
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 71, NO. 9, SEPTEMBER 2024 2547

Multiscale Optical Imaging Fusion for Cervical
Precancer Diagnosis: Integrating Widefield

Colposcopy and High-Resolution
Endomicroscopy

David Brenes , Mila P. Salcedo , Jackson B. Coole , Yajur Maker , Alex Kortum, Richard A. Schwarz,
Jennifer Carns , Imran S. Vohra, Júlio C. Possati-Resende , Márcio Antoniazzi,

Bruno de Oliveira Fonseca , Karen C. Borba Souza , Iara V. Vidigal Santana, Flávia Fazzio Barbin ,
Regis Kreitchmann , Nirmala Ramanujam , Kathleen M. Schmeler , and Rebecca Richards-Kortum

Abstract—Objective: Early detection and treatment of
cervical precancers can prevent disease progression. How-
ever, in low-resource communities with a high incidence of
cervical cancer, high equipment costs and a shortage of
specialists hinder preventative strategies. This manuscript
presents a low-cost multiscale in vivo optical imaging
system coupled with a computer-aided diagnostic system
that could enable accurate, real-time diagnosis of high-
grade cervical precancers. Methods: The system combines
portable colposcopy and high-resolution endomicroscopy
(HRME) to acquire spatially registered widefield and mi-
croscopy videos. A multiscale imaging fusion network
(MSFN) was developed to identify cervical intraepithelial
neoplasia grade 2 or more severe (CIN 2+). The MSFN
automatically identifies and segments the ectocervix and
lesions from colposcopy images, extracts nuclear morphol-
ogy features from HRME videos, and integrates the col-
poscopy and HRME information. Results: With a threshold
value set to achieve sensitivity equal to clinical impres-
sion (0.98 [p = 1.0]), the MSFN achieved a significantly
higher specificity than clinical impression (0.75 vs. 0.43, p
= 0.000006). Conclusion: Our findings show that multiscale
optical imaging of the cervix allows the highly sensitive and
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specific detection of high-grade precancers. Significance:
The multiscale imaging system and MSFN could facilitate
the accurate, real-time diagnosis of cervical precancers in
low-resource settings.

Index Terms—Optical imaging, cervical cancer, multi-
modality fusion, machine learning, deep learning.

I. INTRODUCTION

C ERVICAL cancer is the fourth leading cause of cancer
death in women worldwide and is estimated to be respon-

sible for over 340000 deaths annually [1]. Although cervical
cancer is preventable through the implementation of known
strategies for prevention, screening, and early intervention, the
resources and well-trained personnel to implement those strate-
gies are not available in many low- and middle-income countries
(LMICs) [2]. As a result, cervical cancer remains the leading
cause of cancer death in many countries in sub-Saharan Africa,
Melanesia, South America, and Southeast Asia [1].

Cervical cancer is a human papillomavirus (HPV) associated
cancer, making HPV vaccination the primary prevention strategy
[3]. However, HPV vaccination is not widely accessible around
the world and must be administered at a young age (9 to 13 years
of age) to be the most effective [4], [5]. For the adult population
at risk, the World Health Organization (WHO) recommends
secondary prevention strategies [1]. The WHO recommends
two strategies: screen-and-treat or screen-triage-treat. In both
scenarios, HPV DNA detection is the preferred screening test.
Recommended triage tests include partial HPV genotyping,
colposcopy with or without biopsy, visual inspection with acetic
acid (VIA), or cytology. Among triage tests, colposcopy with
biopsies taken from abnormal areas is preferred since a biopsy
allows for a confirmatory histopathologic diagnosis [1]. The
WHO recommends the treatment of patients with histologically
confirmed high-grade precancers (cervical intraepithelial neo-
plasia grade 2 or more severe [CIN 2+]). The decision to triage
and the selection of a triage test are contingent on the availability
of equipment and trained physicians. In low-resource settings,
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Fig. 1. Multiscale network is composed of three components: (a) colposcopy, (b) HRME, and (c) fusion modules. The colposcopy module
processes the colposcopy image generating an ectocervix mask, a lesion mask, and a prediction of whether the patient has CIN 2+. The HRME
module processes a sequence of HF-HRME frames using a nuclear segmentation and single image classifier to predict whether the site contains
CIN 2+. The embeddings in the last fully connected layer of the single image classifier are passed into an LSTM network with global attention
that aggregates the information in the sequence to perform video classification. The fusion module combines colposcopy and HRME features
extracted from the two modules to predict whether a site contains CIN 2+. Boxes with a grey outline represent features, while boxes with a back
outline represent modules. See Supplement A for more detail on the modules. HF-HRME, high frame rate fiber optic microendoscope; LSTM, long
short-term memory network; CIN 2+, cervical intraepithelial grade 2 or more severe. HRME, high-resolution microendoscope; CIN 2+, cervical
intraepithelial grade 2 or more severe; LSTM, long short-term memory network.

high equipment costs, lack of supplies, and lack of qualified
specialists make it challenging to implement many of these
triage tests. Furthermore, screen-triage-treat strategies that re-
quire multiple visits can result in the loss of patients to follow-up
in settings where access to care is limited. Thus, low-resource
settings often rely on screen-and-treat strategies, which may lead
to high overtreatment rates.

Optical imaging systems combined with computer-aided di-
agnostic software could be used in low-resource settings to triage
patients with an abnormal screening test. Previously proposed
optical imaging systems for cervical precancer detection in-
clude widefield imaging systems that image the entire cervix at
sub-mm spatial resolution or high-resolution imaging systems
that provide sub-cellular resolution from sub-mm fields of view.
Portable low-cost colposcopes, such as the EVA (MobileODT,
Tel Aviv-Yafo, Israel) or the Pocket Colposcope (Calla Health
Technologies, Durham, NC, USA), are examples of widefield
imaging systems [6], [7]. These systems capture images of the
entire surface of the cervix with lateral resolutions as low as
28 um. Several computer-aided diagnostic systems have been
built on these platforms for lesion detection and pathology
prediction [7], [8], [9]. High-resolution systems, such as the
High-Resolution Microendoscope (HRME), capture subcellular
tissue features and have a lateral resolution of ∼4 um [10].

Automated image analysis algorithms have been developed to
analyze widefield and microscopy images to detect the presence
of histologically confirmed CIN 2+. For example, a recent
study showed that the HRME coupled with a deep learning
model performs comparably to expert clinical impression with
a sensitivity of 0.94 (p = 0.3) and specificity of 0.58 (p = 1.0)
in CIN 2+ diagnosis [11]. Yet, the specificity of these systems
remains low due to many false positive predictions arising from
benign confounding morphologies in polyps, inflammation, or
columnar tissue [12].

To date, most computer-aided diagnostic systems proposed
for cervical precancer detection only consider a single optical
imaging modality. However, combining the multiscale data ob-
tained from widefield and high-resolution imaging could help
improve the detection accuracy of CIN 2+. Here, we present
the first implementation of a computer-aided diagnostic system
that employs multiscale in vivo imaging data to detect cervi-
cal precancers. The optical imaging system, which combines
portable colposcopy and high-resolution endomicroscopy, was
used to acquire a large dataset of spatially registered widefield
and microscopy videos from patients referred for colposcopy
[13]. This study developed a multiscale fusion deep learning
model to analyze the registered images and predict which areas
of the cervix contained CIN 2+ lesions; results were compared
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to the gold standard of histology. At a sensitivity equal to clinical
impression (0.98 [p = 1.0]), the model achieved a significantly
higher specificity than clinical impression (0.75 vs. 0.43, p =
0.000006).

II. MATERIALS AND METHODS

A. Multiscale Imaging System

A multiscale optical system was used to acquire co-registered
widefield and high-resolution images of cervical tissue simul-
taneously; the system has previously been described in detail
[13]. Briefly, widefield images are acquired with a Pocket Col-
poscope, a low-cost, portable, low-magnification system with
a 3.5-5.0 cm field of view, 3.5-4.5 cm working distance, and
20 um lateral resolution. High-resolution images are acquired
with a high frame rate fiber optic microendoscope (HF-HRME)
that captures images of proflavine-stained nuclei from epithelial
tissue [14]. The HF-HRME has a 790 um field of view and a 4
um lateral resolution.

B. Study Participants

Patients were recruited from the cervical cancer prevention
program at Barretos Cancer Hospital (BCH) in Barretos, Brazil,
based on the following inclusion criteria: (a) were scheduled to
undergo colposcopy due to a history of dysplasia or an abnormal
cervical cancer screening result (abnormal cytology [atypical
squamous cells of undetermined significance or more severe]
or positive for high-risk HPV [cobas 4800 HPV]), (b) were
older than 25 years of age, (c) had a negative pregnancy test,
and (d) had the ability to provide written informed consent.
Women were excluded from the study if they: (a) had undergone
a hysterectomy with removal of the cervix, (b) had an allergy to
proflavine or acriflavine, or (c) were breastfeeding at the time of
enrollment.

The study was approved by the BCH Research Committee,
the Brazilian National Ethics Research Commission/CONEP
(CAAE: 38969820.9.1001.5437) and the Institutional Review
Board of Rice University (ID#2020-342) and The University
of Texas MD Anderson Cancer Center (ID#2021-0356). All
participants provided written informed consent. The protocol
was registered with ClinicalTrials.gov (NCT05078528). All pro-
cedures followed were in accordance with the ethical standards
of the responsible committee on human experimentation (insti-
tutional and national) and with the Helsinki Declaration of 1975,
as revised in 2000.

C. Multiscale Imaging Session

Standard colposcopy was performed after applying 5% acetic
acid to the cervix, and any clinical lesions were noted. Prior to
multiscale imaging, 5% acetic acid solution was re-applied. The
clinician inserted the Pocket Colposcope through the speculum
and captured a representative widefield image of the cervix.
Additional images were taken if the clinician deemed the repre-
sentative image to be poor quality. Next, a 0.01% w/v proflavine
solution was applied to the cervix, followed by the application
of Lugol’s iodine. Additional representative widefield images

were collected. The proflavine solution was then reapplied in
preparation for the HF-HRME imaging. The HF-HRME probe
was gently placed in contact with the cervix and translated
across any lesions identified during the initial colposcopic ex-
amination. The multiscale imaging system records simultaneous
video from the Pocket Colposcope and the HF-HRME, allowing
precise co-registration. Biopsies were acquired from lesion areas
identified via standard-of-care colposcopy. Multiple biopsies
were acquired if the colposcopist identified multiple lesions,
one biopsy per lesion. If no lesions were identified, the probe
was translated across a normal area of the cervix just outside
the squamocolumnar junction, and a single biopsy was acquired
from an area imaged by the HF-HRME. The biopsy samples
were submitted for routine histologic analysis using standard
diagnostic criteria; the final diagnosis was reported as benign,
cervicitis, cervical intraepithelial neoplasia (CIN) 1, CIN 2, CIN
3, or cancer. The final diagnosis was reached by consensus of two
expert pathologists; disagreements were resolved in a consensus
session where the pathologists met to discuss and reevaluate
the case. For analysis purposes, samples were grouped into two
diagnostic categories: less than CIN 2 (<CIN 2) and CIN 2 or
more severe (CIN 2+).

D. Annotation and Curation of Multiscale Imaging Data

After multiscale imaging, the clinician annotated the repre-
sentative widefield image of the cervix to outline the ectocervix,
the squamocolumnar junction, the os, any lesions, and the lo-
cation of any biopsies. The clinical impression for each lesion
was recorded as a low-grade intraepithelial lesion (LSIL), high-
grade intraepithelial lesion (HSIL), or cancer. Video captured
with the Pocket Colposcope was used to manually track the
location of the HF-HRME probe on the cervix and determine
the corresponding HF-HRME frames for each biopsy site.

All HF-HRME video segments obtained from regions of the
tissue that were biopsied were reviewed for quality control.
Manual quality control was first performed by three experts;
video frames were judged to be of high quality if they met two
criteria: 1) the frame was free from motion blur, and 2) more
than 50% of the field of view was in focus. Sites for which
experts agreed that no high-quality HF-HRME frames were
captured were eliminated from further analysis. All frames were
subject to an automated quality control algorithm that performed
a rapid segmentation to identify the number of potential nuclei
in the field of view. Frames containing less than a predetermined
number of potential nuclei in the field of view were eliminated
from further analysis.

E. Multiscale Imaging Fusion Network

A multiscale imaging fusion network (MSFN) was developed
to analyze co-registered image data (Fig. 1); the MSFN is com-
posed of separate colposcopy, HF-HRME, and fusion modules
described below.

1) Colposcopy Module: The colposcopy module is de-
signed to segment the ectocervix and any lesions as well as
to predict the presence or absence of CIN 2+. The module
utilizes two Efficient U-Net blocks that sequentially process the
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colposcopy image. The Efficient U-Net has an encoder-decoder
structure with concatenating skip connections and can perform
semantic segmentation of color images, and is based on the
segmentation portion of the Y-Net architecture proposed by
Mehta et al. (2018) [15]. To minimize computations and reduce
the model’s memory footprint, the Efficient U-Net employs
efficient spatial pyramid and pyramid spatial pooling blocks
[15], [16].

The colposcopy module processes images sequentially in two
steps. First, an Efficient U-Net segments the ectocervix. The
resulting mask is used to isolate the cervix from the back-
ground through crop pooling and masking. Next, the cropped
and masked image of the cervix is passed to a second Ef-
ficient U-Net, which segments lesions. Two possible lesion
segmentation strategies were explored: segmentation of all col-
poscopically low-grade or more severe lesions (LSIL+) and
segmentation of histologically confirmed CIN 2+ lesions. A
classification branch (see Supplement A) was connected to the
lowest embedding of the second Efficient U-Net and was trained
to predict whether or not the cervix contained CIN 2+ using
the highest-grade pathology result for the patient as ground
truth.

2) HF-HRME Module: The HF-HRME module classifies
whether both individual image frames and video segments were
obtained from regions containing CIN 2+; this classification
is aided by nuclear segmentation. The single image classi-
fier is composed of one Efficient U-Net that performs nuclear
segmentation and a classification branch that performs image
classification (see Supplement A). The single image classifier
was trained for CIN 2+ classification as described in [11] and
was used without adjustment.

Video classification is enabled by a long short-term memory
network (LSTM) with global attention (LSTM-Attention) [17].
Each HF-HRME frame was divided into quadrants that ran
independently through the single image classifier. Quadrant
embeddings in the last fully connected layer of the HF-HRME
single image classification branch are combined using average
pooling to form an HF-HRME frame embedding. These frame
embeddings are passed into a unilateral LSTM with two layers
that output a hidden state for each input. An attention component
based on the general global attention mechanism proposed by
Luong et al. (2015) is used (see Supplement A) [17]. The gen-
eral global attention method generates a context vector, which
is computed as the weighted sum of all previously generated
hidden states modulated by attention weights. To compute the
attention weights, previous hidden states are passed through a
fully connected layer, and the output is multiplied by the current
hidden state and passed through a softmax layer. To create the
output of the LSTM-Attention, the context vector and current
hidden state are first concatenated and passed through a fully
connected layer. The resulting vector is then tanh-normalized.
The output is further processed using a series of additional
fully connected layers and a softmax layer, which predicts the
likelihood that the video was obtained from a lesion containing
CIN 2+.

The attention weights predicted by the LSTM-Attention mod-
ule can be visualized with a one-dimensional heatmap and used

to infer the contributions of individual frames to the classifica-
tion of the HF-HRME sequence. These attention weights can
also help illustrate how the model reacts to changes in image
characteristics, such as blur and changes in the nuclear mor-
phological structure. Several representative attention maps were
selected and presented alongside the key HF-HRME frames
from the sequence.

3) Fusion Module: The fusion model combines features
from the colposcopy and HF-HRME modules to predict whether
each biopsied site contains CIN 2+ (see Supplement A). HF-
HRME features are extracted from the output of the LSTM-
Attention network. Local colposcopy features are extracted
from feature maps generated by the classifier of the lesion
segmentation Efficient U-Net (see Supplement A). The feature
maps are up-sampled to match the spatial resolution of the
input colposcopy image and crop pooling is used to extract
the features from a predefined area of interest surrounding the
biopsy site. The feature maps are reduced to a vector using
average pooling and passed through a fully connected layer that
reduces the length of the colposcopy feature vector to equal that
of the HRME feature vector. The colposcopy and HRME feature
vectors are concatenated and passed through two additional
fully connected layers, and a final softmax layer predicts the
probability of CIN 2+ for the site.

4) Training and Validation: To train the MSFN, the multi-
scale imaging data collected in the study were partitioned tem-
porally into training and validation sets; patients were ordered
by enrollment date, with the first ∼50% of patients being used
for training and the remaining patients for validation. The MSFN
was trained end-to-end with all segmentation and classification
targets optimized together. The single image classifier in the
HF-HRME module was initialized with weights from Brenes et
al. (2022) [11].

When training the MSFN, the colposcopy module was ini-
tialized using weights learned by training on data from a pre-
vious study conducted at BCH that enrolled 1600 participants
(the CLARA study) who received abnormal cervical cytology
results (atypical squamous cells of undermined significance or
more severe) or positive high-risk HPV DNA test results (cobas
4800 HPV test) [12]. In the CLARA study, women underwent
colposcopy, and widefield images were captured after the ap-
plication of 5% acetic acid using two types of colposcopes: a
standard colposcope (CP-M1255 colposcope, D.F. Vasconcel-
los, Brazil) or a mobile colposcope (EVA 3 Plus, MobileODT,
Israel). Two expert colposcopists reviewed the data; a single
representative image with the highest image quality was selected
for each patient. Each reviewer annotated the image to denote
the ectocervix, the squamocolumnar junction, and the os. For
each image, the expert annotations were merged using union to
create a final ground truth annotation.

The LSTM-Attention and fusion modules were initialized
using Xavier random initialization. Hyperparameters were opti-
mized via grid search. Input data augmentation techniques such
as rotation, flipping, and random cropping were applied. All code
was written in Python 3.6 using PyTorch 1.5.0. Experiments ran
in a CUDA 10.2 enabled computer with two GeForce RTX 2080
Ti graphics processing units each with 12 GB VRAM.
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F. Evaluation of Multiscale Fusion Network

The colposcopy and HF-HRME modules of the MSFN were
evaluated independently on the multiscale dataset.

1) Colposcopy Module: The colposcopy module was first
trained and evaluated with data from the CLARA study before
being refined with the multiscale dataset. Data from the CLARA
study were randomly partitioned at the patient level into training,
validation, and test sets in a 3:1:1 split, stratified by the patient’s
worst histopathologic diagnosis. During training, the CLARA
validation set was used to monitor performance. Lesion masks
generated by the colposcopy module were compared to the
clinical expert’s annotations using mean intersection over union
(mIOU). Performance was reported on the test set and stratified
by the patient’s worst histopathologic diagnosis. The ability
of the colposcopy module to segment lesions was compared
to that of a simple U-Net. The diagnostic performance of the
colposcopy module was evaluated by comparing its prediction
of whether the patient had CIN 2+ compared to the gold standard
of histology using the test set area under the receiver operating
curve (AUC); results from the colposcopy module were com-
pared to that of five off-the-shelf deep learning models pretrained
on ImageNet. When training the off-the-shelf models, all param-
eters in the networks were trainable. Each network’s last fully
connected layer was replaced to enable binary classification, and
their weights were initialized using Xavier random initialization.

The colposcopy module was also refined with training data
from the multiscale dataset, and its performance was evaluated
on the corresponding multiscale validation set. The colposcopy
module was initialized with weights learned from the CLARA
study data. When training on the multiscale dataset, all parame-
ters in the module were trainable. The ability to segment lesions
was measured using mIOU stratified by histopathology, and the
ability to predict whether the patient had CIN 2+ was measured
by calculating the AUC.

2) HF-HRME Module: The ability of the HF-HRME module
to predict whether a site contained CIN 2+ was evaluated
with and without the LSTM-Attention block. When the LSTM-
Attention block was excluded, the single image classifier scores
were averaged to generate a sequence score. The HF-HRME
module without the LSTM-Attention was evaluated in two
states: (a) with weights from Brenes et al. (2022) and (b) after
refinement with the multiscale dataset [11]. The HF-HRME
module with the LSTM-Attention block was evaluated in two
cases: (a) with fixed weights from Brenes et al. (2022) and a
trainable LSTM and (b) with the entire network being trainable
[11]. The performance of models was compared by calculating
the per site AUC for the validation set and the specificity at a
sensitivity matched to clinical impression. The specificities of
the four HF-HRME module variants were compared to the speci-
ficity of clinical impression using McNemar’s test for statistical
significance [18].

G. Late Fusion Strategies

In addition to the proposed MSFN, late fusion models were
also explored. In late fusion, output probabilities from the
colposcopy and HF-HRME modules were combined using a

TABLE I
NUMBER OF PATIENTS WITH COLPOSCOPY IMAGES IN THE TRAINING,
VALIDATION, AND TEST SETS OF THE CLARA STUDY, STRATIFIED BY

PATIENT-LEVEL HISTOPATHOLOGIC DIAGNOSISa

weighted average to generate a new multiscale imaging score
for the site. All late fusion models used scores from the best-
performing HF-HRME module variant.

The HF-HRME scores were combined with one of three pos-
sible colposcopy module scores: (a) a score predicting whether
the patient had CIN 2+, (b) a local lesion score calculated
by averaging the probabilities of CIN 2+ within the biopsy
site, or (c) a global lesion score, calculated by averaging the
probabilities of CIN 2+ across the image. The performance of
a colposcopy module that performed LSIL+ segmentation was
evaluated for the three combinations of scores; similarly, the per-
formance of a colposcopy module that performed segmentation
of histologically confirmed CIN 2+ lesions was evaluated for
the three score combinations.

H. Evaluation Metrics

The sensitivity and specificity of clinical impression in de-
tecting histologically proven CIN 2+ were computed using a
clinical impression of LSIL+ as a positive colposcopy result.
The ability of the MSFN to predict whether a lesion contained
CIN 2+ was measured using the area under the AUC for the
validation set; we noted the specificity of the MSFN when the
sensitivity was matched to that of clinical impression.

III. RESULTS

A. Data Collection and Curation

Of the 1600 women enrolled in the CLARA study, 1285 had
recorded colposcopy images. Their colposcopy images were an-
notated. The prevalence of CIN 2+ among participants was 29%.
A detailed breakdown of patient histology and data partition is
shown in Table I.

Data from 286 participants in the multiscale imaging study
were retrieved and reviewed for quality control; multiscale
images from the 283 participants passing quality control were
included in the multiscale imaging dataset. Of the 283 patients,
256 had one biopsy, and 27 had two biopsies. The prevalence
of CIN 2+ among these patients was 32% (see Supplement
B). Biopsies were acquired from 310 sites imaged with the
HF-HRME. A breakdown of histologic diagnosis by site and
the data partition is shown in Table II. See Supplement B for
examples of the data collected.
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TABLE II
NUMBER OF BIOPSIED SITES IN THE TRAINING AND VALIDATION SETS OF

THE MULTISCALE IMAGING STUDY, STRATIFIED BY SITE-LEVEL
HISTOPATHOLOGIC DIAGNOSISa

TABLE III
MEAN INTERSECTION OVER UNION (MIOU) BETWEEN THE GROUND TRUTH

SEGMENTATIONS AND THE LESION SEGMENTATIONS PRODUCED BY THE
COLPOSCOPY MODULE, EVALUATED ON THE MULTISCALE DATASET

VALIDATION SET AND STRATIFIED BY HISTOPATHOLOGIC DIAGNOSISa

B. Colposcopy Module Evaluation

The colposcopy module, trained and evaluated on the CLARA
study to segment LSIL+ lesions and predict patient pathology,
obtained an mIOU of 0.70, with an mIOU of 0.69 and 0.73
for histologically confirmed CIN 2 and CIN 3 lesions. The
colposcopy module outperformed a simple U-Net model for
lesion segmentation for all pathologic diagnoses except cancer,
where both models had a mIOU of 0.84 (see Supplement C). The
colposcopy module could predict the presence of CIN 2+ from
colposcopy images with an AUC of 0.82, and was superior to all
tested baseline deep learning models (see Supplement C). The
second-best model, a large EfficientNet B7, had an AUC of 0.77.
After refinement with the multiscale dataset, the colposcopy
module achieved an overall mIOU of 0.67, with an mIOU of 0.67
and 0.68 for histologically confirmed CIN 2 and CIN 3 lesions,
respectively (Table III). The refined module could predict the
presence of CIN 2+ with an AUC of 0.80.

C. HF-HRME Module Evaluation

Fig. 2 compares the performance of the four HF-HRME
module variants evaluated on the multiscale dataset validation
set using ROC curves (Fig. 2(a)) and the operating sensitivi-
ties and specificities (Fig. 2(b)) to that of clinical impression.
Expert clinical impression achieved a sensitivity of 0.98 and a
specificity of 0.43 compared to the gold standard of histologic
diagnosis. The single image classifier with fixed weight from
Brenes et al. (2022) achieved an AUC of 0.844; at the same
sensitivity of clinical impression, the specificity of this HF-
HRME module was 0.54 [11]. When trained with the multiscale

dataset, the single image classifier AUC improved to 0.894, with
a specificity of 0.51. Adding the LSTM to the single image
classifier improved the specificity of the module, both when the
single image classifier was fixed with weights from Brenes et
al. (2022) and when it was trained with the multiscale dataset
[11]. The best-performing HF-HRME module variant measured
by specificity was the trainable single image classifier with a
trainable LSTM, which achieved a specificity of 0.66 (p =
0.0009). The scatter plot of the predicted probability of CIN 2+
for each site stratified by histopathologic diagnosis (Fig. 2(c))
suggests that adding the LSTM increases specificity by reducing
the number of false positive results associated with cervicitis.

Fig. 3 shows the attention maps generated by the best-
performing variant of the HF-HRME module for three sites,
along with representative images. The attention map and HF-
HRME frames (Fig. 3(a)–(d)) shown in the top row are from
a site with CIN 1. Attention is high for the frames shown in
Fig. 3(b) and Fig. 3(d), which have similar nuclear densities;
attention is low for the frames shown in Fig. 3(c), which capture
fewer nuclei. The middle row shows an attention map and
HF-HRME frames (Fig. 3(e)–(h)) from a site with CIN 3. In
the initial portion of the video, nuclei are sparse, small, and
regularly shaped; attention is low in this region (Fig. 3f). At
approximately frame 170, there is a sharp transition, showing
increased nuclear size, dens and pleomorphism (Fig. 3(g));
attention is high throughout this region. Attention decreases
again around frame 470 with motion blur (Fig. 3(h)). The bottom
row shows an attention map and frames (Fig. 3(i)–(l)) from a
site with CIN 3. Early portions of the video show debris regions
(Fig. 3(j)), and attention is low in this region. Attention increases
in regions of higher quality (Fig. 3(k)), then decreases in regions
where a significant portion of the frame is not in focus (Fig. 3(l)).

D. MSFN Evaluation and Comparison to Other Fusion
Strategies

Table IV compares the performance of all fusion strategies
tested. Strategies 1-6 relied on late fusion, while the MSFN
(strategy 7) relied on intermediate fusion. Fusion strategies 1-3
incorporated a colposcopy module trained to segment lesions
with LSIL+, whereas fusion strategies 3-6 incorporated a col-
poscopy module trained to segment lesions with histologically
confirmed CIN 2+. In general, when comparing similar scoring
strategies, the AUC of late fusion models trained to segment
lesions with CIN 2+was higher than that of models trained with
LSIL+ lesion segmentation. Of the three colposcopy scoring
strategies tested, AUC was the highest for the global lesion
score. Overall, the late fusion model with the highest AUC
employed CIN 2+ lesion segmentation and the global lesion
scoring strategy to achieve an AUC of 0.900. In comparison,
strategy 7, the MSFN, achieved an AUC of 0.910.

Fig. 4(a) shows the probability of CIN 2+ predicted by the
MSFN model for each site in the multiscale validation set, strat-
ified by histopathologic diagnosis. Fig. 4(b) shows the receiver
operating characteristic curve with an AUC of 0.910. At a sensi-
tivity of 0.98 (p = 1.0), the MSFN achieved a specificity of 0.75
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Fig. 2. Performance of four different HF-HRME module variants on the multiscale dataset validation set: Variant 1 – a fixed single image classifier
with weights from Brenes et al. (2022), Variant 2 - a trainable single image classifier, Variant 3 - a fixed single image classifier with trainable LSTM,
and Variant 4 - a trainable single image classifier with trainable LSTM [10]. (a) The ROC curves of the four variants. The diamond denotes the
sensitivity and specificity of clinical impression, and the circles indicate the operating points with the same sensitivity as clinical impression. (b)
Comparison of the sensitivities and specificities of clinical impression and the HF-HRME module variants at the operating point. (c) The predicted
probability of CIN 2+ for each site, stratified by histologic diagnosis across all four variants. HF-HRME, high frame rate fiber optic microendoscope;
LSTM, long short-term memory network; ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve; CIN
1, cervical intraepithelial grade 1; CIN 2, cervical intraepithelial grade 2; CIN 3, cervical intraepithelial grade 3; CIN 2+, cervical intraepithelial grade
2 or more severe.

Fig. 3. Attention maps (a), (e), (i) generated by the best performing variant of the HF-HRME module for three sites, along with representative
images. Data in the top row correspond to a site with CIN 1; attention is higher for frames (b) and (d) which show higher nuclear contrast and density
than frame (c). Data in the middle row were acquired from a site with CIN 3; attention is initially low with frame (f) corresponding to a region with
low nuclear density. Attention increases sharply at approximately frame 170, with frame (g) showing increased nuclear density. Attention decreases
again near frame 470, with frame (h) showing evidence of motion blur. Data in the bottom row were acquired from a site with CIN 3; attention is low
in regions where image quality is reduced due to debris (j) or poor probe contact (l) and higher in regions with high quality images with dense nuclei
(k). HF-HRME, high frame rate fiber optic microendoscope; LSTM, long short-term memory network; CIN 1, cervical intraepithelial grade 1; CIN 3,
cervical intraepithelial grade 3.
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Fig. 4. Performance of the MSFN evaluated on the multiscale dataset validation set. (a) CIN 2+ probability predicted by the MSFN stratified
by histopathologic diagnosis. The average CIN 2+ probability for sites with histologic diagnosis of benign, cervicitis, CIN 1, CIN 2, and CIN 3
were 0.07, 0.11, 0.03, 0.20, and 0.26 respectively. (b) The receiver operating characteristic curve with an AUC of 0.910 shows high specificities at
high sensitivities. (c) MSFN outperformed colposcopic impression with a sensitivity of 0.98 (p = 1.0) and specificity of 0.75 (p = 0.000006). MSFN,
multiscale imaging fusion network; long short-term memory network; AUC, area under the receiver operating characteristic curve; LSIL+, low-grade
lesion or more severe; CIN 2+, cervical intraepithelial grade 2 or more severe.

TABLE IV
DIAGNOSTIC PERFORMANCE OF THE FUSION MODELS TO PREDICT WHETHER A SITE CONTAINS CIN 2+ USING THE MULTISCALE DATASET VALIDATION SETa

(p = 0.000006), significantly higher than the 0.43 specificity of
clinical impression (Fig. 4(c)).

IV. DISCUSSION

When combined with computer-aided diagnostic software,
optical imaging systems hold great potential for detecting and di-
agnosing cervical precancers in low-resource settings. However,
previous imaging systems based on colposcopy or HRME imag-
ing have achieved high sensitivity but only modest specificity,
which limits their utility as triage tests. This study demonstrates
that combining colposcopy and HRME imaging can achieve
high specificity and high sensitivity. The proposed MSFN model

outperformed both colposcopy-only and HRME-only models.
In addition, the MSFN surpassed colposcopic impression with
a specificity of 0.75 (p = 0.000006) at an equal sensitivity of
0.98.

Results to optimize the model show that MSFN intermediate
feature fusion is superior, outperforming late fusion strategies.
Of the late fusion methods tested, combining the global lesion
colposcopy score and the HF-HRME module score performed
the best. The global lesion colposcopy score has a larger effec-
tive field of view than the local lesion score and MSFN, as it
captures colposcopy features from the entire cervix instead of
features from an area of interest surrounding the biopsy site. This
extended field of view may factor in its high performance among
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late fusion strategies. It is possible that allowing the MSFN to
consider a larger area of colposcopy features could also improve
its performance. However, at this time, the limited availability of
registered HF-HRME images outside areas of interest precluded
us from implementing multiscale fusion across larger areas.

In addition to the benefits of combining multiscale imaging
data, the improved specificity of the MSFN can also be attributed
to computationally increasing the effective field-of-view of the
HF-HRME. Typically, microscopy modalities are limited by
a relatively small field of view. For example, the HF-HRME
has a field-of-view of only 790 um. Combining information
across HF-HRME frames, the LSTM-Attention model expands
the effective field-of-view of the HF-HRME. By processing a
sequence of frames acquired across a larger tissue area, the
algorithm can gather more contextual information and generate a
more robust representation for predicting the probability of CIN
2+. The attention maps show that this contextualization also
helps the network learn more abstract concepts like image qual-
ity, which could further improve the diagnostic performance.

Strengths of this study include that it was carried out in a
middle-income country where the incidence of cervical cancer
and the prevalence of HPV are both high, leading to a rich dataset
that encompasses a broad range of pathologies. More than
190000 HF-HRME frames were recorded from biopsy sites and
mapped to specific locations on colposcopy images. Colposcopy
images were annotated with precise outlines of anatomical and
clinical features by expert colposcopists. The histopathology
results were derived from the consensus diagnosis of two expert
pathologists, increasing their reliability. Limitations of this study
include that the MSFN does not currently distinguish between
CIN 2-3 and invasive carcinoma, which are pathologies that
require different treatments. Furthermore, the analysis presented
in this study relied on the manual correlation of HF-HRME and
colposcopy data. Video captured with the Pocket Colposcope
was used to track the location of the HF-HRME probe on the
cervix and determine which HF-HRME frames were assigned
to a site of interest during fusion. If the MSFN is to be deployed,
the HF-HRME frames must be assigned to the inference area in
real time. Therefore, successful deployment of the MSFN will
require a real-time method to register the HF-HRME frames
to their corresponding locations on the cervix, a non-trivial
problem due to the handheld nature of the Pocket Colposcope
and HF-HRME probe. Improved registration strategies could
also enable more complex methods for integrating imaging
information acquired across the cervix rather than at specific
areas.

In the eventual deployment of the MSFN in a low-resource
setting, the system will run on a commercially available laptop.
The main building block of the MSFN is the Efficient U-Net, a
computationally inexpensive network architecture. In previous
works, we have successfully deployed the HF-HRME single
image classifier, which uses one Efficient U-Net, for real-time
image interpretation in low-resource settings, including Brazil
and Mozambique [13], [19]. The model was deployed on a
Surface Book 3 (Microsoft, Redmond, Washington, USA) and
could predict up to 90 frames per second when plugged into
power using the GPU. Compared to the single image classifier,

there is little added computational complexity in the MSFN
architecture. The colposcopy module may take longer to run
since it employs two Efficient U-Nets in series (up to 3 seconds),
but it will only run once per clinical case. In addition, while
the fusion module must run each time an HF-HRME frame
is collected, it only contributes a relatively small number of
computations. Preliminary benchmarking tests have shown that
the MSFN can infer up to 48 frames per second.

V. CONCLUSION

The multiscale imaging system powered by the MSFN offers a
semi-automated diagnosis with performance that surpasses that
of expert colposcopy while relying on low-cost multiscale imag-
ing instrumentation. These attributes make the system accessible
to low-resource settings where expert clinicians and financial
resources are limited. Operating as a triage test, this system
could reduce overtreatment in settings where screen-treat strate-
gies are currently implemented, improving patient outcomes
and reducing the clinical and financial burdens of unnecessary
treatment. Overall, this work shows how multiscale data can be
integrated with computer-aided diagnostic software to improve
the diagnosis of cervical precancer.
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