
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 71, NO. 7, JULY 2024 2253

Learning-Assisted Fast Determination of
Regularization Parameter in Constrained

Image Reconstruction
Yue Guan , Member, IEEE, Yudu Li , Member, IEEE, Ziwen Ke , Xi Peng , Member, IEEE,

Ruihao Liu , Yao Li , Senior Member, IEEE, Yiping P. Du , Senior Member, IEEE,
and Zhi-Pei Liang , Fellow, IEEE

Abstract—Objective: To leverage machine learning (ML)
for fast selection of optimal regularization parameter in
constrained image reconstruction. Methods: Constrained
image reconstruction is often formulated as a regulariza-
tion problem and selecting a good regularization param-
eter value is an essential step. We solved this problem
using an ML-based approach by leveraging the finding that
for a specific constrained reconstruction problem defined
for a fixed class of image functions, the optimal regular-
ization parameter value is weakly subject-dependent and
the dependence can be captured using few experimental
data. The proposed method has four key steps: a) so-
lution of a given constrained reconstruction problem for
a few (say, 3) pre-selected regularization parameter val-
ues, b) extraction of multiple approximated quality met-
rics from the initial reconstructions, c) predicting the true
quality metrics values from the approximated values using
pre-trained neural networks, and d) determination of the
optimal regularization parameter by fusing the predicted
quality metrics. Results: The effectiveness of the proposed
method was demonstrated in two constrained reconstruc-
tion problems. Compared with L-curve-based method, the
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proposed method determined the regularization param-
eters much faster and produced substantially improved
reconstructions. Our method also outperformed state-of-
the-art learning-based methods when trained with limited
experimental data. Conclusion: This paper demonstrates
the feasibility and improved reconstruction quality by using
machine learning to determine the regularization parameter
in constrained reconstruction. Significance: The proposed
method substantially reduces the computational burden of
the traditional methods (e.g., L-curve) or relaxes the re-
quirement of large training data by modern learning-based
methods, thus enhancing the practical utility of constrained
reconstruction.

Index Terms—Regularization parameter selection,
constrained image reconstruction, machine learning,
optimization.

I. INTRODUCTION

IMAGE reconstruction using a priori constraints, such as spar-
sity, low-rankness, and machine learning priors, is playing an

increasingly important role in MRI applications [1], [2], [3]. A
common approach to enforcing a priori constraints is to use the
regularization framework [4], [5]. This framework consists of
a weighted sum of two objective functions, one promoting data
consistency and the other incorporating a priori information. The
relative “weight” of the two objective functions is controlled by
a regularization parameter whose value can have a significant
impact on the quality of the resulting reconstructions.

A number of methods have been proposed for automatic se-
lection of the regularization parameter, which include L-curve-
based methods [6], [7], [8], [9], [10], generalized cross validation
(GCV)-based methods [11], [12], [13], [14], [15], [16], [17]
and Stein’s unbiased risk estimate (SURE)-based methods [14],
[18], [19], [20], [21], [22]. These methods have been applied
to various constrained reconstruction problems in MRI, e.g.,
parallel imaging [23], [18], chemical shift imaging [24], quan-
titative susceptibility mapping [25], [26] and functional MRI
[27]. However, they often require long computation time due
to repeated solution of the underlying optimization problem
[24], [28] and/or lead to sub-optimal reconstruction (e.g., blurred
images) [14], [19], [29], [30].

Deep learning (DL)-based methods have also been proposed
for selection of the regularization parameter. These methods are
computationally efficient after training. Currently, there are three
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main approaches to DL-based selection of the regularization
parameter: 1) learning a nonlinear mapping that predicts the
optimal regularization parameter directly from the measured
data [31], 2) simultaneously learning both the regularization
parameter and regularization functional through an unrolled
network [32], [33], [34], [35], [36], [37], [38], [39], and 3) us-
ing reinforcement learning to tune the regularization parameter
value [40]. Although the existing DL-based approaches show
improvement over traditional methods in some applications,
they are limited by the requirement of large experimental data.
When very limited experimental data are available as often the
case in medical imaging applications, these approaches are prone
to have poor generalization capability [41], [42]. Although a
transfer-learning-based approach has been proposed to address
this issue, it still requires more than tens of training images
for network fine-tuning, which may be expensive for some
applications [43].

In this work, we propose a novel learning-based method
for fast determination of the regularization parameter, which
requires very limited experimental data for training (e.g., 2
subjects). Our method is based on the observation that for a
particular reconstruction problem and a given class of image
functions (e.g., brain images acquired from different subjects
with the same data acquisition sequence), the optimal regulariza-
tion parameter value is weakly dependent on the subject scanned.
In other words, for a given constrained image reconstruction
problem (e.g., sparsity-constrained parallel imaging), if the op-
timal parameter values were learned from a few representative
samples of an image class, the optimal value can be predicted
for other members of the image class. The proposed method has
four key steps: a) solution of a given constrained reconstruction
problem for a few (say, 3 in this work) pre-selected values of the
regularization parameter, b) extraction of multiple approximated
image quality metrics from the initial reconstructions, c) predict-
ing the true quality metrics values from the approximated values
using pre-trained neural networks, and d) determination of the
optimal value for the regularization parameter by fusing the
predicted image quality metrics values. Details of the proposed
method are given in the subsequent sections.

II. METHODS

A. Problem Formulation

The measured imaging data in many MRI applications can be
expressed in matrix-vector form as:

d = Eρ+ ε, (1)

where E ∈ CP×Q denotes the encoding operator, d ∈ CP×1

the measured data, ρ ∈ CQ×1 the desired (ground truth) image,
and ε ∈ CP×1 the measurement noise. Given the measured data
d, reconstruction of ρ is often solved using the regularization
framework:

ρ∗ (λ) = argmin
ρ

||d−Eρ||22 + λR (ρ) , (2)

where R(·) is a regularization functional incorporating a priori
information about ρ (e.g., the sparsity constraint through an
L1-based regularization [44]); λ is the regularization parameter.

Here, we explicitly express the dependence of the final recon-
struction on λ as ρ∗(λ).

This paper addresses the problem of selecting an “optimal”
value for λ, denoted as λ∗. Mathematically, this problem can be
formulated as the following optimization problem:

λ∗ = argmin
λ

L (ρ, ρ∗ (λ)) , (3)

whereL(·) is a cost function (or optimality criterion often called
quality metric) quantifying the quality of the reconstruction
ρ∗(λ). This work considers two optimality criteria: the mean
squared error (MSE) and the structural similarity index measure
(SSIM). The MSE measures the difference between the recon-
struction ρ∗(λ) and the ground truth ρ:

LMSE =
1

N
‖ρ− ρ∗ (λ) ‖22 . (4)

The SSIM [45] is defined as:

LSSIM = − [(2μρ∗μρ + c1) (2σρ∗ρ + c2)][(
μ2
ρ∗ + μ2

ρ + c1
) (

σ2
ρ∗ + σ2

ρ + c2
)] , (5)

where μρ∗ , μρ, σρ∗ , σρ, σρ∗ρ are the voxel mean, variance and
covariance of the reconstructed and ground truth images, c1 and
c2 the constants used to stabilize the division, N the total number
of image pixels. We denote LMSE or LSSIM as LTarget for notation
simplicity.

A major practical problem in utilizing LTarget to guide the
selection of λ is that the optimization problem in (3) involves
repetitively solving (2) for a number of candidate λ values,
leading to long computational time (especially when (2) admits
no analytical solutions and an iterative optimization algorithm is
needed). In addition, calculating LTarget requires the knowledge
of the ground truth image, ρ, which is not available in practice.
We solve the aforementioned problems using a novel machine
learning-based method that requires a very few experimental im-
ages for training, which are available in most MRI applications.

B. Learning-Based Determination of Optimal
Regularization Parameter

The proposed method uses a machine learning approach to
directly predict the true quality metrics values, including LTarget,
as well as the data consistency, ||d−Eρ∗(λ)||22 (denoted as
LDC), and the regularization level, R(ρ∗(λ)) (denoted as LREG),
as calculated in the L-curve-based methods. A key feature of
the proposed method is that it requires neither the knowledge of
the ground truth image, ρ, nor the solutions to the constrained
reconstruction in (2) for a range of candidate λ values (i.e., the
true reconstructions {ρ∗(λm)}Mm = 1)

The approach is motivated by the finding that for a particular
reconstruction problem and a given class of image functions
(e.g., the set of images obtained from the same organ (e.g., the
brain) using the same data acquisition set-up (e.g., sequence,
imaging parameters, and type of hardware)), the variations of
LDC, LREG and LTarget across different subjects showed very
small variations for a given λ, which can be seen from the
surface plots (as illustrated in Fig. 1 obtained using T1POST
brain images from fastMRI database [46]) along the horizon-
tal axis (labeled as “different subjects”). The optimal regular-
ization parameter λ∗ for different subjects also showed small
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Fig. 1. Illustration of the weak subject dependency of the optimal
regularization parameter in sparsity-constrained parallel imaging recon-
struction of the brain images using fastMRI dataset: (a) small variation of
the data consistency metric and optimal regularization parameter value
with respect to different subjects, (b) and (c) are similar results for the
regularization and the target metric (SSIM), respectively. The red points
indicate the values of different metrics for the optimal regularization
parameter values.

fluctuations, which corresponds to the surface points marked in
red. Their dependence on the subjects can be learned using a very
small set of experimental data (whose ground truth images are
available) and then be used for prediction for a new data. More
specifically, the proposed method first solves a given constrained
reconstruction problem for a very few (say, 3 in this study)
pre-selected values of λ; based on these initial reconstructions,
approximated image quality metrics, L̃DC, L̃REG and L̃Target, are
extracted and used to predict the true LDC, LREG and LTarget,
respectively, using pre-trained neural networks; the predicted
image quality metrics are then fused together to determine
the desired λ∗ using another pre-trained neural network. An
overview of the proposed method is illustrated in Fig. 2, and
its details are provided below.

First, the proposed method solves (2) to perform initial re-
constructions using 3 pre-selected regularization parameters,
denoted as λ1, λ2 and λ3. Here, λ2 is set as the average of the op-
timal regularization parameters of the training data, representing
a typical value for λ∗. λ1 and λ3 are set as the under-enforced
and over-enforced regularizations, respectively, representing the
lower and upper bounds for the search interval of λ∗. The specific
choice for λ1 and λ3 are flexible as long as λ∗ ∈ [λ1, λ3].
The resulting initial reconstructions (i.e., ρ∗(λ1), ρ∗(λ2) and
ρ∗(λ3)) are three sparse samples of the function ρ∗(λ). Since
determination of λ∗ often requires dense sampling of ρ∗(λ),
to avoid repeatedly solving the image reconstruction problem,
we use interpolation to efficiently generate samples between
ρ∗(λ1) and ρ∗(λ3). More specifically, we use the following
linear interpolation in our current implementation:

ρ̃ (λ) =

⎧⎪⎪⎨
⎪⎪⎩

c (λ; λ1, λ2) · ρ∗ (λ1)
+ (1− c (λ; λ1, λ2)) · ρ∗ (λ2) , if λ1 ≤ λ < λ2

c (λ; λ2, λ3) · ρ∗ (λ2)
+ (1− c (λ; λ2, λ3)) · ρ∗ (λ3) , if λ2 ≤ λ < λ3

with c (λ; λ1, λ2) =
log10(λ)−log10(λ1)
log10(λ2)−log10(λ1)

,

c (λ; λ2, λ3) =
log10(λ)−log10(λ2)
log10(λ3)−log10(λ2)

. (6)

The resulting interpolated images are denoted as
{ρ̃(λm)}Mm = 1, corresponding to {λm}Mm = 1. Note that
although the interpolated images {ρ̃(λm)}Mm = 1 were different
from the true reconstructions {ρ∗(λm)}Mm = 1, the image
quality metrics resulting from them were highly correlated (as
demonstrated in the Results section). Therefore, {ρ̃(λm)}Mm = 1

can be viewed as a good surrogate of {ρ∗(λm)}Mm = 1.
With the interpolated images, {ρ̃(λm)}Mm = 1, instead of

directly using them as the network input to predict LDC,
LREG and LTarget, we extract three approximated metrics from
{ρ̃(λm)}Mm = 1 to reduce the learning complexity, which include
the data consistency L̃DC (i.e., ||d−Eρ̃(λm)||22), the regular-
ization level L̃REG (i.e., R(ρ̃(λm))), as well as the target image
quality metric L̃Target (i.e., MSE in (4) or SSIM in (5)) as the
network input. While the first two approximated metrics (i.e.,
L̃DC and L̃REG) are straightforward to calculate, the target image
quality metric requires the knowledge of the desired image
function ρ that is not available. To address this problem, we
use a neural network to generate an approximate image ρref
as a surrogate for the ground truth image ρ. More specifically,
we adopt the widely used conditional generative model, Pix2Pix
GAN [47], which takes the initial reconstruction ρ∗(λ2) as input
and is trained to predict ρ. Since the experimental training data
are very limited, we train the network in a patch-to-patch manner
following [48]. The loss function is the same as that used in
[48], which is a combination of the L1 distance loss and the
adversarial loss [47]. Note that although the generated imageρref
is different from the ground truth ρ, it is sufficient for extracting
approximated target image quality metric as demonstrated in the
Results section.

After the approximated image quality metrics are extracted,
we use curve-to-curve nonlinear mapping networks to predict
the “true” image quality metrics (i.e., LDC, LREG and LTarget

calculated using {ρ∗(λm)}Mm = 1) from the approximated ones
(i.e., L̃DC, L̃REG and L̃Target calculated using {ρ̃(λm)}Mm = 1).
More specifically, these nonlinear mapping networks are de-
signed as three independent multi-layer perceptron (MLP)
neural networks with each network performing one nonlin-
ear mapping task for the data consistency, regularization, and
the target quality metric, respectively. Taking the nonlinear
mapping task for data consistency as an example, the MLP
takes {L̃DC(λm)}Mm = 1 as input and is trained to predict
{LDC(λm)}Mm = 1. Each nonlinear mapping network is trained
independently by minimizing the MSE error between the pre-
dicted and the desired image quality metric values. The network
architecture is shared among different networks, which includes
1 input layer, 3 hidden layers and 1 output layer; each hidden
layer has 32 neurons followed by batch normalization and rec-
tified linear unit (ReLU) activation; the output layer is activated
by the sigmoid function.

Finally, we fuse the predicted image quality metrics to deter-
mine the optimal regularization parameter λ∗. This is achieved
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Fig. 2. Schematic overview of the proposed machine learning-based scheme for fast regularization parameter selection. Our method consists of
four main steps: (a) initial reconstructions of the given constrained reconstruction problem using a few pre-selected regularization parameter values,
(b) extraction of approximated quality metrics from the initial reconstructions, (c) prediction of the true quality metrics values from the approximated
values using pre-trained neural networks, and (d) prediction of the optimal regularization parameter value based on fusion of the image quality
metrics.

using another MLP network that takes all the predicted metrics
as the input and outputs the predicted λ∗. More specifically, the
designed network (see Fig. S1 in the supplementary material
for an illustration) consists of two branches, one branch taking
the predicted data consistency and regularization metrics values
(concatenated as a vector) as the input and the other taking the
target image quality metric values as the input. Each branch has 4
fully connected layers; the first 3 layers have 16 neurons and the
last layer has one neuron. The last one neuron from each branch
is then concatenated and passes to the final decision neuron. All
neurons use ReLU as the activation function. The network is
trained to minimize the MSE error between the predicted and
true optimal regularization parameter value determined under
the desired optimality criterion. Note this fusion step takes
advantage of the complementary information that each metric
contains for predicting λ∗. We demonstrate its benefit over using
only a single metric in the Results section.

After all the networks are properly trained, determination of
the regularization parameter can be done very efficiently at the
inference stage using the following algorithm:

1) Solution of a given constrained reconstruction problem
for 3 pre-selected values of the regularization parameter,
denoted as ρ∗(λ1), ρ∗(λ2) and ρ∗(λ3).

2) Interpolating ρ∗(λ1), ρ∗(λ2) and ρ∗(λ3) based on (6) to
generate {ρ̃(λm)}Mm = 1.

3) Generating the reference image ρref for the target image
quality metric extraction (i.e., MSE in (4) or SSIM in (5))
using the pre-trained patch-based pix2pix GAN with the
initial reconstruction ρ∗(λ2) as input.

4) Extraction of the approximated image quality metrics
values including the data consistency, the regularization
as well as the target image quality metric value.

5) Mapping each approximated image quality metric value
to the corresponding “true” image quality metric value

using pre-trained curve-to-curve nonlinear mapping net-
work.

6) Determination of the final value of the optimal regular-
ization parameter λ∗ using the pre-trained fusion-based
network with all the predicted metrics as input.

C. Implementation Details

For all the MLP networks, they were implemented in Tensor-
flow. Network training was done using the Adam algorithm [49]
with a learning rate of 10−6, batch size 32. Each network was
trained independently using 1 NVIDIA TITAN Xp GPU. The
training time for each network was about 1 hour. For patch-based
Pix2Pix GAN, the original public code implemented in Pytorch
was used with the patch size setting to 32 × 32. The network
was also trained using the Adam algorithm with a learning rate
of 10−3, batch size 256. The training time was about 2 hours
using 4 NVIDIA TITAN Xp GPUs.

III. EXPERIMENTAL SETTING

A. Constrained Reconstruction Scenarios and Optimality
Criterion for λ∗

We evaluated the performance of the proposed method in 2
reconstruction scenarios with different regularizers: a) parallel
imaging reconstruction with sparsity-promoting regularization,
and b) accelerated dynamic imaging with low-rank regular-
ization. Details of each reconstruction scenario are provided
below.

For parallel imaging reconstruction, the following com-
pressed sensing (CS-SENSE) formulation was considered:

ρ∗ = argmin
ρ

N∑
n=1

||dn −ΩFSnρ||22 + λ||Ψρ||1 (7)
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where N is the number of receiver coils; dn and Sn are the
measured data and sensitivity profile of the nth coil; Ω, F , and
Ψ are the operators of k-space sampling, Fourier transform,
and total variation, respectively. The optimization problem was
solved using the alternating direction method of multipliers
(ADMM) algorithm [50].

For dynamic imaging, the following low-rankness constrained
formulation was adopted:

ρ∗ = argmin
ρ

N∑
n=1

||dn −ΩFSnρ||22 + λ||Rρ||∗, (8)

whereR is a linear operator that regroupsρ to a Casorati matrix,
and || · ||∗ the nuclear norm that promotes low-rankness. The
optimization problem was solved using the iterative singular
value thresholding (IST) algorithm [51].

To demonstrate the flexibility of the proposed method to
optimize different target image quality metrics, we used SSIM
as the optimality criterion for choosing the optimal regulariza-
tion parameter value in parallel imaging and MSE in dynamic
imaging. The selection interval for λ∗ was set as [10−4, 10−1]
(i.e., λ1 = 10−4 , λ3 = 10−1 ) which contains the optimal regu-
larization parameter (with λm uniformly distributed in log scale,
leading to a total number of 31 candidates).

B. Datasets and Preprocessing

For parallel imaging, multi-coil T1POST brain images from
the NYU fastMRI dataset [46] were used. Undersampled mea-
surements were retrospectively obtained using 1D random
Cartesian sampling pattern with center k-space (24 lines) fully
sampled and were scaled to have a maximum magnitude value
of 1 prior to reconstruction. The total acceleration factor was
3.5. The sensitivity maps were estimated from the fully sampled
center k-space using ESPIRT [52]. To test the generalization
capability, images without lesions were used in training whereas
lesion images were used for testing.

For dynamic imaging, cardiac cine images were collected
from healthy volunteers on a 3T Siemens Trio scanner (Erlan-
gen, Germany) with a 20-channel receiver coil array using the
retrospective electrocardiogram (ECG)-gated segmented bSSFP
sequence. The experiments were approved by the local Insti-
tutional Review Board, and informed consents were obtained
from the volunteers. The following sequence parameters were
used: FOV = 330 × 330 mm, acquisition matrix = 256 × 256,
slice thickness = 6 mm, and TR/TE = 3.0 ms/1.5 ms. Retro-
spective undersampling was performed using a variable density
incoherent spatiotemporal acquisition (VISTA) mask [53] with
a factor of 6 acceleration. The undersampled measurement was
also scaled to have a maximum magnitude value of 1 prior to
reconstruction. The sensitivity maps were estimated from the
central fully sampled k-space region using ESPIRT [52].

For each reconstruction scenario, a total number of 10 slices
from 2 subjects were selected as training experimental data and a
total of 100 slices from other 20 subjects were used for testing. In
addition, in the training stage, we performed data augmentation
to mimic the effect of different experimental variations on λ∗.
More specifically, a simulator was designed to generate varying
noise levels and experimental settings that may be encountered

in practical situations. For data augmentation with noise, we
retrospectively added white Gaussian noise to the measured
data to produce a range of SNR levels (15dB-30dB). For data
augmentation with different experimental settings, we rescaled
the original images with variable sizes (75%-110%) to mimic the
variations in FOV in practice. In our current implementation, we
augmented each experimental training sample with 25 different
SNR levels and 6 different FOVs, leading to 150 times expansion
of the training experimental data.

C. Baseline Models

To evaluate the performance of the proposed method, we com-
pared it with both traditional and advanced learning-based meth-
ods, including the L-curve method, deep neural network (DNN)-
mapping [31] and End-to-End Variational Network End2End
VN) [36]. The L-curve method selected the optimal regular-
ization parameter by balancing between the data fidelity term,
||d−Eρ̂(λ)||22, and the regularization term, R(ρ̂(λ), which
corresponds to the maximal curvature of the L-shaped curve [7].
The search interval for λ∗ was set as the same as the proposed
method for fair comparison. The Triangle method [54] was used
to locate the optimal regularization parameter.

DNN-mapping directly predicts the optimal regularization
parameter from the measured data using neural networks [31].
Here, we used a convolutional neural network as in the origi-
nal work with some minor modifications for our applications.
Specifically, the network contains 3 convolutional blocks and 3
fully connected layers. Each convolutional block consisted of
a 5 × 5 convolution layer followed by batch normalization,
a ReLU and a 2 × 2 max polling layer with a stride of 2
for down-sampling; each fully connected layer had one neuron
with ReLU activation function. Note that, for dynamic imaging,
the kernel sizes were set to 3 × 3 × 3 and 2 × 2 × 2 in
the convolution layer and max pooling layer, respectively, to
accommodate 2D+t dataset [39]. The network parameters were
optimized by minimizing the MSE loss as in the original paper
using the Adam algorithm with a learning rate of 10−5.

End2End VN learns both the regularization parameter and
regularization function from training data for CS-SENSE.
The network parameters were optimized by minimizing the
SSIM loss between the reconstruction and the ground truth,
which was the same with the proposed method and fol-
lows the original paper. We trained the network using
the open-source code provided by the authors (code ad-
dress: https://github.com/facebookresearch/fastMRI/tree/main/
fastmri_examples/varnet) without changing the network archi-
tecture. In addition, we also added more data augmentations
by including random image flipping, rotating and shifting as
commonly done in neural network training.

IV. RESULTS

A. Comparison to Other Methods

Fig. 3 compared a set of representative reconstruction re-
sults of parallel imaging obtained using different methods at
various noise levels and with multiple FOV settings. As
can be seen, the L-curve method produced very smooth

https://github.com/facebookresearch/fastMRI/tree/main/fastmri_examples/varnet
https://github.com/facebookresearch/fastMRI/tree/main/fastmri_examples/varnet
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Fig. 3. Representative sparsity-constrained parallel imaging reconstruction results obtained from L-curve, DNN-mapping and proposed method
under various scenarios, including (a) low noise level (SNR = 25 dB), (b) high noise level (SNR = 18 dB), and (c) different field of view compared
to (a). The error bars were used to indicate the scale of the reconstruction error maps (same for Figs. 4, 6 and 9).

reconstructions (due to over-regularization). DNN-mapping re-
lied on the high-dimensional image features to predict the reg-
ularization parameters, which produced reconstructions miss-
ing subtle image features (marked by the yellow arrow in the
zoomed-in region). This may be due to poor generalization to
handle the unseen lesion features. These problems were better
handled with the proposed method.

Fig. 4 displayed the reconstruction results for dynamic imag-
ing. The L-curve method produced suboptimal values for the
regularization parameter, which led to reconstructions with no-
ticeable aliasing artifacts (marked by the yellow arrow in the
error map). The DNN-mapping method yielded reconstructions
with less artifacts but at the expense of some subtle image
structures (marked by the red arrow in the zoomed-in region).
These problems were better handled by our proposed method.

Fig. 5 compared the optimality of the selected regularization
parameters across different testing subjects for both parallel
imaging and dynamic imaging. As can be seen, L-curve tended to
select over- and under-regularized parameters for parallel imag-
ing and dynamic imaging, respectively. DNN-mapping failed to
yield optimal parameters consistently for all testing images. In
contrast, the proposed method better handled these problems.

We have also quantitatively evaluated the reconstruction ac-
curacy of our proposed method in comparison with the L-curve
and DNN methods. As shown in Table I, the proposed method
produced the most accurate image reconstructions in terms of

peak signal-to-noise ratio (PSNR), SSIM and MSE. In par-
ticular, for parallel imaging, the PSNR value of the proposed
method was improved by 1.42 dB and 0.45 dB over L-curve
and DNN-mapping, respectively. For dynamic imaging, the
proposed method improved the PSNR by 0.28 dB and 0.64 dB
compared to L-curve and DNN-mapping, respectively.

B. Comparison to Unrolled Deep Network

Fig. 6 shows results comparing the proposed method with the
unrolled deep network End2End VN for parallel imaging in the
presence of limited training data (i.e., 10 slices from 2 subjects).
As can be seen, when testing data was included in the training set
(Fig. 6(a)), the End2End VN outperformed the proposed method
substantially, which is expected since End2End VN not only
learns the regularization parameter but also the data adaptive reg-
ularization function. However, when the testing data with lesion
was not included in the training set (Fig. 6(b)), the reconstruction
quality of End2End VN degraded substantially due to the over-
fitting issue [55]. Although we performed data augmentation
which artificially increases the training data number, it could not
create real image features (e.g., lesions) reflecting the true phys-
iological variations across population. In contrast, the proposed
method was able to yield reconstructions consistently close to
those obtained at optimal regularization parameters for all those
cases.
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Fig. 4. Representative accelerated dynamic imaging reconstruction results with the same layout as in Fig. 3. In each scenario, the last row
represents the y-t image and the corresponding error (extraction along the y and temporal dimensions).

Fig. 5. Comparison of the regularization parameter value selected
using the L-curve, DNN-mapping and the proposed method for (a)
sparsity-constrained parallel imaging reconstruction and (b) accelerated
dynamic imaging reconstruction.

We have also quantitatively compared the performance of
End2End VN and the proposed method in terms of PSNR, SSIM
and MSE at the training and testing stage, respectively.

As can be seen in Table II, the quantitative results were consis-
tent with our observations in Fig. 6. Specifically, at the training
stage, the PSNR, SSIM and MSE of End2End VN were all much
better than those of the proposed method. However, at the testing
stage, the performance of End2End VN was decreased by a large
margin with the PSNR being reduced by 7.19 dB. In contrast, the
proposed method nicely overcame this issue, which consistently
yielded results close to the ones obtained using the optimal
regularization parameters for CS-SENSE reconstructions at both
the training and testing stages.

As a result, the proposed method outperformed the End2End
VN substantially at the testing stage with the PSNR improved
by 1.46 dB

C. Effectiveness of Linear Interpolation for Approximated
Quality Metrics Extraction

To demonstrate the effectiveness of the linear interpolation,
we compared the approximated quality metrics values extracted
from the linear interpolated images, the quality metrics values
predicted from the trained curve-to-curve nonlinear mapping
networks (with the approximated quality metrics as input) and
the true quality metrics values extracted from the true images
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TABLE I
QUANTITATIVE COMPARISON OF RECONSTRUCTIONS OBTAINED BY DIFFERENT METHODS FOR PARALLEL IMAGING AND ACCELERATED DYNAMIC IMAGI

TABLE II
QUANTITATIVE COMPARISON OF RECONSTRUCTIONS OBTAINED BY END2END VN AND CS-SENSE WITH THE OPTIMAL AND THE LEARNED (BY PROPOSED

METHOD) REGULARIZATION PARAMETER IN THE PRESENCE OF FEW EXPERIMENTAL DATA

Fig. 6. Comparison of End2End VN and CS-SENSE with the optimal
and learned regularization parameter for parallel imaging reconstruction
in the presence of few experimental data. Here, we show the recon-
struction results from different testing data, including (a) data included
in training, (b) data with lesion not seen in the training stage. As can
be seen, End2End VN produced reconstructions with much larger error
for the lesion data as compared to CS-SENSE with the regularization
parameter learned by the proposed method.

under different SNRs. As shown in Fig. 7, the approximated
quality metrics values extracted from the linear interpolated
images correlated well with the corresponding true metrics
values under different SNRs and they can be accurately mapped
to the true metrics values with an error less than 2%, indicating

the effectiveness of the linear interpolation for the approximated
quality metrics extraction.

D. Effectiveness of the Generated Reference Image

As described in Section II-B, we adopted a patch-based
network to “generate” a reference image, which allows us to
incorporate the target image quality metric (e.g., SSIM) for
improved regularization parameter selection (demonstrated in
Fig. 9). Here, we demonstrated the effectiveness of the generated
reference image in the context of parallel imaging under different
SNRs. As can be seen in Fig. 8(a), given the limited experi-
mental data, the generated reference image failed to preserve
fine image details (marked as red arrow), thus not useful as
the final reconstruction. However, it served as a rather effective
surrogate for evaluating the effect of regularization, i.e., whether
the reconstruction is too noisy or too blurring. Fig. 8(b) shows a
similar trend of the approximated quality metrics obtained using
the true and the generated reference image across a wide range of
the regularization parameter values, confirming the effectiveness
of the learned reference image as a surrogate for evaluating the
regularization effect.

E. Effectiveness of Incorporating Two Kinds of the
Quality Metrics

To demonstrate of the advantage of incorporating two kinds
of the quality metrics in the proposed method, we compared the
reconstructions evaluated at the learned regularization param-
eters obtained using two kinds of the quality metrics (i.e., the
target image quality metric and the L-curve-based metrics) and
only one of them alone. As can be seen in Fig. 9, using only
L-curve-based metrics tended to produce over-regularized (i.e.,
overly smooth) reconstructions, while using only SSIM metric
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Fig. 7. Illustration of the effectiveness of the approximated quality metrics extracted from linear interpolated images under sparsity-constrained
parallel imaging for different SNR levels: (a) extracted approximated image quality metrics, (b) predicted image quality metrics using pre-trained
neural networks, (c) true image quality metrics, and (d) error between the predicted and true metrics. As can be seen, the approximated metrics
under different SNRs correlated well with the true metrics and they were well mapped to the true metrics with the error less than 2%, indicating the
effectiveness of the linear interpolation practice for the approximated quality metrics extraction.

Fig. 8. Illustration of the effectiveness of the generated reference images for indicating the regularization effect under different SNR levels.
Although the generated reference image suffers from the loss of detailed image features (red arrow marked in the zoomed-in region in (a)), the
approximated quality metric (i.e., structural similarity index (SSIM)) obtained using the generated reference correlated well with that obtained using
the true reference image (b).
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Fig. 9. Illustration of the advantage of including both the L-curve-
based metrics (i.e., the data consistency and the regularization) and the
SSIM of the proposed method in sparsity-constrained parallel imaging.
The numbers represent the mean and standard deviation of the mean
square error between the reconstructions and the references for the
testing set.

TABLE III
COMPARISON OF COMPUTATIONAL TIME OF DIFFERENT ALGORITHMS AT THE

TRAINING AND TESTING STAGE

tended to produce under-regularized (i.e., noisy) reconstruc-
tions. The proposed method overcame the problems, yielding
the best reconstruction.

F. Computational Time

We also compared the computational efficiency of the four
methods (L-curve, DNN, End2End VN and the proposed) at
both the training and testing stages under each reconstruc-
tion scenario. As shown in Table III, the proposed method
needed much longer time at the training stage (including pre-
processing all the training data) mainly because it required
repetitively solving (2) under different regularization param-
eter values to obtain the true quality metrics values. How-
ever, once trained, the proposed method was much faster.
The computational time for each slice was about 10 times
shorter than that of the traditional L-curve method. Our method
was slower than the reference deep learning-based methods
mainly due to solving the initial reconstructions using the it-
erative algorithm (i.e., solving (2)). With more optimized im-
plementation (e.g., using GPU and parallel computing [56],
[57]), its computation time can be further reduced for practical
applications.

V. DISCUSSION

This paper presents a learning-based method for fast selection
of regularization parameter that requires only a very small set of
experimental data for training. The proposed method has been
evaluated in two different constrained image reconstruction sce-
narios, demonstrating improved computational efficiency and
reconstruction quality.

Our method is based on a useful finding that for a particular
reconstruction problem and a given class of image functions,
the optimal regularization parameter value is weekly dependent
on the subject scanned. This finding can be understood by
considering the following: a) if the image model is appropriate,
the data fidelity term ||d−Eρ||22, in the vicinity of λ∗, is mostly
dependent on the noise level rather than subject-specific image
features. In other words, the measurement noise dominates the
residual term, d−Eρ̂, as λ approaches λ∗; hence, this term has
a very weak subject dependence; b) the regularization functional
R(ρtrue) often measures some intrinsic image properties (such
as sparsity, low-rankness, etc). These image properties (say, the
rank of a dynamic cardiac sequence) can be reasonably assumed
to be subject-invariant for the same image class; hence, the
regularization term is also weakly subject dependent. As both
the data fidelity and regularization terms have weak subject
dependence, so does the optimal regularization parameter. One
may argue that this property is being used implicitly whenever a
pre-set regularization value is used for solving a (computation-
ally expensive) constrained reconstruction problem as is often
done in practice.

An advantage of the proposed method is that it provides a
flexible framework, in which any other image quality metrics
besides MES/SSIM and any other features useful for the se-
lection of the optimal regularization parameter can be easily
incorporated. The only modification is to add another branch in
curve-to-curve nonlinear mapping and/or fusion-based optimal
regularization parameter determination.

Our method is also compatible with more advanced regular-
ized reconstruction formulation that incorporates deep learning-
based image priors [3]. After a deep learning prior is obtained
using those methods, the regularization parameter can be learned
using the proposed method, which could further improve the
performance of those deep learning-based image reconstruction
methods.

In this study, we normalized the datasets to the range of [0, 1],
as usually done in machine learning-based imaging applications.
This strategy could significantly improve model accuracy by
making intensity of different images on a similar scale, so that
no single image dominates model training process just because
it has large intensity; as a result, the trained model would have
better robustness and generalization ability. Our method is also
workable for other normalization schemes because the proce-
dures to determine the optimal regularization weight (guided
by the quality metric of reconstruction) and to determine the
pre-selected regularization parameters (based on the under- and
over-regularization) are compatible with any scaling schemes.

This study focuses on reconstruction problems with only one
regularization parameter. The proposed method can be extended
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to handle multiple regularization parameters in a relatively
straightforward manner. For example, in the case of two reg-
ularization parameters, one can start with 5 initial reconstruc-
tion with different parameter combinations, such as {λ1

1, λ
2
1},

{λ1
1, λ

2
3}, {λ1

3, λ
2
1} and {λ1

3, λ
2
3} and {λ1

2, λ
2
2}, followed by 2D

linear interpolation to generate images, {ρ̃(λ1
m, λ2

n)}Mm,n = 1,
over the grid of {λ1

m, λ2
n}Mm,n = 1. Then, a similar set of approx-

imated quality metrics can be extracted but in the form of 2D
curves. Then, 2D curve-to-curve nonlinear mapping networks
can be used to predict the “true” metrics, from which one can
determine the final optimal parameters. We will address this kind
of problem in our follow-up work.

For practical imaging applications, our method could signifi-
cantly reduce the computational time for constrained reconstruc-
tion and has the potential to enable inline image reconstruction
on the scanner. Particularly, all the models or neural networks
are trained for a specific image class of interest offline using
available training data. Once the networks are properly trained,
they can be used for each new patient inline for fast selection
of the regularization parameter. Incorporating our method for
on-the-fly image reconstruction will be explored in our future
work.

The proposed method is designed to learn the optimal regu-
larization specifically for fixed imaging operator(s) and class of
feasible image functions. If the imaging operator or functional
class changes, then our key assumption that “the variations of
quality metrics and optimal regularization parameters across
different subjects are small” is likely to be invalid. So, for any
new data acquisition scheme (e.g., different sampling trajecto-
ries and acceleration rates) and/or different imaging operators
(say, T1-weighted imaging vs Diffusion tensor imaging (DTI))
and/or new image functional classes (e.g., new image contrast
and objects), a new network needs to be trained (but with only
a few experimental training images).

The present study has several limitations. First, the cur-
rent implementation determined the optimal regularization
parameter based on target image quality metrics (i.e., MSE and
SSIM) widespread use in practice, which are not necessarily
the optimal choices for achieving the highest diagnostic value
[58]. With the learning framework in place, future work will
investigate other potential metrics which may better guide the
image reconstruction process. Second, we extracted the approx-
imated quality metrics from the linear interpolated images of
initial reconstructions and demonstrated the effectiveness of
the linear interpolation experimentally in the Results Section.
Theoretical analysis and alternative approach to extract the
approximated quality metrics need further investigation. Third,
we retrospectively scaled the training images to mimic different
FOVs and/or resolution settings in this study. Future study
is needed to evaluate the proposed method using prospective
experimental data.

VI. CONCLUSION

This paper presents a new learning-based method for fast and
optimal determination of the regularization parameter in con-
strained image reconstruction. The proposed method requires

only a very small set of experimental data for learning. The
performance of the proposed method has been evaluated using
in vivo experimental data, producing substantially improved
parameter determination accuracy and computational efficiency
over the existing methods. The proposed method would en-
hance the utility of constrained image reconstruction in practical
applications.
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