiffness) according to the subject’s requirements, the type
of task, and the robotic system. Joint damping was set to vary
proportionally to the joint stiffness. The control performance

Fig. 1. (a) Overview of our framework AIC-UP. It comprises a Detection
of Human Motor Intent block which includes muscle-tendon models and
a Prosthesis Control block. The framework outputs the predicted joint
position qf , the joint stiffness K and damping D. The joint position
qf is used as an optimisation signal for training the muscle-tendon
units parameters and it is the visual feedback provided to the subject
during online control. (b) Arrangement of the MTUs on the link of the
“simulated robot model”. The “Robot plant” has the same structure and
dynamics of the “simulated robot”. (c) Forces generated by the MTU ’s
muscle (CE, PE) and tendon components (DE, SEE) respectively.

provided by the framework was evaluated with an able-bodied
subject on a knee exoskeleton. In the context of upper-limb
exoskeletons, a similar approach to stiffness estimation was
described in [33]. In [34], the joint stiffness and position of
a single DoF were estimated from a pair of sEMG signals
using two hyperbolic tangent models driven by the sum and
the difference of the amplitude of processed sEMG signals,
respectively.

Finally, there has been a limited evaluation of the control
performance provided by previous methods in relation to the
modulation of stiffness [28], [30], [31], [32], [34].

C. Contributions of This Work

We make the following contributions:
� We describe AIC-UP, an sEMG-based framework, that en-

ables the user to voluntarily adapt the kinematics, stiffness
and damping of one DoF of a simulated robot through
wrist flexion-extension. AIC-UP comprises a “Detection
of human motor intent” component (Fig. 1(a)) that incor-
porates lumped muscle-tendon models and a “Prosthesis
control” component to execute the estimated motor intent
through a simulated robotic system based on a variable
position-based impedance controller.

� The framework’s design is constrained by the application
domain. Unlike prior work (Section I-B), we assume
the impossibility of measuring joint torque and stiffness
trajectories to optimise the muscle-tendon models. This
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problem is tackled by enriching the dataset used to train
muscle-tendon models, designing a novel optimization
framework, and by imposing constraints on the parameter
space of muscle-tendon models.

We evaluated AIC-UP with eight able-bodied subjects during
reaching tasks performed in free space and in the presence of
unexpected external perturbations. A case study was also carried
out with a transradial amputee. AIC-UP was compared with a
baseline comprising a neural network trained to learn a mapping
from sEMG to joint kinematics without explicitly learning and
estimating the joint stiffness or damping.

II. METHODOLOGY

We first describe the two components of AIC-UP, highlighted
in Fig. 1(a) in pink and blue. Then, Section II-C provides a so-
lution to the ill-posed problem of estimating parameters’ values
of MTUs in the absence of a reference joint torque and stiffness.
As controlled robotic system, we simulate the model of the
Puma 560 robot because its characteristics are well-understood;
we consider the chain from link 0 to link 2 and control joint
2. The simulation is implemented using CoppeliaSim [35] and
MATLAB [36]. For simplicity, the time dependence of variables
is dropped below.

A. Detection of Human Motor Intent

The first component of AIC-UP maps the preprocessed sEMG
signals of the agonist and antagonist muscles (ch1, ch2) to an
estimate of the user’s motion intent as joint kinematics, stiffness
and damping (sr, K, D) in two phases detailed below.

1) Phase 1 - Muscle-Tendon Contraction Dynamics:
Two lumped MTUs were used to model the macroscopic prop-
erties of agonist and antagonist muscles, based on the Hill’s
muscle-tendon model [37]. Specifically, we adopted the model
structure discussed in [38], where it was shown how the se-
rial damping element (DE) enabled the suppression of high-
frequency oscillations within the model. Each MTUi of length
liMTU was composed of a muscle of length lice in series to a
tendon of length lise. The muscle was modeled by a contractile
element (CE) and a parallel elastic element (PE). The tendon
comprised an elastic element (SE) in parallel to DE, both added
in series to the muscle (Fig. 1(c)). Given chi, CE generated
a force F i

CE as a function of lice and contraction velocity l̇ice.
The contraction dynamics of both MTUs predicted the muscle-
tendon forces (F1, F2). The state of the MTUs (lce, l̇ce) at
the next time step was obtained at the end of phase 2 of the
framework component, since it also depended on the predicted
joint position qr of the “Simulated robot model”.

2) Phase 1 - Muscle-Tendon Stiffness and Damping:
Among the approaches detailed in Section I-B, in AIC-UP
the stiffness Ki and damping Di of each MTUi was esti-
mated from the MTUi state and then mapped to the simulated
robot’s joint space. Ki was modeled as the muscle stiffness
Ki

m in series with the tendon stiffness Ki
t , computed as Ki =

Ki
mKi

t/(K
i
m +Ki

t). Di was modelled as the muscle damping
in series with the tendon damping and computed in the same
way. We computed Ki

m as the directional derivative of Fm with

respect to unit vector of lice [39]:

Ki
m =

F i
m(lice, l̇

i
CE , chi)

lice
(1)

This formulation, differently from the stiffness index (Sec-
tion I-B), takes into account the state of the muscle (lice, l̇

i
ce, chi)

and it removes the contribution to stiffness due to changes in
muscle force due to changes in l̇ice and chi. Similarly, Ki

t was
computed as the directional derivative of F i

t = F i
se + F i

de with
respect to unit vector of lise = liMTC − lice. While muscle damp-
ing Di

m was not computed in [39], we obtained it as directional
derivatives of F i

m with respect to l̇ice unit vector as follows:

Di
m =

F i
m(lice, l̇

i
ce, chi)

l̇ice
(2)

The tendon damping Di
t was computed as directional deriva-

tive of F i
t with respect to the tendon extension velocity l̇ise =

l̇iMTU − l̇ice unit vector.
3) Phase 1 - Geometric Arrangement of MTUs on

Robot’s Link: Fig. 1(b) shows the geometric arrangement of the
MTUs on the simulated robot link. Each MTUi was virtually
attached to the link from the Center of Mass (CoM) (lib) to a
fixed base (lia). The length liMTU was dependent on qr. Given the
parameters αi and the initial joint position qr = 0, we computed
lia as liMTU sinαi. The values of lia and lib were constant and
identified based on the position of CoM and the initial length of
the MTUs. The MTUs length liMTU (qr) and moment arm ri(qr)
varied as function of qr:

liMTU (qr) =
√

(lia)
2 + (lib)

2 − 2lial
i
b cos (π/2− qr) (3)

Next, the muscle-tendon forces, stiffness, and damping were
mapped to joint space quantities using the Jacobian matrix

R(qr) = [r1(qr) r
2(qr)]

T = [
l1MTU (qr)

qr

l2MTU (qr)

qr
]T containing

the moment arms ri of the two MTUs:

ri(qr) =
liMTU (qr)

qr
= lib sinα

i(qr)

with αi(qr) = acos

(−(lia)
2 + (lib)

2 + (liMTU)
2

2liMTUl
i
b

)
(4)

4) Phase 1 - Mapping From Muscle Space to Joint
Space: The net torque generated by applying the MTUs forces
F1 and F2 with moment arms R was computed as τr =
[F1, F2]

TR. Considering the definition of τr and the dependency
of R on qr [40], we computed K as follows:

K =
τr(qr)

qr
=

RT

qr
[F1, F2]

T +RT diag

([
F1

qr
,
F2

qr

])
R

(5)
Where the derivatives Fi

qr
is the stiffness of MTUi. The joint

damping was computed as D =
∑2

i=1(Di(r
i)2).

5) Phase 2 - Forward Dynamics: At this stage, the human
motor intent is represented by the joint torque τr, joint stiffness
K, and damping D. The torque τr was applied at the robot’s
joint using its forward dynamic model, to obtain the reference
motion sr = (qr, q̇r, q̈r)needed to implement the position-based
impedance controller discussed below.
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B. Prosthesis Control

A position-based variable impedance controller was used to
track sr with K and D. The dynamic model for a robot with one
rotational joint is:

Mq̈r + g(qr) = τf + τext (6)

where M is the link’s joint space inertia, g is the gravity
compensation torque, and τext is the external perturbation on
the robot joint. We built on the impedance control method used
in the absence of force-torque readings [41] to define the control
law as follows:

τf = Mq̈r +K(qr − qf ) +D(q̇r − q̇f ) + g(qr) (7)

This definition uses the robot’s link inertia since only low ac-
celerations are reached during control. We designed the MTUs’
length and contraction velocity to be a function of sr so that
any external perturbation τext only affected sf = (qf , q̇f , q̈f ),
while sr and the MTUs remained unaffected and represented
the user motor intent based on the input sEMG signals. This
enabled the implementation of the user’s “corrective action” in
the impedance controller. In the absence of external perturba-
tions (τext = 0), qr matched qf . If τext was non-zero, depending
on K and D, qf will start diverging from qr. Therefore, qf
served as visual feedback for the user, who could perform
run-time adaptation of the simulated robot’s state and gains (K,
D) by modulating the muscles’ coactivation to reduce the error
between qr and qf and achieve the desired performance.

C. Muscle-Tendon Models Training

While the MTUs structure was defined based on [38], suitable
values for the parameters of each MTUi had to be defined.
Table IV lists the parameterspi ∈ Rm ofMTUi to be optimized.
Related work uses a reference joint torque or joint stiffness
(Section I-B) to optimise the MTUs models. As explained in
Section I, our chosen domain of application is upper-limb pros-
thesis, meaning that we do not have access to any reference joint
torque or stiffness. Solutions to this issue are described in the
following.

1) Structural Assumptions on MTU: Muscle-tendon sys-
tems characterised by a tendon longer than the muscle enhance
control and impedance modulation [42], [43]. The hypothesis
on the functional properties enabled by this MTU’s structure
has been was investigated in [44]. We thus defined MTUs with a
long tendon compared to the muscle, by setting the tendon slack
length to 2

3 l
i
MTU . The muscle and tendon length ratio matched

that of the muscle-tendon complex investigated in [44].
2) Simplification of MTU Parameters: Model re-

parametrization is detailed in Table IV. Sensitivity studies
led to two model simplifications: (i) the pennation angle was
set to be zero; (ii) the optimal length liopt was modelled as a
constant parameter to be estimated, and not as function of the
input activation [45].

3) Optimization Signal: We collected sEMG signals and
the corresponding reference trajectory qtrainf to optimise the
MTUs within AIC-UP. We used the final joint position qf , which

depended on the dynamics defined by the gains (K, D), as the
optimisation signal and collected examples of sEMG signals
and reference trajectory performed at different levels of muscle
coactivation (Section III-C1). This important change enabled us
to train the MTUs such that the stiffness and damping estimated
from the MTUs’ state could be incorporated directly into the
position-based variable impedance controller without further
tuning. Including the impedance controller in the optimization
framework avoided a mismatch between the dynamics of the
MTUs and the robot’s one. Exemplary experimental results in
support of the argument are provided in Appendix A and shown
in Fig. 6. The prediction function f : R2m+2 → R acted on the
input defined by [ch1(t), ch2(t)] ∈ R2 and the parameters of the
MTUs p = [p1,p2] ∈ R2 m to produce the final joint position
qf (t) ∈ R. Then, the constrained optimization problem was:

min
p

√∑T
t=1(f([ch1(t), ch2(t)];p)− qtrainf (t))2

T

s.t. lb ≤ p ≤ ub (8)

where qtrainf (t) ∈ R was the measured wrist flexion-extension
angular position; lb,ub ∈ R2 m were the lower and upper
bounds of p in Table IV, and T was the trajectory length. The
following constraints were added to the optimization problem
to prevent numerical instability, aid in convergence, and impose
assumptions discussed in the section above:

� W i
des +W i

asc < liceInit, where liceInit is lice when qr = 0,
such that CE operated in the muscle-length range. Wdes

and Wasc were the width of the descending and ascending
branches of the isometric curve, as indicated in [38].

� if lice < 0.001liopt or lice > 0.95(liMTU − lisee0) set l̇ice = 0

such that liMTU = lice + lisee0 and tendon cannot be com-
pressed. lopt was the length at which the maximum iso-
metric force is reached, lsee0 was the tendon slack length.

� K > 0, D ≥ 0; required for control stability.
� tendon maximum extension (lise) was 0.1 · lisee0 [42].

III. EXPERIMENTAL EVALUATION

The experimental setup and protocol are illustrated in Fig. 2.
First, the data (E, qtrainf ) were collected as needed to train
AIC-UP and BL. Then, the trained model was used for an
online control experiment where the subject was given real-time
control of the (simulated) robot plant and had to perform target-
reaching tasks in the free space and in the presence of unexpected
perturbations.

A. Participants

Eight able-bodied volunteers (five females, three males, age:
27.87± 3.64, right-handed) without neuromuscular disorders
and prior experience in myocontrol, and a transradial amputee
(female, age 65) took part in the study approved by the ethics
committee of the University of Birmingham (ERN_19-1564)
and Imperial College London (18IC4685). The amputee partic-
ipant was not a prosthesis user.
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Fig. 2. (a) Protocol for data collection (E, qtrainf ) described in Sec-
tion III-C1. (b) Online control experiment described in Section III-C2.
Note that the subject had no visual feedback on the force field, the
force field in grey is represented here only for explanation. (c) Position of
EMG sensors on the subject’s forearm. (d) Questionnaire of perceived
controllability.

B. Experimental Setup

Each participant sat in front of a screen, with their arm in a
neutral resting position along the body side. They wore a My-
oband by ThalmicLab (eight sEMG channels, frequency 200 Hz)
positioned ≈ 5 cm below the elbow (Fig. 2(c)). The raw sEMG
signals were bandpass-filtered (20 - 500 Hz), and full-wave
rectified; the root-mean-square temporal features were extracted
with a moving window of length 160 ms and step size 40 ms. The
sEMG signals recorded by the channels overlaying the Flexor
Carpi Radialis and the Extensor Carpi Ulnaris were selected and
normalized according to the maximum value recorded during
the training phase to obtain the activation signals ch1 and ch2.
The sEMG from all the channels of the Myoband were used
for the baseline. The wrist position qtrainf was tracked with a
Qualysis motion capture system for the able-bodied subject.
For the amputee, qtrainf was the trajectory of the visual cue the
participant had to follow during data acquisition experiment.

C. Experimental Protocol

For each participant, experiments were conducted in three
sessions. In the first session, we collected data to train AIC-UP
and baseline (BL); the online control performance provided by
AIC-UP and BL was then tested on two separate days to avoid
muscle fatigue and involuntary bias due to the order in which
frameworks were evaluated.

1) Data Acquisition for Muscle-Tendon Model Training:
During each trial, a visual cue moved along one of the axes and
the subject had to move their wrist to proportionally match this

cue. Each DoF motion was repeated 15 times while the subject
was instructed to perform the wrist motion while modulating
the muscles coactivation to achieve different levels of wrist
impedance (Fig. 2(a)). We ensured that the subjects understood
the concept of limb impedance by explaining to them that
muscles cocontraction allows modulating limb rigidity, which
affects the interaction with the external environment. Although
we focused on the control of a single DoF (flexion-extension), we
asked the subjects, during data collection only, to also perform
repetitions of ulnar-radial deviation so that we could observe
the “unintentional” flexion-extension motion and include these
in the training dataset. The sEMG signals E and wrist po-
sition qtrain

f from 15 trials of flexion-extension motion and
the 15 indirect flexion-extension motions were collected. A
60–40 split of this data was used for training and validating
the muscle-tendon models, with optimization based on Simu-
lated Annealing [46] (500 iterations, 5000 function evaluations,
initial value of temperature 300, annealing interval 50) since the
cost function had discontinuous derivatives. The same overall
process was followed for the amputee participant, except the
trajectory of the visual cue (the black circle in Fig. 2(a)) was used
as qtrainf .

2) Online Testing. Target-Reaching Task: As shown in
Fig. 2(b), in each trial a participant had visual feedback of their
predicted wrist position qf (green circle) and was asked to per-
form wrist flexion-extension to accurately reach a target position
Ti (purple circle). Once at the target, the subject had to maintain
the position for three seconds. Every time the subject could not
maintain the position for the set time the 3-second dwelling time
was reset. The ratio between the radius of the circle for qf and
for the target Ti was 3

4 , requiring precise control. Experimental
trials for each subject were divided into three blocks (Fig. 2(b)):
familiarisation with the control interface; reaching tasks in the
free space; and reaching tasks in the presence of a perturbation
field τext that pushed qf away from the target. At the beginning
of each session, the subject was told that different motor control
strategies could be explored, (e.g., relaxed movement, changing
muscle coactivation), but the subject had no prior knowledge of
the method being tested. The subject was told that some force
would perturb qf , but no information about the force field (type,
magnitude, location) was provided to avoid biasing their control
strategy. This choice allowed us to investigate the user’s (visual)
perception of the external force field depending on the control
method being used (Section III-D2). A uniform force field was
activated when the distance from the centers of the cursor qf
and the target was 15 [deg] (d in the equation of Fig. 2) and
pushed the cursor away from the target. The magnitude of the
perturbation was defined as a percentage of the maximum torque
τmax
f = Kmaxqr generated by the subject during training for

AIC-UP by considering the maximum stiffness Kmax across
trials. The contribution of damping to τmax

f was not considered
due to its high dependence on joint velocity which could lead
to values of τmax

f unfeasible to counter during online control
when the joint velocity was likely to be low due to the resistance
opposed by the force field. The impact of different magnitudes
of force field was investigated in preliminary studies, concluding
that 10% of τmax

f was adequate to provide visual feedback
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perceived by the subject as a perturbation of qf to then trigger a
change in control strategy, and to avoid muscle tiredness.

D. Data-Driven Baseline

The baseline used for comparison was a two-layer neural-
network (NN) that learned a mapping from sEMG signals to
qtrainf [6] and predicted qr. The same training data were used
for training AIC-UP and NN. The NN was trained to match the
performance reported in [6]. To ensure accurate motion tracking
and perturbation rejection, a high-stiffness (KB = 100 N/rad)
proportional-derivative controller was added in cascade to the
NN to track the predicted joint position qr and obtain qf . The
damping was set assuming a critically damped system (DB =√
KB/4 Ns/rad) [47]. Notice that the definition of τmax

f is
suitable in relation to the proportional and derivative gains of
the high-stiffness controller.

1) Performance Measures: The design of target-reaching
tasks to evaluate the online control of human-machine interfaces
is common in the literature and it is based on Fitt’s studies [48].
We selected six widely used performance measures [49] to
quantify the task performance for four targets illustrated in
Fig. 2(b): (i) Success Rate (SR) [%]: proportion of successful
trials, with a trial successful if the target was reached within
30 s and the target position held for 3 s; (ii) Near Miss (NM) [#]:
number of times the subject entered the target circle, but did not
maintain the position for 3 s; (iii) Time to Reach (TR) [s]: time
to complete the trial, with 30 s as the maximum allowed time.
All the measures were affected by distance to the target, which
may impact the difficulty of the task and are thus weighted by
an index of difficulty [49] considering the target circle radius
and the distance form the origin to allow comparison across the
four targets. To further characterise the impact of enabling joint
stiffness and damping modulation for AIC-UP, to smooth out
the oscillation imposed by the force field, we considered two
additional performance measures: (iv) Coactivation (CA) was
computed as c̄h1 + c̄h2, where c̄hi was the normalised ampli-
tude of the preprocessed EMG signal averaged across a trial. The
same channels of the Myoband are used for AIC-UP and BL to
obtain c̄hi. (v) Smoothness (SPARC) of qf was computed using
the SPARC measure [50]; we expected to observe a higher value
of SPARC if the subject successfully countered the external
perturbations and modulated the joint impedance to smooth out
the oscillation faster. While BL had constant high stiffness and
damping, AIC-UP required the user to modulate such values
via muscle cocontraction; (iv) The Mutual Information (MI)
between τf and qr was used to quantify the predictability of
qr given τf ; MI has been used in literature for dynamic system
analysis (e.g., [51]). Since qr was the unperturbed reference
trajectory and τf was the torque that results in qf , we expected
MI to increase when qr matches qf , thus when the subject
quickly counters the perturbation.

2) Survey of User’s Perception of Controllability: We ex-
plored the user’s perceived controllability provided by AIC-UP
and BL, in terms of control intuitiveness, effectiveness and
robustness asking the subjects to answer six questions about
the control methods at the end of each experimental session

(Questionnaire in Fig. 2(d)). We investigated if the subjects
modulated joint impedance as a strategy to accomplish the
task and asked them to describe the force field properties they
understood while using the control methods and interacting with
the perturbations. Users had to choose one of the following
answers to the first three questions: good (A1), fair (A2), and
poor (A3). We resolved to use a 3-level Likert scale since
we found that participants tended to avoid extreme-category
responses or could not decide between categories 1–2 and 4–5,
for a 5-levels scale. The remaining questions allowed free-form
answers. The participants were unaware of the control method
being evaluated when completing the questionnaire.

E. Independent Stiffness Control

To assess whether stiffness could be controlled independently
from kinematics, we analysed the correlation between joint
kinematics, muscle coactivation and joint stiffness and damping
during the three phases of the reaching-target task performed
in the presence of perturbations: phase 1) movement from the
origin towards the target, before entering the force field; phase
2) moving in the force field, towards the target; phase 3) main-
taining the target position for 3 seconds while countering the
force field perturbations. We defined the following measures:
i) MI(qr,K), the correlation between the joint position and
joint stiffness computed as mutual information between the
two variables; ii) MI(q̇r, D), the mutual information between
joint velocity and joint damping; iii)MI(K, ch1 + ch2), mutual
information between coactivation of muscles and joint stiffness;
iv) the integral of joint stiffness

∫
K and of v) damping

∫
D.

IV. RESULTS

All participants completed the online reaching-task experi-
ment with AIC-UP and BL, and the questionnaire. The Wilcoxon
signed-rank test was used to measure the statistical significance
(p-values< 0.05) between the distributions of performance mea-
sures for AIC-UP and BL. These were not normally distributed
based to the Kolmogorov-Smirnov test.

A. Offline Tracking Results

In able-bodied subjects, the average root mean square error
(RMSE) between the predicted and reference joint position ob-
tained during offline testing was RMSEAIC−UP = 0.2291±
0.0457 [rad] andRMSEBL = 0.1763± 0.0435 [rad], for AIC-
UP and BL respectively. BL achieved higher prediction accu-
racy than AIC-UP. For the amputee, the tracking errors were
RMSEAIC−UP = 0.4014 [rad] andRMSEBL = 0.5817 [rad].
The substantially higher average RMS values for the amputee
than the able-bodied subjects were mainly due to lack of refer-
ence wrist trajectory for the amputee.

B. Online Control. Results for Able-Bodied Subjects.

Fig. 3(a) shows the distribution of the average (across-trials)
performance of the eight able-bodied participants. Statistically
significant differences in distributions of average performance
measures between AIC-UP and BL are indicated with a red
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Fig. 3. Values of performance measures for the able-bodied subjects A) and the amputee B) in the absence and presence (highlighted in shaded
yellow) of perturbations. (a) Each group contains the average (across 40 trials) performance of the eight subjects; (b) Each group contains the
performance measure value of all trials. A statistically significant (p-value < 0.05) difference of the median are highlighted with an asterisk.
Quantitative results describing the plots and the p-values are in Tables I and II of Appendix B. Note that in B) the success rate is a single value for
each group, no statistical analysis is considered.

Fig. 4. Reaching-target tasks in the presence of perturbation are considered. For each measure, the distribution of average values across able-
bodied participants (a), and across trials for the amputee (b), is computed in three distinct phases of the task, indicated in red, blue and black:
1) moving up to the force field, 2) crossing the force field to reach the target, 3) matching the target position for 3 seconds against perturbations.
Statistically significant differences (p-value < 0.05) between median values of the task phases are indicated with an asterisk. Numerical values on
statistically significant differences are in Table III of the appendix.

asterisk at the top of the plot for the corresponding measure.
In particular, the performance measures are compared for BL
and AIC-UP when performing the task in the same condition
(i.e., perturbation off, and on). The SR, NM and TR matrices
are first considered to evaluate the task completion. Unlike BL,
AIC-UP consistently enabled successful task completion with
or without perturbation: the average SR metric was 95% and
82.19% for AIC-UP and BL (respectively) without perturba-
tion, and 93.75% and 76.87% with perturbation. AIC-UP had a
significantly lower number of NM during tasks in the presence of
perturbations meaning that the subjects using AIC-UP were able
to more precisely maintain the target position. The distributions
of NM were in agreement with the task success rate. While
the time to reach (TR) the target was not significantly lower

for AIC-UP than BL, it can be observed that BL had a larger
interquartile range, which was explained by the higher number
of NM. The flexor-extensor coactivation was significantly higher
when the subjects used AIC-UP instead of BL, indicating the
active modulation of coactivation to achieve the task. While CA
had a degree of correlation to joint stiffness, it was subject to vari-
ability due to the different strategies the subjects may adopt and
depending on the control method being used. SPARC was greater
with AIC-UP than with BL indicating that participants were able
to smooth out the oscillations imposed by perturbations when
using AIC-UP through modulation of the muscle coactivation.
For BL, oscillations were bound to the accuracy of the estimates
provided by the NN (see Fig. S3 in the Supplementary Informa-
tion). Finally, we observed that AIC-UP provided a significantly
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Fig. 5. Able-bodied participants and amputee’s responses to Q1-3 of
the questionnaire, completed at the end of the session with or without
external perturbations (highlighted in yellow). For able-bodies, each
category shows the fraction of subjects who provided a certain answer.
For the amputee, the same question is asked every 10 trials, and the 4
answers are shown. The participants could choose among good (A1);
fair (instances of low controllability) (A2); poor (A3).

higher MI between τf and qr compared with BL, with or without
perturbation, suggesting that the participants using AIC-UP
were able to modulate the joint stiffness and damping, used in
the control law to obtain τf , to successfully complete the task
and address the perturbations if needed. Overall, these results
indicate that AIC-UP outperformed BL and effectively enabled
joint stiffness and damping modulation through coactivation of
agonist and antagonist muscles.

We investigated the perceived controllability of AIC-UP and
BL among subjects; results for Q1-Q3 are summarized in Fig. 5.
Subjects indicated that AIC-UP provided a better match between
motor intent and cursor motion, resulting in a more timely
execution of motor commands, and more precise control than
BL; these differences between the two controllers were more
pronounced with perturbations. For Q4, six out of eight subjects
gave a correct description of the perturbation field when using
AIC-UP while two subjects were unsure; with BL, five out
of eight subjects could not correctly describe the location of
the force field and the others were unsure. For Q5, all the
subjects had the same control strategy with BL: adopt low muscle

cocontraction and move the wrist until the joint limit is reached.
With AIC-UP, two subjects did not significantly increase muscle
cocontraction, but the other six adapted joint impedance to
counter perturbations. For Q6, all subjects agreed impedance
modulation did not improve performance with BL; two subjects
stated that it resulted in the worst perceived controllability. With
AIC-UP, on the other hand, six out of eight subjects indicated
that impedance adaptation helped counter perturbations; two
subjects were unsure. These results support and correspond to
the quantitative results in Fig. 3(a).

C. Online Control. Results for the Amputee.

The values of performance measures obtained over the 40
trials per session by the amputee participant are reported in
Fig. 3(b). We observed that AIC-UP provided a higher SR
than BL, with or without perturbation: average values were
87.50% and 65% for AIC-UP and BL without perturbations,
and 80% and 55% with perturbations. NM was significantly
higher with BL than with AIC-UP in the presence and absence of
perturbations, which was in accordance to the relative SR. While
there was no significant difference in TR for the able-bodied
participants, for the amputee AIC-UP provided a significantly
shorter TR than BL in the presence of perturbations. When
the amputee used AIC-UP, there was a significant increase in
coactivation. Moroever, SPARC and MI between τf and qr were
significantly greater with AIC-UP than with BL, with or without
perturbation.

Finally, in Fig. 5 the amputee’s responses to Q1-Q3 are shown;
we asked the subject to answer questions four times per session
in an attempt to obtain more reliable answers. Similar to the
responses from able-bodied participants, the amputee indicated
that AIC-UP provided better controllability than BL, and cor-
rectly described the force field (Q4) with AIC-UP. For Q5, the
amputee’s control strategy when using BL changed from tensing
up the muscles to trying to minimally co-activate the muscles
“or the cursor would jump too far”; this was an example of
the baseline incorrectly assigning an increase in activation to a
change in position. When using AIC-UP, the amputee focused
on cocontracting the muscles of the forearm when needed. For
Q6, the subject was unsure if impedance modulation by mus-
cle coactivation improved the performance with BL since the
cursor would sometimes oscillate unexpectedly; with AIC-UP,
however, she indicated three times that stiffening the muscles
helped to counter the perturbations, and mentioned that it once
led to some overshoot. Overall, these results support and match
the quantitative results.

D. Modulation of Joint Kinematics and Impedance

For able-bodied participants (Fig. 4(a)), there was a statisti-
cally significant decrease in correlation between joint position
qr and stiffness K between phase 2 and 3, and also between
joint velocity and joint damping. In fact, in phase 3 the subject
had to maintain the position while modulating K. Notably, the
correlation between K and coactivation was significantly higher
in phase 2 and phase 3 than in phase 1 where no perturbation
was applied. Finally, the median value of

∫
K in phase 3, was
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significantly higher than in the other phases. This is in agreement
with experimental studies showing that static stiffness is higher
than the stiffness reached during dynamic movements [52]. The
same can be observed for

∫
D, higher in phase 3 than in phases

1 and 2; in phase 3 the muscle-tendon models operated mostly
in isometric conditions and the muscle had low contraction
velocities. Overall, these results indicate that the participants
modulated the values of K and D by changing the muscles’
coactivation in a time and task-dependent manner. The same can
be observed for the amputee, with statistically significant differ-
ences between all three phases for also the measures MI(qr,K),
and

∫
K. The higher correlation between coactivation and stiff-

ness in all phases than for able-bodies subjects can be explained
by considering that the amputee’s flexors and extensors operate
in isometric conditions. However,

∫
K and

∫
D were higher in

phase 2 than in phases 1 and 2 indicating that the amputee might
have coactivated the muscles throughout phase 1 and phase 2.
Consider that phase 2 and phase 3 had different durations, which
impact

∫
K and

∫
D.

V. DISCUSSION AND CONCLUSION

We described AIC-UP, a novel sEMG-based interface to vol-
untarily control the kinematics and the joint impedance (stiffness
and damping) of a DoF of a simulated robot. Unlike prior
work, two lumped muscle-tendon units were used to decode the
motor intent in terms of joint kinematics, stiffness and damping.
This required a reparametrization and structural assumption
of the muscle-tendon units, and the design of an optimization
framework to train the muscle-tendon models that included the
impedance controller (Section II-C). In contrast to previous
work, our framework does not require the measurement of joint
torque or stiffness to train the models and it is therefore suitable
for application in upper-limb prosthesis control. Note that we
do not claim to learn stiffness and damping values that match
the biological ones. Instead, our AIC-UP provides a coherent
representation of the dynamics of the MTUs and that of the robot,
leading to improved controllability. We showed that AIC-UP
resulted in a significantly higher performance compared to the
control BL, and allowed the able-bodied participants to exploit
joint stiffness and damping adaptation as a means to modulate
the physical interaction between the robot’s plant and the envi-
ronment. We further demonstrated that correlation between joint
kinematics and stiffness or damping was substantially different
during task execution, suggesting that AIC-UP enabled time and
task dependent modulation of stiffness and damping regardless
of the joint position. While the methods were tested with a single
amputee, the obtained results were coherent with those of the
able-bodied participants.

In this work, we focused on a single DoF to isolate confound-
ing factors. The insight we obtained will be used to expand
AIC-UP to multi-DoF control. While lack of evaluation on a
real prosthesis may be considered a limitation, we believe that
the framework design and testing in a simulated environment,
in the absence of physical constraints imposed by the hardware,
is a necessary step towards improving methods for estima-
tion of motor intent from sEMG signals. Observations from
experimental results in simulation may be used as a performance

Fig. 6. Trajectory tracking during offline evaluation of AIC-UP. The
black dotted line is the ground truth position. The blue line is the pre-
dicted trajectory under the following conditions: (top) framework op-
timization and evaluation included the impedance controller; (center)
framework training and testing did not include the impedance controller;
and (bottom) the optimization framework did not include the impedance
controller, but the evaluation framework included the impedance con-
troller.

baseline for when the framework is used to control a real robotic
system. Moreover, because the chosen application domain is
prosthesis control, we do not use a model of the biological limb,
but we optimize the muscle-tendon models to implement the
desired motor intent on a given robotic system; AIC-UP can be
thus applied to any other robotic system with know kinematic
and dynamic properties. In conclusion, our framework makes a
step towards enabling impedance adaptation of prosthesis. While
upper-limb prostheses was the chosen application domain, the
approach may also be relevant in other rehabilitation device
applications, or in human-robot-interaction scenarios, such as
teleoperation.

APPENDIX OVERVIEW

In Appendix A we provide exemplary results in support of in-
cluding the impedance controller in the optimization framework
for estimating MTUs’ parameters values. Appendix B provides
numerical values and statistics to support the experimental re-
sults in Section III. In the Supplementary Information, we show
the time evolution of values of MTUs’ and joint variables during
task trials.

APPENDIX A
IMPEDANCE CONTROLLER IN OPTIMIZATION FRAMEWORK

As discussed in Section II-C, our optimization method used qf
as an optimization signal, which was affected by the use ofK and
D as gains of the position-based impedance controller. Existing
methods (Section I-B) instead use the joint torque τr and qr as



FERRANTE et al.: TOWARD IMPEDANCE CONTROL IN HUMAN–MACHINE INTERFACES FOR UPPER-LIMB PROSTHESES 2639

TABLE I
DATA IN SUPPORT OF RESULTS FOR ABLE-BODIED PARTICIPANTS SHOWN IN FIG. 3(A)

TABLE II
DATA IN SUPPORT OF RESULTS FOR THE AMPUTEE, SHOWN IN FIG. 3(B)

TABLE III
DATA IN SUPPORT OF RESULTS IN FIG. 4

optimization signal. A reference joint stiffness may also be used.
In this example, we trained the MTUs using qr as optimization
signal (60% of collected data), i.e., the impedance controller
and the robot’s plant were not included in this training process.
We then evaluated the trained MTUs on the entire dataset (for
completeness) as part of the entire framework that includes the
impedance controller and the robot’s plant (Fig. 6, third plot).
We showed that K and D cannot be used directly as gains
in the impedance controller and that this leads to oscillatory
behavior and instabilities of the robot’s plant. This explains why
in related works the MTUs stiffnesses were tuned to implement
a position-based control on the robot. This solution allows stable
control but does not support the key requirement of matching
the MTUs dynamics with the robot’s dynamics. Fig. 6 shows the
offline evaluation of the framework when (i) the optimization
and evaluation framework included the impedance controller;
(ii) did not include the impedance controller; (iii) when the op-
timization framework did not include the impedance controller,
but the evaluation framework did.

APPENDIX B
QUANTITATIVE VALUES AND STATISTICS

In Tables I and II we report the median and interquartile
range (IQR) values of the distributions of average performance

TABLE IV
PARAMETERS pi OF MTU i ESTIMATED DURING MODEL OPTIMIZATION;

SEE [38] FOR DETAILS

measures shown in Fig. 3(a) and (b), for AIC-UP and BL.
Results obtained during trials performed in the absence and
presence of perturbation are shown on the left and right sides
of the tables. We test the significance (p-value < 0.05) of the
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difference in performance provided by AIC-UP and BL in the
case of “perturbation off” and “perturbation on” using Wilcoxon
signed-rank and reported the p-values in the tables. In Table III
we report the p-values in support of the results in Fig. 4. In
Table IV we report the list of parameters optimised for each
MTUs, the lower and upper bound of such values, as discussed
in Section II-C.
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