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Abstract—Congenital heart disease (CHD) is a common
birth defect in children. Intelligent auscultation algorithms
have been proven to reduce the subjectivity of diagnoses
and alleviate the workload of doctors. However, the devel-
opment of this algorithm has been limited by the lack of
reliable, standardized, and publicly available pediatric heart
sound databases. Therefore, the objective of this research
is to develop a large-scale, high-standard, high-quality, and
accurately labeled pediatric CHD heart sound database.
Method: From 2020 to 2022, we collaborated with experi-
enced cardiac surgeons from three general children’s hos-
pitals to collect heart sound signals from 1259 participants
using electronic stethoscopes. To ensure the accuracy of
the labels, the labels for all data were confirmed by two
cardiac experts. To establish the baseline of ZCHsound, we
extracted 84 features and used machine learning models to
evaluate the performance of the classification task. Results:
The ZCHSound database was divided into two datasets:
one is a high-quality, filtered clean heart sound dataset,
and the other is a low-quality, noisy heart sound dataset.
In the evaluation of the high-quality dataset, our random
forest ensemble model achieved an F1 score of 90.3% in
the classification task of normal and pathological heart
sounds. Conclusion: This study has successfully estab-
lished a large-scale, high-quality, rigorously standardized
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pediatric CHD sound database with precise disease diagno-
sis. This database not only provides important learning re-
sources for clinical doctors in auscultation knowledge but
also offers valuable data support for algorithm engineers in
developing intelligent auscultation algorithms.

Index Terms—Heart sound, database, phonocardiogra-
phy (PCG), congenital heart disease (CHD).

I. INTRODUCTION

CONGENITAL heart disease (CHD) is a congenital malfor-
mation caused by abnormal development of the heart and

large blood vessels in the embryonic stage or failure to close the
channels that should be closed after birth, which is the most com-
mon birth defect in children [1]. Common CHD includes atrial
septal defect (ASD), ventricular septal defect (VSD), tetralogy
of Fallot, and patent ductus arteriosus (PDA). Worldwide, the
prevalence of CHD in live or term newborns is 0.94%, with an
increasing trend [2]. Advancements in medical techniques have
significantly improved the prognosis for patients with congenital
heart disease. With timely treatment, 90% to 95% of these
patients can not only survive into adulthood but also maintain a
high quality of life [3]. However, there are still some children
who are not diagnosed in time and miss the optimal surgery
period, resulting in a series of irreversible complications [4].

Prenatal screening for CHD can diagnose fetal CHD early and
recommend referral to a specialized medical institution, thereby
improving the survival rate and prognosis of the child. However,
prenatal diagnosis of CHD varies widely, with detection rates
ranging from 40% to 60% in developed countries [5], [6]. In
China, only 57.6% of the 130,000 new cases of CHD each year
can be diagnosed in fetal life by fetal heart ultrasound [7]. In
summary, nearly half of all children with CHD worldwide rely on
neonatal screening. Currently, pulse oximetry (POX) screening
is the most commonly used screening method for CHD, but this
method can only detect CHD with symptoms of hypoxia [8] and
the method is not applicable at the high altitude [9], [10]. Despite
the development of advanced cardiac monitoring and ultrasound
technologies, cardiac auscultation remains a common and most
cost effective measure for first-line screening due to higher costs
and varying medical conditions [11], [12].

However, cardiac auscultation is a skill that takes a long
period of training to master and requires an experienced physi-
cian to perform [13]. Qiu et al. found that in China, well-
trained doctors in secondary-care maternity hospitals still have
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poor clinical ability to diagnose CHD, and the auscultation
skills of neonatal or pediatric doctors are lower than their
peers in tertiary hospitals [14]. Moreover, the variability in
the judgment of different physicians and the lack of quanti-
tative indicators lead to a relatively low accuracy rate of this
method [15].

With the development of artificial intelligence (AI) technol-
ogy in recent years, the development of an objective and efficient
computer-assisted heart sound analysis system has become a
promising research area, and several research teams have pro-
posed multiple analysis algorithms to identify abnormal heart
sounds with a high accuracy rate [16], [17], [18]. Automated
heart sound analysis algorithms can reduce the workload of
physicians and improve the accuracy of screening [19]. How-
ever, the construction of a well-generalized heart sound analysis
model requires a large amount of, labeled heart sound data for
training and testing. Moreover, the robustness and accuracy of
these models are highly dependent on the quality of the heart
sound data. However, the number of open-access heart sound
databases currently available is limited, and the data annotations
included generally provide only normal or abnormal heart status
of the participants, lacking more detailed disease annotation.
And the existing publicly available databases have participants
who are mainly adults of a wide age range, with a distinct lack of
data on children’s heart sounds. Heart sounds collected in adults
cannot be directly used for training in the child heart sound
analysis model because of the presence of non-pathological
changes in children’s heart sounds, including accelerated heart
rate and physiological third heart sound (S3) [20].

To address these issues, this study presents the first open-
source heart sound dataset for children with CHD, which has
been constructed through systematic data collection and quality
control measures to address the challenges associated with the
lack of reliable and standardized heart sound databases for
pediatric patients. The dataset comprises a significant number
of high-standard, high-quality heart sound data with disease
annotations and corresponding ultrasound results, providing an
essential data source for researchers of intelligent auscultation
algorithms both nationally and internationally. The primary ob-
jective of this study is to advance the development and evaluation
of intelligent auscultation algorithms, thereby increasing the fea-
sibility of large-scale clinical application of artificial intelligence
technology in the context of CHD. Additionally, this study offers
a comprehensive exploration of the applications of the pediatric
CHD heart sound database, including the automatic diagnosis of
CHD based on the heart sound dataset. The main contributions
of this paper are presented as follows:

1) Open access database: Our open-access heart sound
database is currently the largest available for children
with congenital heart disease, comprising heart sound
recordings from 1259 participants. The database includes
693 normal heart sound audio data and 566 heart sound
audio data from patients with congenital heart disease,
with participants ranging in age from 1 d to 14 years.
The heart sounds were recorded using a uniform digital
stethoscope at a sampling frequency of 8000 Hz, and
saved in (.wav) format for accessibility.

Fig. 1. Four states of the cardiac cycle from a recorded
PCG(phonocardiography) signal by electronic stethoscope.

2) Label annotation method: In this study, categorical labels
were assigned based on cardiac ultrasound results, which
were used as the final annotation. To reduce inter-detector
variability, we used a uniform acquisition device for audio
recording, and uniform annotation of ultrasound results
was employed to ensure the reliability of the dataset.
The rest of the paper is organized as follows. Section II
describes the types of heart sounds and the current open
access heart sound database. Section III provides the
materials and methods of our database, including subject
recruitment, participant demographics, recording tools,
label annotation methods, and file naming. Section IV
describes the classification effects of different classifiers
on the dataset we built. Section V discusses the strengths
and limitations of our database in detail and compares our
database with other databases. Section VI concludes the
full paper and presents our future research plans.

II. PRELIMINARIES

A. Type of Heart Sound

The vibrations caused by heart activity such as contraction of
the heart muscle, closure of the heart valves, and blood hitting
the walls of the ventricles and aorta are transmitted through
the tissues to the surface of the chest and form an acoustic
signal called a heart sound [21]. These sound signals can be
perceived by the human ear or recorded by electronic devices.
The intensity, frequency, and correlation of heart sounds can
reflect the condition of the heart valves, myocardial function,
and intracardiac blood volume, and therefore the analysis of
heart sounds can be used to diagnose heart disease. The heart
sounds can be divided into four components according to the
order in which they appear in a cardiac cycle: first heart sound
(S1), second heart sound (S2), third heart sound (S3), and fourth
heart sound (S4). According to the echocardiogram, it can be
found that S1 occurs when the mitral and tricuspid valves go
from the open state to the closed state with a duration of about
0.05 to 0.15 s and a large amplitude. S2 is mainly formed
by the closure of the aortic and pulmonary valves and has a
duration of 0.03–0.12 s. S3 is usually heard only in children
and adolescents at a low frequency. S4 also known as the atrial
sound, appears at the end of diastole and cannot be heard under
normal circumstances. Fig. 1 illustrates a cardiac cycle with the
locations of the fundamental heart sounds S1 and S2 marked.
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B. Existing Open-Access Heart Sound Databases

In this section, we briefly describe the relevant and publicly
available heart sound datasets. We screened the datasets using
the following criteria: a) data were accessible online; b) rele-
vant to this study; and c) included information related to the
recordings (including number, frequency of recording, and lo-
cation of collection). Based on these criteria, three datasets were
selected and we will describe them in detail. . These datasets are
described in detail below.

1) The CirCor DigiScope Dataset [22]: This dataset con-
tains data on heart sounds collected during the “Caravana do
Coração” campaign, from 2014–2015. The database contained
a total of 5282 heart sound recordings from 1568 patients, of
whom 787 (50.2%) were male and 781 (49.8%) were female,
with participants ranging in age from 3 days to 30 years. The
heart sounds were acquired using a Littmann 3200 stethoscope
from four typical auscultation points (aortic valve region, left
ventricle, pulmonary valve region, and right ventricle) for 30 s
at a frequency of 4000 Hz. Quality assessment of heart sound
data and annotation of murmurs by two independent cardiac
physiologists. The acquired audio samples were automatically
segmented using three algorithms, and the segmentation re-
sults of the algorithms were examined independently by two
cardiac physiologists and the mutually exclusive results were
judged.

2) Heart Sounds Shenzhen Corpus (HSS) [13]: This
dataset collected heart sound data from 170 volunteers, with
participant ages ranging from 21 to 88 years old and an average
age of 66 years. Heart sounds were recorded from four typical
auscultation areas using an electronic stethoscope(Eko CORE,
USA)equipped with Bluetooth 4.0 technology, with 30 sec-
onds of recording for each area. The data was annotated using
echocardiography, which predicted regurgitation using the area
ratio of the mitral valve and tricuspid valve, classified as mild,
moderate, or severe. Accordingly, the heart sound dataset has
three categories: normal, mild, and moderate/severe.

3) DigiScope2017 Dataset [23]: The data on heart sounds
were collected from 29 healthy children with participants rang-
ing in age from 6 months to 17 years. The heart sounds were
acquired at the Royal Portuguese Hospital using a Littmann 3200
stethoscope with a duration of 2–20 s. The heart sounds were
acquired at 4000 Hz in the mitral position. The start and end
times of S1 and S2 were manually labeled by a cardiovascular
physician using software for these heart sound data.

4) 2016 PhysioNet Challenge Dateset [24]: This dataset is
the most commonly used in recent years, with the largest amount
of data and the widest range of participant ages. This data set
was assembled and collated from 9 separate datasets containing
a total of 2435 heart sound recordings from 1297 participants,
with participants ranging in age from 18 to 86 years and ac-
quisition durations of 8 to 312 s. Since the included datasets
use different sampling devices and sampling frequencies, all
audio files were re-sampled to 2000 Hz using filters and stored
in. wav format. Heart sounds are collected from four different
auscultation locations (aortic, pulmonary, tricuspid, and mitral),
and these data include not only clean heart sounds, but also very
noisy recordings.

Fig. 2. Location of heart sound collection.

III. OPEN-SOURCE ZJU PAEDIATRIC HEART SOUND

DATABASE WITH CONGENITAL HEART DISEASE(ZCHSOUND)

A. Subject Recruitment

The collection of heart sound data for this study was carried
out at three medical institutions in China: Children’s Hospital
of Zhejiang University School of Medicine, Hainan Women and
Children’s Medical Center, and Children’s Hospital of Kunming
Medical University. These hospitals all have a profound pediatric
professional background and rich clinical experience, providing
comprehensive and meticulous health care services for children.
Thus, the sample population is a good representation of the
Chinese pediatric population. All participants who volunteered
to participate in the study had informed consent from their
parents or guardians.

B. Sample Collection

The heart sound data used in this study were obtained using a
ChildCare G-100 smart stethoscope with a sampling frequency
of 8000 Hz and a quantization resolution of 16 bits. To ensure
the quality and reliability of the data, the collection process was
carried out by experienced physicians who were well-trained in
both specimen collection and clinical measurements. To ensure
consistency and validity, we collected all heart sound recordings
from subjects in a supine position using a smart stethoscope. The
stethoscope was placed between the second and third ribs at the
left edge of the sternum for cardiac auscultation. The ausculta-
tion position is illustrated in Fig. 2. The duration of each heart
sound recording ranged from 11 to 30 seconds per participant.
The collected audio data were subsequently uploaded to the
cloud for storage and further annotation. The specific acquisition
process is illustrated in Fig. 3.

C. Hand Corrected Signal Quality Labels

Collecting heart sounds from newborns and children poses
certain difficulties, as crying, coughing, intestinal movement,
and physical activity of the patients can generate additional
noise. Consequently, the collected heart sound data may include
a significant amount of low-quality data with noise. To facilitate
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Fig. 3. Data Collection Process.

the selection of appropriate data for analysis, we have annotated
the quality of these data. Experienced physicians have screened
the collected heart sound data, and we have selected noise-free
data to compose a clean and high-quality heart sound dataset.
The data containing noise has been used to form a noisy heart
sound dataset. In clinical environments, such noise is often
unavoidable and can result in errors and distortions in the heart
sound signal, affecting the feature extraction and recognition of
heart sound signals and reducing the accuracy of diagnosis sys-
tems. Retaining low-quality datasets can encourage researchers
to identify low-quality data and perform accurate analyses. We
have included heart sound data containing noise with clear noise
recordings of more than 7 seconds in the low-quality heart sound
dataset.

D. Label Annotations Methodology

Accurate labels are of great importance for accurately pre-
dicting heart sound classification problems. Echocardiography
can diagnose almost all heart defects [25]. In this study, all par-
ticipants underwent ultrasonographic examinations conducted
by an experienced sonographer, Yu. The ultrasound images and
reports were subsequently stored for further analysis. These
materials were meticulously reviewed by Ye, a sonographer
with over two decades of experience. The final diagnoses were
determined by seasoned cardiac surgeons, Shu and Xu, who
based their conclusions on the cardiac recordings and ultrasound
reports. These diagnoses were then utilized as data labels. The
specific process is shown in Fig. 4. Fig. 5(a)–(d) show the heart
sounds of a healthy child subject, a child with ventricular septal
defect (VSD), a child with atrial septal defect (ASD), and a child
with patent ductus arteriosus (PDA), respectively.

E. Database Description

This study has established the first high-standard, high-
quality, and disease-annotated database of pediatric CHD heart
sounds, as well as the first database of newborn CHD with
clinical noise and disease annotations. The high-quality heart
sound dataset contains 941 participants with a total of 941 audio
recordings, each approximately 20 seconds in length, resulting in
a total duration of more than 5 hours. The dataset consists of 473
females (50.27%) and 468 males (49.73%), including 533 par-
ticipants without heart disease serving as a control group, and the

Fig. 4. Data Annotation Process.

remaining patients diagnosed with various heart diseases such
as atrial septal defect (ASD), patent ductus arteriosus (PDA),
patent foramen ovale (PFO), ventricular septal defect (VSD),
comprising 119, 32, 70, and 187 cases, respectively. The age of
the participants ranged from 2 days to 14 years, with a mean
age of 3 years and a median age of 8 years. We also collected
318 low-quality, noise-containing recordings of neonatal heart
sounds to form a low-quality heart sound dataset, which included
318 participants, 160 of whom had no cardiac disease and served
as a control group, while the remaining patients were diagnosed
with cardiac diseases such as ASD, PDA, PFO, and VSD in
102, 7, 35, and 14 cases, respectively. All participants were
newborns within five days of birth. According to the National
Institute of Child Health and Human Development (NICHD)
Pediatric Terminology classification [26], our database includes
heart sound recordings from 327 neonates (26.0%), 286 infants
(22.7%), 619 children (49.2%), and 27 adolescents (2.1%).
Table I summarizes the detailed demographic information of
our heart sound database.

IV. EVALUATION METHODS

A. Training and Testing Sets

To assess the resilience and precision of the classification
model, we employed a random hierarchical data partitioning
approach in this study, dividing the dataset into a training set
and a test set. Specifically, 60% of the dataset was designated as
the training set, while the remaining 40% was allocated to the
test set.

B. Main Tasks

For the proposed database of children’s heart sounds we
propose two levels of classification tasks.
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Fig. 5. Characterization of Heart Sound Samples from Diverse Subjects: Segmenting S1 (green lines) and S2 (red lines) Boundaries with Time
(Sample Points) on the x-axis and Normalized Amplitude on the y-axis. (a) A normal pediatric heart sound from our dataset. (b) A ASD pediatric
heart sound from our dataset. (c) A VSD pediatric heart sound from our dataset. (d) A PDA pediatric heart sound from our dataset.

TABLE I
DEMOGRAPHIC, DIAGNOSTIC AND AGE GROUPING INFORMATION FOR PARTICIPANTS

Task 1 (heart sound classification, based on a clean, high-
quality heart sound dataset)

Task 1-1 involves binary classification, specifically designed
to differentiate between normal heart sounds and heart sounds
associated with CHD.

Tasks 1-2 is designed as multiclass classifications that aim
to classify heart sounds into five categories, including normal,
ASD, VSD, PDA, and PFO.

Task 2 (heart sound classification, based on noisy low-
quality heart sound dataset)

Task 2-1 is a binary class classification designed to divide
heart sounds into normal heart sounds and CHD heart sounds.

Tasks 2-2 are designed as multiclass classifications that aim
to classify heart sounds into five categories, including normal,
ASD, VSD, PDA, and PFO.

C. Evaluation Metrics

To provide a standard validation criteria, we introduced the
following metrics, including Accuracy (ACC), Sensitivity (SE),
Specificity (SP), and F1-score (F1). They are defined as.

ACC(Accuracy) =
TP + TN

TP + TN + FN + FP
(1)

SE(sensitivity) =
TP

TP + FN
(2)

SP (specificity) =
TN

TN + FP
(3)

F1 =
2× Precision× SE

Precision+ SE
(4)

D. Classification Framework for Database Quality
Evaluation

This work presents a framework for the classification of high-
quality (task 1) and low-quality (task 2) heart sound data, which
involves three steps: preprocessing, feature extraction, and clas-
sification. The process is shown in Fig. 6. The preprocessed heart
sound data is feature-extracted to generate feature vectors, which
are then input into a classifier for classification. Prior studies
have shown that combining feature extraction and classifiers
can be effective for classification [27], [28], and efficient feature
extraction methods have also led to significant results on small
datasets using machine learning models [29], [30], [31]. To avoid
overfitting, we chose to use a machine learning model, and
we evaluated the effects of different machine learning model
training approaches based on our database.
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Fig. 6. Flow of sound classification framework for high-quality heart sound data and low-quality heart sound data.

TABLE II
BRIEF INTRODUCTION FOR THE 84 TIME-FREQUENCY DOMAIN FEATURES

Pre-processing Methods The performance of classification
can be improved by using signal denoising and resampling tech-
niques [32]. During auscultation, background noise is inevitably
recorded along with the heart sounds. In order to capture the
complete information within heart sound signals, according to
the Nyquist sampling theorem, we need a minimum sampling
rate of 1000 Hz to cover the frequency range of heart sounds
(20–500 Hz). However, to reduce computational resource re-
quirements and mitigate the impact of high-frequency noise,
while maintaining the integrity of the heart sound data, we have
chosen to downsample the heart sound signals from 8000 Hz
to 2000 Hz. This downsampling strategy, while ensuring data
quality, significantly reduces data file sizes and computational
resource demands. A third-order Butterworth bandpass filter
with a passband of 20–650 Hz was applied to denoise the signal,
retaining only the heart sounds in the frequency range of 20 Hz
to 650 Hz [33]. Finally, the denoised signal was normalized to
a range of −1 to 1.

Feature extraction methods In this study, we adopted the
method proposed by Xu et al. [34] and combined it with relevant
research to extract 84 effective temporal and spectral heart sound
features based on segmented cardiac cycles for heart sound clas-
sification. Firstly, the candidates for S1 and S2 were determined
by averaging normalized Shannon energy envelopes. Then, the
maximum distance between adjacent candidates was used to
complete the segmentation of S1 and S2 heart sound cycles.
Subsequently, time and frequency features were extracted in
different stages of each cardiac cycle (S1, systole, S2, and
diastole).

For the time domain features, we calculated the duration,
skewness, kurtosis, mean, and standard deviation of short-term
energy for each stage, as well as the mean and standard devi-
ation of the ratio of S1 to systolic pressure and S2 to diastolic
pressure over the duration. These 36 features are summarized
in Table II. As for spectral features, we utilized the average of
12 Mel-frequency cepstral coefficients (MFCCs) [35] for each

TABLE III
TRAINING CONFIGURATIONS

stage, resulting in 48 spectral features of the PCG. In summary,
we extracted a total of 84 features for each cardiac cycle,
comprising 48 spectral features and 36 temporal features. These
features can be employed to train machine learning models for
heart sound classification tasks.

Classification Models Machine learning models are usually
used as the main heart sound classification models with better
classification results in small sample sizes [36]. Such as Sup-
port Vector Machine (SVM), Random Forest (RF), K-Nearest
Neighbor (KNN), and Adaboost we also explored the effect of
the above classifiers to get the basic classification results for
comparison. For a fair comparison, we use uniform parameters
for model training, and the detailed configuration is shown in
Table III.

E. Evaluation Results

Using the scikit-learn library [37], we implemented and
evaluated a classification framework for each task using ma-
chine learning models and investigated the impact of different
classifiers on classification performance for a total of four
models. The F1 values of each model are shown in Fig. 7.

Fig. 7 depicts the classification results of four classifiers on
high-quality and low-quality heart sound data. The RF classifier
yielded the highest F1 score for both Task 1-1 and Task 1-2. On
the other hand, the KNN classifier showed better classification
performance for Task 2-1 and Task 2-2. Based on the experi-
mental comparison results, we used the RF and KNN models
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Fig. 7. Classification effects of different classifiers in task1-1, task1-2,
task2-1, and task2-2.

TABLE IV
SUMMARY OF THE BEST CLASSIFICATION RESULTS FOR EACH TASK

for Task 1 and Task 2, respectively. As shown in Table IV, the
F1 scores for Task 1-1, Task 1-2, Task 2-1, and Task 2-2 were
0.903, 0.934, 0.623, and 0.466, respectively.

Fig. 8 presents the confusion matrices for each task, where the
x and y axes represent the predicted and true labels, respectively.
The diagonal values represent the number of correctly identified
heart sound recordings. It is observed that the best classification
performance for both task 1 and task 2 is achieved for the normal
class, which is the majority class, whereas the worst performance
is observed for a few classes in each task.

We computed the feature importance score of all variables to
identify the important features used by the model that distin-
guish normal and Pathological heart sounds in children. Fig. 9
provides a visual representation of the top 20 most important
features employed by the model, with each feature’s importance
indicated on the y-axis. These variables encompass a total of 36
time-domain features and 48 frequency-domain features.

Fig. 9 shows that frequency-domain features exhibit a more
significant influence on the model’s output compared to time-
domain features. Additionally, features associated with the sys-
tolic phase of the cardiac cycle hold a greater prominence in
influencing the model’s classification outcomes in comparison
to diastolic phase-related features.

V. DISCUSSIONS

In this study, we collected and annotated the ZJU Database
of Heart Sounds in Children with Congenital (ZCHSound),
which is currently the largest participant-based dataset of heart
sounds in children with CHD, containing 1259 heart sound
recordings from 1259 participants. The data was labeled based
on the physician’s final diagnosis. This includes four types of
congenital heart diseases - ventricular septal defect, atrial septal

defect, arterial ductus arteriosus, patent foramen ovale - and
normal heart sounds. Compared to existing databases like CirCor
DigiScope Dataset [22], Heart Sound Shenzhen Corpus [13],
and PhysioNet Challenge Dateset [24], our database places a
greater emphasis on classifying heart sounds in infants, children,
and adolescents. The age distribution of participants in the
CirCor DigiScope Dataset ranged from 0–30 years of age, the
DigiScope2017 Dataset participants ranged from 0–17 years
of age, the participants in the Heart Sound Shenzhen Corpus
were mostly older adults with an average age of 66 years old,
and the PhysioNet Challenge Dateset participants ranged from
18–86 years of age. Table V provides a detailed comparison
of our database with these existing databases. PhysioNet Chal-
lenge Dataset data comes from 9 independent datasets, which
means that the consistency of the data is yet to be examined;
our data uses a unified acquisition device, which ensures the
quality and consistency of the heart sound signals and avoids the
errors generated by different devices. Furthermore, compared
to other publicly available datasets, our data collection uses a
higher acquisition frequency, which helps us capture the details
and characteristics of heart sound signals more accurately. In
addition, we retain low-quality heart sound data that contains
noise so that researchers can study innovative algorithms that are
more compatible with clinical use. In the data labeling process,
we used a three-level labeling method. First, we categorized the
data into a high-quality heart sound dataset containing clean
heart sounds and a low-quality heart sound dataset containing
clinical noise based on the presence of any noise. Second, all
participants underwent cardiac ultrasound by an experienced
sonographer. The ultrasound results and cardiac images obtained
from the ultrasound were uploaded to the cloud for storage, and
the ultrasound results were reexamined by an experienced sono-
grapher. Finally, two cardiac surgeons diagnosed the patients
based on the ultrasound results and the heart sound recordings,
which were labeled as the disease for this heart sound recording.

Our data library offers an open-access resource for the de-
velopment of heart sound classification algorithms in children
with CHD. The dataset serves two primary purposes: it can be
utilized to develop robust models through training on heart sound
data, and it helps reduce healthcare resource wastage and disease
burdens by enhancing CHD auscultation screening through the
utilization of heart sound-based knowledge. Additionally, our
dataset includes low-quality heart sound data, which offers
a great opportunity for researchers to develop algorithms for
recognizing low-quality heart sounds or reducing noise in heart
sound data.

In this study, we established a comparative baseline database
using machine learning models, which drew inspiration from
prior research. This serves as a starting point for researchers
and algorithm engineers to further develop intelligent PCG
algorithms, aiding physicians in more precise diagnosis of CHD.
Our experimental results indicate that the quality of PCG sig-
nificantly impacts the performance of machine learning models.
Therefore, in this study, we retained a dataset of low-quality
heart sound data, encouraging future researchers to utilize such
low-quality data to construct high-performance algorithms and
enhance the robustness of the models.
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Fig. 8. Confusion matrix of Task 1-1 (a), Task 1-2 (b), Task 2-1 (c), and Task 2-2 (d).

TABLE V
SUMMARY OF EXISTING PUBLICLY AVAILABLE HEART SOUND DATASETS

Fig. 9. Feature importance ranking based on SHapley Additive exPla-
nations (SHAP) values in RF model.The features have been ranked
based on the cumulative sum of their SHAP values across all PCGs.
SHAP values are employed to illustrate how each feature impacts the
RF model outputs. In the visual representation, red signifies high feature
values, while blue corresponds to low feature values. The x-axis reflects
the influence of SHAP values on the model output.

Additionally, we conducted an analysis of the 84 time-
frequency features mentioned in the manuscript to evaluate their
significance in influencing model outputs. The results reveal
that frequency-domain features hold higher importance among
these features, particularly those associated with the cardiac
systolic phase when compared to other phases of the cardiac
cycle. This observation can be attributed to the fact that car-
diac murmurs predominantly occur during the cardiac systole,
thus exerting a more significant influence on the classification
outcomes.

There are several limitations to our study. First, our partici-
pants are exclusively from China, which limits the generalizabil-
ity of our findings. To create a more comprehensive database,
we need to include participants from various regions around the
world. Additionally, our heart sound data acquisition process
only considers one auscultation position. While this approach
improves the data’s comparability and accuracy, it neglects
important characteristics of other areas of the heart, leading to
an incomplete evaluation of cardiac status. Lastly, there is a po-
tential for bias in data annotation since all annotating physicians
come from the same hospital with similar clinical training. To
address these limitations, our next steps involve expanding the
number and diversity of participants and physicians involved in
our study. Furthermore, we plan to include other auscultation
positions for heart sound data collection, thus enhancing the
richness of our dataset.

VI. CONCLUSION

We completed the development of an open-access pediatric
CHD heart sound database (ZCHSound) containing heart sound
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recordings from 1259 participants. To ensure the quality of the
heart sound data, we divided the dataset into two categories:
clean, high-quality heart sound datasets and noisy, low-quality
heart sound datasets. To ensure the reliability of data labeling,
we established a more complete and comprehensive labeling
process. Finally, we investigated different classifier’s classifica-
tion performance on these two datasets. Our data can be accessed
and downloaded by the public at http://zchsound.ncrcch.org.cn/.
We anticipate that our heart sound database will provide valu-
able support for the development of digital diagnostic tools
for children with CHD and will contribute to the refinement
and optimization of heart sound auscultation algorithms for this
population.

Furthermore, the demand for digital-assisted diagnosis of
CHD is particularly pressing in hospitals with limited health-
care resources. As such, we aim to collect and annotate heart
sound screening data from multiple primary care hospitals, and
subsequently make this dataset publicly available. It is our hope
that the heart sound database we have created, which focuses on
children with CHD, will facilitate the development of automated
heart sound classification algorithms and drive the advancement
of digital diagnostics for CHD. Ultimately, we believe that
this work will contribute to improving the safety and well-
being of children with CHD, particularly in resource-constrained
settings.
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