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A Fused Deep Denoising Sound Coding
Strategy for Bilateral Cochlear Implants

Tom Gajecki and Waldo Nogueira , Member, IEEE

Abstract—Cochlear implants (CIs) provide a solution for
individuals with severe sensorineural hearing loss to re-
gain their hearing abilities. When someone experiences
this form of hearing impairment in both ears, they may
be equipped with two separate CI devices, which will typ-
ically further improve the CI benefits. This spatial hearing
is particularly crucial when tackling the challenge of under-
standing speech in noisy environments, a common issue
CI users face. Currently, extensive research is dedicated
to developing algorithms that can autonomously filter out
undesired background noises from desired speech signals.
At present, some research focuses on achieving end-to-end
denoising, either as an integral component of the initial
CI signal processing or by fully integrating the denoising
process into the CI sound coding strategy. This work is
presented in the context of bilateral CI (BiCI) systems,
where we propose a deep-learning-based bilateral speech
enhancement model that shares information between both
hearing sides. Specifically, we connect two monaural end-
to-end deep denoising sound coding techniques through
intermediary latent fusion layers. These layers amalgamate
the latent representations generated by these techniques
by multiplying them together, resulting in an enhanced
ability to reduce noise and improve learning generaliza-
tion. The objective instrumental results demonstrate that
the proposed fused BiCI sound coding strategy achieves
higher interaural coherence, superior noise reduction, and
enhanced predicted speech intelligibility scores compared
to the baseline methods. Furthermore, our speech-in-noise
intelligibility results in BiCI users reveal that the deep de-
noising sound coding strategy can attain scores similar to
those achieved in quiet conditions.

Index Terms—Cochlear implants, sound coding strategy,
deep neural networks, end-to-end, speech enhancement.

I. INTRODUCTION

ACOCHLEAR implant (CI) is a medical device surgically
implanted to restore the sense of hearing in individu-

als with severe to profound sensorineural hearing loss. No-
tably, recent years have seen significant advancements in CI
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technology [1]. Consequently, individuals with bilateral hear-
ing loss often receive implants on both sides [2]. Those who
receive a CI in each ear are known as bilateral CI (BiCI) users,
typically demonstrate improved speech understanding, sound
localization, reduced listening effort, and enhanced quality of
life in comparison to unilateral CI users (e.g., [3], [4], [5],
[6]). However, their listening performance remains inferior to
individuals with normal hearing (NH) (e.g., [7], [8], [9]).

The lower hearing performance in BiCI users could poten-
tially stem from differences in electrode array insertion depth
in each ear, differences between the electrode-nerve interfaces
in each ear, and from the independent processing in each CI
(e.g., [10], [11], [12], [13]). The computation of stimulation
current levels over time and for individual electrodes (referred
to as electrodograms) relies on audio captured by microphones
embedded within each speech processor. The computation in-
volves applying the CI sound coding strategy separately to
each listening side. This method may lead to challenges, which
include a potential lack of effective binaural integration [14] and
the introduction of possible binaural artifacts [15]. Moreover, it
might struggle with suppressing background noise or competing
speech signals when present simultaneously in both ears [12].
Additionally, this approach might have limitations in fully trans-
mitting interaural cues [16].

Typically, a CI in conjunction with its associated sound cod-
ing strategy enables the user to understand speech effectively
in quiet environments. However, its effectiveness diminishes
when encountering loud interfering signals, characterized by
low signal-to-noise ratios (SNRs), such as background noise
or multiple speakers talking simultaneously [17]. Several ap-
proaches have been proposed to enhance speech understand-
ing in noisy environments for BiCIs. Some of these methods
utilize traditional front-end processing techniques like binaural
beamforming (e.g., [18], [19], [20]), while others integrate el-
ements of the CI sound coding strategy and establish bilateral
connections between certain processing components (e.g., [12],
[21], [22]). These conventional approaches have proven effec-
tive in augmenting speech understanding in noise and sound
source localization for BiCI users. However, with the advent of
deep learning technology, the field is increasingly exploring the
use of deep neural networks (DNNs) for speech enhancement
(e.g., [23], [24], [25], [26], [27]). These methods have proven to
be very successful at performing speech denoising while keeping
speech quality and a high degree of generalization capabilities.

To optimize the enhancement of speech for CIs, it could
prove advantageous to devise algorithms that take into account
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the specific processing scheme of CIs. Consequently, there has
been research dedicated to CIs, where DNNs are incorporated
into their signal pathway [27], [28], [29], [30], [31]. These
approaches target noise reduction by directly applying masks
within the filter bank utilized by the CI sound coding strategy.
Recently, drawing inspiration from the Conv-TasNet [23], an
end-to-end CI sound coding strategy based on deep learning,
termed “Deep ACE.” was proposed [32], [33]. This approach
was designed to replace the clinically available ACE sound
coding strategy, but it could also be used to replace other
commercially available ones. This method completely replaces
the CI sound coding strategy with a DNN and achieves high
speech understanding improvements in BiCI users (up to 22.8%
improvement in word recognition score (WRS) in modulated
background noise).

Presently, data-driven methodologies have primarily been em-
ployed with single CIs. However, these approaches are equally
applicable to BiCIs. For instance, there is no inherent justifica-
tion to assume that utilizing any monaural speech enhancement
algorithm within a BiCI framework would not produce compa-
rable auditory advantages as observed in the unilateral config-
uration. Nevertheless, this may not be the optimal approach, as
independent processing could still potentially introduce artifacts
that hinder effective binaural listening. A promising avenue to
enhance the listening experience of BiCI users involves embrac-
ing multi-channel sound processing. Notably, diverse multi-
channel front-end speech enhancement methods have been
proposed. These strategies not only showcase effectiveness in
enhancing speech denoising but also reveal an ability to maintain
the integrity of essential binaural auditory cues (e.g., [34], [35]).

In recent advancements, there’s a novel concept referred
to as “Fusion Layers” introduced in [36]. These layers entail
the exchange of information between two individual monaural
speech-denoising algorithms. They achieve this by enabling
Hadamard products between latent spaces at specific processing
stages, drawing inspiration from multi-task learning methods,
and emulating the inhibitory and excitatory mechanisms found
in the human brain stem for binaural hearing [37]. Precisely,
the fusion layers are designed to introduce non-linear elements
into the learning model, enhancing the model’s ability to fit
training data effectively while improving generalization without
impacting the number of trainable parameters. This approach of
sharing features has proven to be highly effective in enhanc-
ing noise reduction compared to independent bilateral models,
where processing is performed separately on each side.

In our study, we present a novel approach termed the “fused
Deep ACE,” which can naturally be extrapolated to other CI
processing strategies. This approach integrates two Deep ACE
algorithms through the utilization of fusion layers, enabling
the sharing of latent representations from particular processing
stages. We hypothesize that this bilateral sound coding strategy
will result in improved speech understanding when contrasted
with the conventional clinical approach. Additionally, we pos-
tulate that the fusion layer will capitalize on bilateral redundant
information, potentially mitigating certain binaural artifacts and
leading to the generation of more bilaterally coherent output
electrodograms.

II. METHODS & MATERIALS

A. Algorithms

1) Bilateral Advanced Combination Encoder
(ACE; Unprocessed): This is the main baseline algorithm
used in this work and is based on a clinical BiCI setup,
where each CI processes the sound independently using the
ACE sound coding strategy. This setup does not perform any
noise reduction and does not share any information between
the listening sides. The ACE strategy begins by sampling
the acoustic signal at 16 kHz, followed by applying a filter
bank through a 128-point fast Fourier transform. This process
introduces a 2 ms algorithmic latency, dependent on the channel
stimulation rate (CSR). Estimations of desired envelopes are
calculated for each spectral band (Ek) corresponding to an
electrode, with M representing the total channels.

In this study, we select the N most energetic envelopes out of
M based on their amplitudes. These selected envelopes undergo
non-linear compression via a loudness growth function (LGF).
The LGF output (pk) represents the normalized stimulation am-
plitude for electrode k to stimulate the auditory nerve. Lastly, we
map each pk within the subject’s dynamic range, spanning from
threshold to comfortable stimulation levels giving the output
current stimulation patterns Ik. These N -selected electrodes
are stimulated sequentially for each audio frame, defining one
stimulation cycle, and the CSR is determined by the cycles per
second.

2) Bilateral Deep ACE: This condition closely resembles
the baseline scenario (referred to as bilateral ACE) in that it
lacks any exchange of information between the listening sides.
However, it diverges from clinical ACE sound coding strategies
by adopting the newly developed Deep ACE approach, as de-
tailed in [32], [33]. More specifically, Deep ACE substitutes the
conventional clinical ACE method with a DNN that takes in raw
audio as its input and generates the denoised LGF output pk.

In the initial step, Deep ACE encodes the left and right signals
X{l,r} into a latent representation using a 1-D convolution layer.
This operation can be mathematically expressed as a matrix
multiplication:

X ′
{l,r} = Θ(X{l,r} ·E), (1)

where E{l,r} ∈ �(F×L) are the left and right encoder basis
functions and Θ(·) is the antirectifier activation function used
in Deep ACE, and F and L the number and length (in sam-
ples) of the filters used, respectively. The signal is then sent
to a deep envelope detector (DED) that performs dimension-
ality reduction (from F to M ) and to the separator module
that will generate a deeper latent representation for each side
X ′′

l,r = ζ(X ′
{l,r}) ∈ �(1×S), where ζ(·) is the learned function

by the separator and S is the number of skip connections [23].
Then the DED and separator outputs are fed into a masker
that will remove the noisy components of the encoded mixture.
Specifically, during the mask generation, the fused output (after
the separator) undergoes a series of sequential transformations.
It first passes through a PReLU activation layer, followed by a
1D convolution to match its dimensionality with the encoded



2234 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 71, NO. 7, JULY 2024

Fig. 1. Block diagram of the proposed fused Deep ACE (left panel; (a)) and a diagram of the separator module (right panel; (b)). The fused
model takes the right and left time-domain noisy speech signals (Xr and Xl respectively) and produces the respective denoised current stimulation
patterns for each listening side Ir and Il for each stimulation frame. The fusion model performs element-wise dot product between the latent
representations generated in each of the Deep ACE models and the DED is used for dimensionality reduction. For a brief explanation and values
of the variables shown refer to Table I.

input. Finally, it proceeds through a soft masking process to
estimate binary probabilities indicating the presence of speech
content. This resultant mask is then applied to the DED output,
effectively eliminating noisy components. Finally, the masked
signals will be decoded through a transposed 1-D convolution
to obtain pk for each CI.

3) Fused Deep ACE: In this study, we introduce an ap-
proach involving integrating two monaural Deep ACE [33]
models, with one model associated with each listening side.
This integration is achieved through the utilization of fusion
layers [36]. These fusion layers are influenced by the principles
of multi-task learning, where model weights are shared across
different models to address interconnected tasks. The function of
these layers involves conducting element-wise dot products on
tensors that depict latent representations at identical processing
stages. More precisely, we combine the latent representations
generated within each Deep ACE model, both following the
encoding stage and subsequent to the separator modules as
follows:

X ′
Λ = ρ(X ′

l, X
′
r)

X ′′
Λ = ρ(X ′′

l , X
′′
r ), (2)

where ρ(·) is the Hadamard product operator. The outcome of
these two fusion operations results in a model that performs
“double fusion.” These fused signals are fed into the separator
and masker modules the same way as in the bilateral Deep
ACE condition. In this model the consistency in dimensionality
persists throughout each phase of the fused model, aligning with
the structure of the independent model (bilateral deep ACE). A
visual representation of this model’s structure can be observed
in Fig. 1. It is important to note that the band selection and
mapping blocks function autonomously. This means that the
bands chosen on one side might not align with those selected on
the other side. Similarly, the mapping block operates separately
for each electrode, with unique threshold and comfortable levels
assigned to individual electrodes.

B. Model Training Setup

Training the models was conducted over a maximum of 100
epochs, employing batches consisting of two 4-second-long
audio segments. The initial learning rate was initialized to 1e-3.

TABLE I
HYPERPARAMETERS USED TO TRAIN THE DEEP LEARNING MODELS

In case the validation set accuracy displayed no enhancement
over a span of 3 consecutive epochs, the learning rate was
reduced by half. To ensure regularization, early stopping with
a patience of 5 epochs was implemented, safeguarding against
overfitting. Only the model displaying the highest performance
was retained. Model optimization was facilitated using the Adam
optimizer [38]. The model’s training employs a cost function
based on mean-squared error (MSE) and binary cross entropy
(BCE) for each listening side (for a detailed description of this
cost function refer to [33]).

The hyperparameter configuration used in this study was
slightly modified with respect to the ones shown in [32],
specifically the separator module was bigger and the deep-
envelope-detector (DED) was also increased in size. The model
hyperparameters are shown in Table I.

C. Audio Material

In this work, we used a total of three different speech datasets
and three noise types to assess the models’ performance and
generalization abilities. All these audio sets will be described
in this section. As a preprocessing stage, all audio material
was set to mono and resampled at 16 kHz. The corresponding
electrodograms were obtained by processing all audio data with
the ACE sound coding strategy at an output CSR of 1,000 pulses
per second. All audio signals were generated by convolving
source signals with binaural room impulse responses (BRIRs;
[39]) and summing. BRIRs were generated for hearing aids
located in each listening side 1 and consisted of 4 different rooms
of different sizes and acoustic properties (see Table II), using the
front microphone.

1https://github.com/IoSR-Surrey/RealRoomBRIRs

https://github.com/IoSR-Surrey/RealRoomBRIRs
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TABLE II
ROOM ACOUSTICAL PROPERTIES, INCLUDING RT60, INITIAL TIME DELAY

GAP (ITDG), DIRECT-TO-REVERBERANT RATIO (DRR), AND CLARITY
INDEX Cte

1) Speech Data:
a) LibriVox corpus [40]: This speech data was originally

designed for end-to-end speech translation, however, in this
study, we mix the speech material with noise to train our models
for speech denoising. The speech data consists of fluent spoken
sentences with a total duration of 18 hours. The quality of audio
and sentence alignments was checked by a manual evaluation,
showing that speech alignment is in general very high. In fact, the
sentence alignment quality is comparable to well-used parallel
translation data.

b) TIMIT corpus [41]: This corpus contains broadband
recordings of 630 people speaking the eight major dialects of
American English, each reading ten phonetically rich sentences.
In this work, files from 112 male and 56 female speakers in the
test set were selected.

c) HSM corpus [42]: Speech intelligibility in quiet and
in noise was measured utilizing the Hochmair, Schulz, Moser
(HSM) sentence test, based on a dataset composed of 30 lists
with 20 everyday sentences each (106 words per list).

2) Noise Data:
a) Environmental noises; DEMAND [43]: The environ-

mental noises recorded to create this dataset are split into six
categories; four are indoor noises and the other two are out-
door recordings. The indoor environments are further divided
into domestic, office, public, and transportation; the open-air
environments are divided into streets and nature. There are 3
environment recordings per category.

b) Synthetic noises; SSN [44] and ICRA7 [45]: To
evaluate the different algorithms, in this work we also use
stationary speech-shaped noise (SSN) and non-stationary mod-
ulated seven-speaker babble noise (ICRA7) as synthetic inter-
ferers.

3) Training, Evaluation and Testing Data: The training set
was composed of speech from the LibriVox corpus and noise
from the DEMAND dataset. Specifically, 30 male (M) and
female (F) speakers were randomly selected from the speech
corpus, and two environments were randomly selected from
each of the noise categories. For validation, 20% of the training
data was used. The testing phase involved the utilization of the
HSM speech dataset, coupled with synthetic noises employed
as interfering signals.

During the training, validation, and objective testing phases,
the speech and noise signals were spatially separated, and posi-
tioned on opposite sides in relation to the listener’s frontal orien-
tation. The specific placements of these signals were randomly
chosen within a range of 0 to ±90°. However, it’s essential to
note that for the listening experiments, the placements of target

speech and interfering noise source were not selected randomly.
In those experiments, the speaker consistently remained in front
of the listener, while the noise source was consistently situated
at ±55° azimuth, effectively masking the better-performing CI.
Speech and noise signals were mixed at SNR values ranging
uniformly from −5 to 10 dB calculated at the better SNR side
(note here that at large noise azimuths the CI situated ipsilateral
to the noise source might encounter a significant SNR decrease,
potentially up to around 10 dB). The processed clean speech
signals were also included in the listening experiments to assess
whether the proposed model introduced perceptually relevant
distortions.

D. Objective Evaluation

To objectively evaluate the performance of each examined
algorithm, we gauge the extent of noise reduction accomplished,
establish electrode-wise correlation coefficients between the
denoised and clean signals, and determine speech intelligibility
through the application of the modified binaural short-time
objective intelligibility (MBSTOI) index [46]. Notably, in this
study, our focus is on investigating comprehensive CI process-
ing, consequently prompting the computation of the MBSTOI
index from synthesized electrodograms (p) derived using a
vocoder. This results in the utilization of a specific variant of
MBSTOI referred to as vocoder-MBSTOI (V-MBSTOI).

1) SNRi: To assess the amount of noise reduction performed
by each of the tested algorithms we compute the SNR improve-
ment (SNRi). This measure is calculated in the electrodogram
domain and compares the original input SNR to the one obtained
after denoising, and is given by:

SNRi = 10 · log10
(∑M

k=1 ||pn
k − pc

k||2∑M
k=1 ||pd

k − pc
k||2

)
, (3)

where pk represents the LGF output of band k and the su-
perscripts n, c, and d are used to denote the noisy, clean, and
denoised electrodograms, respectively.

a) V-MBSTOI: To estimate the speech intelligibility per-
formance expected from each of the algorithms, the V-MBSTOI
score [47], [48], [49] was used. This metric relies directly on
MBSTOI [46], which is modeled based on normal hearing
binaural speech performance. Specifically, the purpose of this
metric is to evaluate the potential relative variations in speech
performance that could be achieved in behavioral experiments,
rather than providing an exact estimation of an individual’s
CI performance. The V-MBSTOI score ranges from 0 to 1,
where the higher score represents a predicted higher speech
performance.

b) Linear cross-correlation: To characterize potential
distortions and artifacts introduced by the tested algorithms, the
linear correlation coefficients (LCCs) between the clean ACE
electrodograms (pc) and the denoised electrodograms (pd) were
computed. The LCCs were first computed channel-wise (i.e.,
one correlation coefficient was computed for each of the 22
channels) to assess channel output degradation caused by the
denoising process. The LCCk for band k is computed based on
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the Pearson correlation coefficient [50] as follows:

LCCk =
cov

(
pc
k,p

d
k

)
σpc

k
· σpd

k

, (4)

where cov(X,Y ) is the covariance between X and Y , and σpk

is the standard deviation of the values in the corresponding
electrodogram pk.

We also present the LCCs as a function of the noise azimuth
LCCθ, which is computed as follows:

LCCθ =
cov

(
pc
θ,p

d
θ

)
σpc

θ
· σpd

θ

, (5)

where pc
θ and pd

θ are the LCCs averaged across electrodes for a
noise source coming from azimuth θ.

c) Electric interaural coherence: Similar to the LCCs,
we also use the electric interaural coherence (EIC). Here we
compute the channel-wise LCCs between between the right
electrodograms (pr) and the left electrodograms (pl) as follows:

EICk =
cov

(
pr
k,p

l
k

)
σpr

k
· σpl

k

. (6)

We also present the EIC as a function of the noise azimuth LCCθ ,
which is computed as follows:

EICθ =
cov

(
pr
θ,p

l
θ

)
σpr

θ
· σpl

θ

. (7)

E. Behavioral Evaluation

To validate the objective instrumental measures and to assess
their impact on actual BiCI hearing, we perform two behav-
ioral experiments namely, a speech intelligibility experiment
and a Multiple Stimuli with Hidden Reference and Anchor
(MUSHRA). The speech intelligibility experiments are designed
to investigate the benefits of the proposed denoising algorithms
when compared to the clinical setups, and the MUSHRA [51]
will help understand how BiCIs rate the quality of the performed
denoising.

The stereo signals were transmitted through direct stimulation
using a bilaterally synchronized RF GeneratorXS interface from
Cochlear Ltd. (Sydney, Australia) in conjunction with MATLAB
software (Mathworks, Natick, MA) via the Nucleus Implant
Communicator V.3, also from Cochlear Ltd. All testing proce-
dures were conducted on a personal computer equipped with
customized MATLAB software. Before commencing experi-
ments involving subjects, a hardware check was carried out by
analyzing the signals generated by the research interface using
an oscilloscope. The stimulation signals were characterized by
cathodic-phase leading, biphasic pulses presented in a monopo-
lar configuration (MP1+2). This stimulation mode utilizes two
extracochlear electrodes: one ball electrode positioned under the
temporalis muscle and another plate electrode on the receiver
case. These pulses consistently featured an 8-μs phase gap and
25-μs phase duration, and they were presented in a base-to-apex
sequence.

Fig. 2. Box plots showing the mean SNRi scores across listening sides
in dB for the tested algorithms in CCITT and ICRA7 noises for the
different SNRs using the HSM speech dataset. The black horizontal bars
within each box represent the median for each condition, the diamond-
shaped marks indicate the mean, and the top and bottom extremes of
the boxes indicate the Q3 = 75% and Q1 = 25% quartiles, respectively.
The box length is given by the interquartile range (IQR), used to define
the whiskers that show the variability of the data above the upper and
lower quartiles (the upper whisker is given by Q3 + 1.5·IQR and the
lower whisker is given by Q1 − 1.5·IQR [52]).

1) Speech Understanding Experiment: Speech intelligi-
bility in noisy environments was assessed using the HSM sen-
tence set [42]. To conduct this assessment, each speech token
underwent digital downsampling from 44.1 kHz to 16 kHz.
During testing, subjects were presented with sentences from
the front in a simulated acoustic setting, which included back-
ground interference noise (either CCITT or ICRA7) originating
from a 55-degree azimuth angle, masking their self-reported
better ear. The noise azimuth was selected to be 55 degrees
because this angle corresponded to the point where electrical
interaural coherence (EIC; described in Section II-D1c) was at
its minimum (see Fig. 8), thus maximizing the impact on speech
understanding.

Before the speech tests began, a training phase was imple-
mented, comprising two sets of 20 sentences presented in quiet
conditions. This training allowed listeners to adapt to the fitting
parameters specific to the study and familiarize themselves with
the sound delivery through the research interface.

Subjects were instructed to verbally repeat the sentences as
accurately as possible during the tests. Two observers were
present during the tests: one managed the software interface,
while the other recorded the number of correctly identified
words by marking them in a printed list corresponding to the
sentences. Each listening condition was evaluated twice using
different sentence lists, and the final score was computed as
the average number of correctly identified words across these
repetitions. The subjects were unaware of the specific conditions
being tested, and an audiologist, blind to the test conditions,
conducted the speech intelligibility assessments.

2) MUSHRA: This test is aimed at assessing how well-
presented speech sentences are perceived in comparison to a
specified reference using MUSHRA. The scores provided by
the listener will range from 0 (poor) to 100 (excellent). In the
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Fig. 3. Box plots showing the V-MBSTOI scores for the tested algo-
rithms in quiet for the different SNRs using the HSM speech dataset. The
black horizontal bars within each box represent the median for each con-
dition, the diamond-shaped marks indicate the mean, and the top and
bottom extremes of the boxes indicate the Q3 = 75% and Q1 = 25%
quartiles, respectively. The box length is given by the interquartile range
(IQR), used to define the whiskers that show the variability of the data
above the upper and lower quartiles (the upper whisker is given by
Q3 + 1.5·IQR and the lower whisker is given by Q1 − 1.5·IQR [52]).

Fig. 4. Box plots showing the V-MBSTOI scores for the tested algo-
rithms in CCITT and ICRA7 noises for the different SNRs using the HSM
speech dataset. The black horizontal bars within each box represent
the median for each condition, the diamond-shaped marks indicate
the mean, and the top and bottom extremes of the boxes indicate the
Q3 = 75% and Q1 = 25% quartiles, respectively. The box length is
given by the interquartile range (IQR), used to define the whiskers that
show the variability of the data above the upper and lower quartiles (the
upper whisker is given by Q3 + 1.5·IQR and the lower whisker is given
by Q1 − 1.5·IQR [52]).

context of this study, the primary goal of this experiment was
to establish a relative score for the quality of speech denoising
concerning the clean speech signal generated by the clinical
sound coding strategy ACE. To create a reference point, we
derived an anchor by applying a low-pass filter with a cut-off
frequency of 3.5 kHz to the noisy, unprocessed mixture. Two
primary conditions were examined: one with clean audio and

Fig. 5. Polynomial regressions showing the channel-wise LCCs be-
tween processed and clean electrodograms for the different algorithms,
noises, and listening sides using the HSM dataset. Shaded areas rep-
resent the 95% confidence level interval [52]. Higher electrode numbers
represent lower frequencies.

Fig. 6. Polynomial regressions showing the linear cross-correlations
between processed and clean electrodograms for the different algo-
rithms averaged across electrodes as a function of the azimuth, noises,
and listening sides using the HSM dataset. Shaded areas represent the
95% confidence level interval [52]. Higher electrode numbers represent
lower frequencies.

the other in a noisy environment (using both CCITT and ICRA7
noise profiles).

In the clean condition, we compared the reference clean ACE
to the anchor and the clean speech signals processed separately
by the independent BiCI strategy and the fused Deep ACE sound
coding strategy. This comparison aimed to determine if there
were discernible differences between clinical processing in a
quiet setting and the proposed algorithms.

In the noisy condition, we compared the reference clean ACE
to the anchor, the two proposed algorithms, and the unprocessed
ACE signal in a noisy environment. Within each MUSHRA
block, corresponding to each primary condition, eight sentences
were assessed. The sentences were delivered at different SNRs,
with two each at -5 dB, 0 dB, 5 dB, and 10 dB.
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Fig. 7. Polynomial regressions showing the EIC for each electrode
pair averaged across noises and listening sides using the HSM dataset.
Shaded areas represent the 95% confidence level interval [52]. Higher
electrode numbers represent lower frequencies.

Fig. 8. Polynomial regressions showing the EIC for each azimuth av-
eraged across electrodes, noises, and listening sides using the HSM
dataset. Shaded areas represent the 95% confidence level interval [52].
Higher electrode numbers represent lower frequencies.

III. RESULTS

A. Objective Instrumental Results:
a) SNRi: Fig. 2 shows box plots showing the mean SNRi

scores across listening sides in dB for the tested algorithms in
CCITT and ICRA7 noises for the different SNRs using the HSM
speech dataset. In this context, the fused model demonstrates su-
perior performance compared to the independent model. Specif-
ically, the independent model struggles to effectively denoise
speech when ICRA7 noise is present. This finding contrasts
with the outcomes documented in [33]. The discrepancy might
be attributed to this study’s approach, as highlighted in Sec-
tion II-C, where the SNR calculation is performed at the better
SNR side. Consequently, significant SNR drops potentially up to
10 dB occur on the side ipsilateral to the noise. Tackling speech
denoising without utilizing information from the opposite side
appears to pose a considerable challenge in such scenarios.

b) V-MBSTOI: Fig. 3 illustrates the V-MBSTOI scores
obtained by the evaluated algorithms in quiet. It can be seen here
that the denoising algorithms do not introduce a significant drop
in the V-MBSTOI scores relative to the bilateral ACE condition.

Fig. 4 presents the V-MBSTOI scores achieved by the as-
sessed algorithms under different speech and noise conditions.
Generally, the denoised signals exhibit higher scores using the
denoising algorithms compared to the bilateral ACE, and the im-
provement is roughly proportional to the input SNR (calculated
at the better SNR side).

However, it is noteworthy that the bilateral Deep ACE model
falls short of the fused speech denoising method, indicating that
the artifacts in the latter are comparatively smaller. Additionally,
the V-MBSTOI scores computed across various input SNRs
exhibit less variability for the fused Deep ACE model when com-
pared to the bilateral Deep ACE and bilateral ACE counterparts.
This suggests that the fused Deep ACE model may demonstrate
greater robustness in scenarios with low input SNRs.

c) Linear cross-correlation: Fig. 5 illustrates the cal-
culated LCCs across CI electrode numbers for each listing side
(averaged across various noise conditions). The data reveals that
the fused Deep ACE model exhibits superior performance in
terms of channel-wise LCCs. Furthermore, the bilateral Deep
ACE model falls between the bilateral ACE and fused Deep
ACE algorithms, indicating that the fusion operation contributes
to the enhancement of speech in BiCI listening. Fig. 6 depicts
the computed linear cross-correlations with respect to the noise
azimuth, considering an average across all electrodes. The data
indicates that when the noise source aligns with the same side as
the tested CI (where LCCs are measured), the correlation tends
to decrease, as anticipated due to the lower SNRs. In contrast,
for the fused Deep ACE model, the LCCs appear to remain
relatively constant regardless of the azimuth of the interfering
noise signal. This observation suggests that the fused Deep ACE
model effectively utilizes the fusion operation by leveraging
redundant information present on both listening sides.

d) Electric interaural coherence: Fig. 7 visually repre-
sents the calculated EIC as a function of the CI electrode num-
bers for each listening side, with the data averaged across various
noise conditions. The results demonstrate that the fused Deep
ACE model surpasses the other models in terms of channel-wise
EIC. Additionally, the bilateral Deep ACE model occupies an
intermediate position between the bilateral ACE and fused Deep
ACE algorithms, suggesting that the fusion operation plays a
vital role in maintaining the integrity of the speech signal across
all frequencies. In Fig. 8, the calculated EIC data unveils notable
trends based on the noise azimuth. The fused deep denoising
model consistently maintains speech correlation, regardless of
the noise source’s location, showcasing its capacity to sustain
speech intelligibility across various noise scenarios. Conversely,
the unprocessed condition exhibits higher coherence when the
noise originates from the listener’s front. However, a shift occurs
with the bilateral Deep ACE model, which displays greater
coherence when noise is in front but reverses this trend when
the noise source widens to azimuths beyond 25 degrees. This
pattern suggests that the bilateral Deep ACE model may have
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Fig. 9. Bar plots showing the mean individual word recognition scores
by subject for the HSM sentence test under CCITT (left panel) and
ICRA7 (right panel) noises for all tested algorithms.

TABLE III
CI PARTICIPANT INFORMATION AND EXPERIMENT SETTINGS

limitations in handling denoising when target and interfering
signals are co-located.

B. Behavioral Results

a) Speech intelligibility: Fig. 9 shows the bar plots of
the individual WRS obtained by each of the tested BiCI listeners
for the three tested conditions (i.e., clean, CCITT, and ICRA7).
The tested SNR for each individual and noise type is shown in
Table III.

Fig. 10 displays box plots illustrating the mean WRS mea-
sured in the five BiCI subjects across three noise conditions:
clean, CCITT, and ICRA7. A Kruskal-Wallis test did not reveal
any significant differences in mean speech intelligibility scores
for the clean condition (H(2) = 0.04, p = 0.98). However, in
the case of the CCITT noisy condition (H(2) = 7.46, p = 0.02)
and the ICRA noisy condition (H(2) = 9.57, p = 0.008), the
subsequent non-parametric Kruskal-Wallis tests did detect sig-
nificant differences.

Subsequent pairwise comparisons, conducted using Wilcoxon
signed-rank tests, indicated a significant distinction between
the unprocessed (M = 54.52%, SD = 23.65%) and the fused
deep ACE condition for the CCITT noise (M = 92.07, SD =
5.27%) conditions (p = 0.008). Similarly, significant differ-
ences were observed between the unprocessed condition (M =
57.74%, SD = 20.90%) and the fused Deep ACE condition
(M = 89.81%, SD = 5.49%) in the ICRA7 noise condition
(p = 0.008). Additionally, in the ICRA7 noise condition, sig-
nificant differences were found between the bilateral Deep ACE

Fig. 10. Box plots of the group word recognition score measured in
the five tested BiCI subjects for the three noise conditions. The black
horizontal bars within each box represent the median for each condi-
tion, the diamond-shaped marks indicate the mean, and the top and
bottom extremes of the boxes indicate the Q3 = 75% and Q1 = 25%
quartiles, respectively. The box length is given by the interquartile range
(IQR), used to define the whiskers that show the variability of the data
above the upper and lower quartiles (the upper whisker is given by
Q3 + 1.5·IQR and the lower whisker is given by Q1 − 1.5·IQR [52]).
Asterisks on top of the significance bar indicate the significance level
(* p<0.05, ** p<0.01, *** p<0.001). Black dots indicate observations
that fall beyond the whisker range (outliers).

Fig. 11. Bar plots showing the mean individual MUSHRA scores for
the HSM sentence test in quiet (left panel), in CCITT noise (center
panel), and ICRA7 noise (right panel) noises for all tested algorithms.

condition (M = 60%, SD = 28%) and the fused Deep ACE
condition (p = 0.008).

b) MUSHRA: Fig. 11 shows the bar plots of the individual
MUSHRA scores obtained by each of the tested BiCI listen-
ers for the three tested noise conditions (i.e., clean, CCITT,
and ICRA7). Fig. 12 illustrates box plots depicting the group
MUSHRA scores obtained from five BiCI subjects under three
distinct noise conditions: clean, CCITT, and ICRA7. Three
separate Kruskal-Wallis tests, one for each noise condition,
unveiled significant differences in the mean MUSHRA scores.
Specifically, there were significant differences observed in the
quiet condition (H(3) = 10.99, p = 0.01), the CCITT noise
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Fig. 12. Box plots of the group MUSHRA score measured in the five
tested BiCI subjects for the three noise conditions. The black horizontal
bars within each box represent the median for each condition, the
diamond-shaped marks indicate the mean, and the top and bottom
extremes of the boxes indicate the Q3 = 75% and Q1 = 25% quar-
tiles, respectively. The box length is given by the interquartile range
(IQR), used to define the whiskers that show the variability of the data
above the upper and lower quartiles (the upper whisker is given by
Q3 + 1.5·IQR and the lower whisker is given by Q1 − 1.5·IQR [52]).
Asterisks on top of the significance bar indicate the significance level
(* p<0.05, ** p<0.01, *** p<0.001). Black dots indicate observations
that fall beyond the whisker range (outliers).

condition (H(3) = 14.5, p = 0.002), and the ICRA7 noise con-
dition (H(3) = 16.02, p = 0.001).

Subsequent non-parametric Wilcoxon signed-rank pairwise
comparisons further elucidated these differences. In the clean
condition, the reference (M = 92.37, SD = 2.46) obtained
higher scores compared to the anchor (M = 16.23, SD =
10.25) conditions (p = 0.008). In the CCITT noise condition,
the reference (M = 89.4, SD = 10.52) received higher ratings
than both the bilateral Deep ACE (M = 65.28,SD = 17.2; p =
0.03) and anchor (M = 14.88, SD = 11.46; p = 0.01) condi-
tions. Finally, in the ICRA7 noise condition, the reference also
achieved higher scores (M = 96.65, SD = 4.46) compared to
the bilateral Deep ACE (M = 32.17, SD = 13.09; p = 0.01)
and anchor (M = 14.02, SD = 4.1; p = 0.01) conditions.

IV. DISCUSSION

In this study, we introduce and evaluate a novel deep learning-
based strategy for sound coding in BiCIs. Our approach involves
the integration of two monaural end-to-end deep denoising
CI sound coding methods through fusion layers that facilitate
the exchange of information between the listening sides. This
exchange is achieved by combining specific latent representa-
tions generated in each monaural model. The presented fused
Deep ACE model aims to replicate the ACE sound coding
strategy while automatically eliminating unwanted interfering
noise from the target speech, all while maintaining minimal
processing latency. To be precise, this model introduces a 2 ms
latency identical to the bilateral ACE setup, enabling the poten-
tial real-time application of the proposed approach. It is crucial
to emphasize that the transmission of the latent representation

must be considered. For instance, if we assume that only one
hearing side transmits information to the contralateral side for
fusion, with an encoded size of 64 and a skip connection size of
32, the data to be sent totals 192 bytes (assuming each parameter
is represented by a 16-bit fixed-point variable), equivalent to
1,536 bits. Given a channel stimulation rate of 1,000 pulses per
second, this information needs to be transmitted 1,000 times per
second, resulting in a rate of 1,536 kbps. Additionally, factoring
in the round trip where the information is sent and received back
by the sender, the rate would double, reaching approximately
3 Mbps. This underscores the need for efficient coding schemes
to facilitate the practical utilization of the fused Deep ACE
model.

Initially, we assess the impact of fusion (fused Deep ACE)
by comparing the effectiveness of speech denoising and perfor-
mance with the bilateral version (bilateral Deep ACE). Further-
more, we compare our approach with the standard clinical BiCI
setup, which does not incorporate any denoising (bilateral ACE).
Our evaluation involves the testing of this method on speech and
the assessment of speech enhancement quality in five BiCI users.

The objective instrumental measures reveal that in quiet en-
vironments, there are no discernible differences in speech intel-
ligibility between the bilateral ACE setup, bilateral Deep ACE,
and fused Deep ACE models (as shown in Fig. 3). However, in
the context of speech denoising, both bilateral Deep ACE and
fused Deep ACE models exhibit improvements in SNR, with
the fused Deep ACE model achieving the highest. Surprisingly,
the bilateral Deep ACE model performs less effectively when
exposed to background ICRA7-modulated noise. This outcome
is unexpected, given previous research indicating better results
in a similar scenario (as reported in [33]). This discrepancy
could be attributed to the lower SNR used in the current study.
Nevertheless, both fused Deep ACE and bilateral Deep ACE
models consistently outperform the unprocessed setup in terms
of predicted speech intelligibility across all input SNRs.

To assess the extent of clean speech preservation after denois-
ing, we employ objective measures, such as cross-channel and
cross-noise azimuths’ LCCs. These measures demonstrate that
the fused Deep ACE model surpasses the bilateral Deep ACE
model in terms of speech-denoising effectiveness and introduces
fewer artifacts. This improvement is likely associated with the
fused model’s ability to exploit the redundancy of speech in-
formation shared between sides through the fusion layers. This
result is consistent across channels and azimuths. Additionally,
as expected, the bilateral Deep ACE model generally exhibits
higher LCCs than the unprocessed condition, considering that
the unprocessed signal retains all the original interfering noise. It
is noteworthy that there is an asymmetry in the LCCs observed
in both the bilateral Deep ACE and bilateral ACE conditions
(as depicted in Fig. 6), with lower LCCs measured on the side
ipsilateral to the noise source. This asymmetry is also present in
the fused Deep ACE model, but to a lesser extent, possibly due
to the sharing of speech information between sides.

In the context of BiCI listening, it is crucial to evaluate the
retention of EIC after speech denoising, as low EIC has been
shown to negatively affect speech intelligibility in BiCI users,
as highlighted in [53]. Our assessment reveals that the fused
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layer achieves the highest EIC scores when measured across
azimuths and electrodes, outperforming the bilateral Deep ACE
and bilateral ACE conditions. When observing EIC as a function
of the azimuth (as shown in Fig. 8), all three conditions exhibit
the highest EIC when speech and noise sources are co-located,
aligning with expectations. In this scenario, the unprocessed
condition achieves EIC scores closer to those of the fused Deep
ACE model, surpassing the scores of the bilateral Deep ACE
model. This shows that enhancing speech becomes easier even
for the investigated models when interfering noise and target
speech are spatially separated, potentially linked to the binaural
unmasking phenomenon observed in human binaural hearing.
This underscores the significance of higher SNR listening sides
in BiCI speech denoising, particularly when speech information
is shared between sides, as facilitated by the fusion layers in our
approach.

The behavioral results in quiet conditions reveal no significant
differences in speech intelligibility among the ACE, bilateral
Deep ACE condition, and fused Deep ACE sound coding strate-
gies, corroborating the findings from objective measures. This
consistency is further confirmed by the MUSHRA test, where
no discrepancies in scores are observed among the reference,
bilateral Deep ACE, and fused Deep ACE conditions. However,
in noisy speech conditions, speech intelligibility experiments
showed that the fused Deep ACE model outperforms the bilateral
ACE and bilateral Deep ACE conditions, while the bilateral
Deep ACE condition surpasses ACE only in the presence of
CCITT noise, failing to yield improvement when ICRA7 back-
ground noise is present. These results align with the observed
SNR improvements in these conditions.

Furthermore, the MUSHRA scores indicate that all BiCI users
were capable of identifying the reference and the anchor. In terms
of denoising algorithms, the scores were consistently lower for
the bilateral Deep ACE model compared to the reference, par-
ticularly for both CCITT and ICRA7 conditions. This concurs
with the measured speech intelligibility results, implying that
speech intelligibility may be significantly affected not only by
the limited SNR improvement in this condition but also by
the bilateral distortions introduced by the bilateral Deep ACE
model.

V. CONCLUSION

This study underscores the potential of a fused deep learning-
based BiCI sound coding strategy (fused Deep ACE) in enhanc-
ing speech, especially when speech and interfering noise sources
are spatially separated. Notably, the approach’s ability to retain
interaural coherence compared to the bilateral Deep ACE model
is highlighted. The proposed fused Deep ACE model achieved
significant improvement in objective instrumental measures as
well as in the listening experiments with BiCI participants.
However, it is crucial to recognize that this approach may not
be optimal in all listening conditions, as it may compromise
binaural and spatial awareness, akin to the effects of front-end
beamformers. Further research is warranted to strike a bal-
ance between achieving high speech denoising performance and
maintaining spatial awareness through fusion layers, which may

entail a trade-off, as outlined in [54]. Nevertheless, our presented
approach exhibits promising speech-denoising performance and
may prove beneficial in specific listening conditions.
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