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Tailoring the Padova Type 2 Diabetes Simulator
for Treatment Guidance in Target Populations

Roberto Visentin
Britta Wagenhuber

Abstraci—Objective: The Padova type 2 diabetes (T2D)
simulator (T2DS) has been recently proposed to optimize
T2D treatments including novel long-acting insulins. It con-
sists of a physiological model and an in silico popula-
tion describing glucose dynamics, derived from early-stage
T2D subjects studied with sophisticated tracer-based ex-
perimental techniques. This limits T2DS domain of validity
to this specific sub-population. Conversely, running simu-
lations in insulin-naive or advanced T2D subjects, would
be more valuable. However, it is rarely possible or cost-
effective to run complex experiments in such populations.
Therefore, we propose a method for tuning the T2DS to any
desired T2D sub-population using published clinical data.
As case study, we extended the T2DS to insulin-naive T2D
subjects, who need to start insulin therapy to compensate
the reduced insulin function. Methods: T2DS model was
identified based on literature data of the target population.
The estimated parameters were used to generate a virtual
cohort of insulin-naive T2D subjects (inC1). A model of
basal insulin degludec (IDeg) was also incorporated into
the T2DS to enable basal insulin therapy. The resulting
tailored T2DS was assessed by simulating IDeg therapy
initiation and comparing simulated vs. clinical trial out-
comes. For further validation, this procedure was reiterated
to generate a new cohort of insulin-naive T2D (inC2) as-
suming inC1 as target population. Results: No statistically
significant differences were found when comparing fast-
ing plasma glucose and IDeg dose, neither in clinical data
vs. inC1, nor inC1 vs. inC2. Conclusions: The tuned T2DS
allowed reproducing the main findings of clinical studies
in insulin-naive T2D subjects. Significance: The proposed
methodology makes the Padova T2DS usable for support-
ing treatment guidance in target T2D populations.
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[. INTRODUCTION

N SILICO trials aim to recreate the concept of clinical trials
I using a simulation approach, where a large number of virtual
patients is used for initializing a disease intervention strategy. In
diabetes field, in silico experiments contribute to accelerate tech-
nology and drug development [1]. In fact, the use of a computer
simulator, consisting of a mathematical model and a cohort of
virtual patients spanning the variability of a desired population,
represents a time- and cost-effective approach to de-risk and
optimize drug discovery and development, and allows to assess
a large variety of scenarios which could be difficult, dangerous,
or unethical to perform in vivo.

An example of such in silico tools is the UVA/Padova type
1 diabetes (T1D) simulator [2], [3], [4] that has been accepted
and widely used as decision support system for testing several
diabetes technology treatments, such as artificial pancreas proto-
types (e.g., [5], [6], [7]) and, more recently, glucose monitoring
systems and novel insulin formulations (e.g., [8], [9], [10], [11]).
In addition to T1D, particular interest has been recently raised
also on supporting treatments for type 2 diabetes (T2D), given
that individuals with T2D represent 90% of the global population
with diabetes, and may benefit from a variety of treatments
specific for different stages of disease progression.

We recently developed a T2D simulator (T2DS) [12], consist-
ing of a large-scale simulation model and a population of 100 in
silico T2D subjects. The virtual patients were generated based
on glucose, insulin, C-peptide concentrations and estimated
glucose rate of appearance, endogenous production, utilization,
and insulin/C-peptide secretion available in 204 healthy [13] and
51 early-stage T2D subjects [14], [15], [16], who underwent a
triple-tracer mixed-meal tolerance test [17]. As such, this sim-
ulator is able to reliably describe the glucose-insulin-C-peptide
dynamics in early-stage T2D subjects (like those in [14], [15],
[16]), but it is not suitable to test treatments in subjects with
advanced insulin-dependent T2D or belonging to different age
or ethnic groups. This limited the usability of this promising tool
to a particular subgroup of the diverse T2D population.

Theoretically, specific T2D subpopulations should be stud-
ied as highlighted in [12], in order to be properly simulated.
However, these complex multiple-tracer experiments needed to
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estimate the metabolic fluxes and therefore are very burdensome
for patients, expensive and time consuming, so the benefit of
running the in silico trial would be lost. Rather, the commonly
available information for a specific population is limited, usually
consisting of population average, sometimes its variability, and
rarely individual data.

To overcome this limitation, we propose a method for tailoring
the Padova T2DS to the specific characteristics of a desired T2D
subpopulation, even in case of limited available data. The T2DS
is briefly described first. Then, the pipeline to get a tailored
simulator is presented. This includes i) the adaptation of the
virtual patients to the target population using data available
in the literature, ii) the incorporation of possible additional
modules needed for running the appropriate virtual trial, and
iii) the validation of the tailored simulator. A case study is
provided to illustrate how to perform these steps in practice
to tailor the T2DS to an insulin-naive T2D population. Finally,
the method is re-applied to the newly generated insulin-naive
virtual population, now considered the target to be virtually
recreated, and a second insulin-naive T2D virtual population is
generated. This allowed a robust validation of the method since,
in the simulated target population, not only sparsely sampled
but continuous plasma glucose and hormone data can be used to
compare simulated vs target outcomes.

II. METHODS
A. The Padova Type 2 Diabetes Simulator

The Padova T2DS consists of a set of 14 nonlinear differential
equations (described in the online Supplementary Material),
defining the physiological system behavior (glucose absorption
by the intestinal tract, endogenous glucose production, glucose
utilization, and a description of the impaired endogenous insulin
secretion in T2D), an infrastructure to set up the simulation
scenarios (duration of the simulation, time and amount of the
meals, etc.), and a set of virtual patients, defining the population
on which the user wants to run the in silico trial [12].

The i-th virtual subject is represented in the simulator by a
vector p; containing the N model parameters:

,pn)” (1)

randomly extracted from a log-normal joint parameter distribu-
tion LN(jip, Xp), originally obtained by identifying the T2DS
model on data of both early-stage T2D and healthy subjects
studied with a triple-tracer mixed meal protocol [13], [14], [15],
[16], [17].

p; = [pla b2 .-

B. Pipeline for Tailoring the T2D Simulator

We propose a pipeline to virtually recreate any T2D popula-
tion using data usually available in the literature, i.e., plasma
glucose and hormone concentration measurements, either at
average or individual level (Fig. 1). The pipeline constis of five
steps:

1) Model Identification: To tailor the T2DS to the specific
populations of interest, appropriate data are required for model
identification. This usually consists of average demographic

MODEL IDENTIFICATION

TRAINING [ () A

DATA 0(B1, B2 - BN)

SIMULATION MODEL

=

PARAMETER DISTRIBUTION UPDATE

IN SILICO SUBJECT GENERATION

{ POSSIBLE
DRUG PK/PD

| !
r:i_:
- 1
=

SIMULATOR ASSESSSMENT

IN SILICO TRIAL

TEST DATA

Fig. 1. Flowchart describing the pipeline to tune the simulator to a
target population. A training database (e.g., available from literature or
study record) is used to identify the simulation model and, if needed,
to develop/incorporate a PK/PD model of the drug to be tested in the
simulator. Then, the joint distribution of simulation model parameters is
updated based on the estimated model parameters (available from the
previous step), and the in silico target population can be generated. Fi-
nally, the simulator is assessed by exploiting clinical study data. Specif-
ically, the clinical protocol is replicated in silico, and the simulations are
compared with the clinical results.

characteristics, fasting and post-prandial time courses of plasma
glucose, insulin and C-peptide concentrations.

Here, we assume that the available information on a target
population consists of average demographic parameters (age,
body weight (BW), body mass index (BMI), etc.) and glucose,
insulin, and C-peptide time courses (e.g., sampled during a
mixed meal tolerance test). These data are used to identify the
T2DS model using a Bayesian Maximum a Posteriori (MAP)
Estimator [18], and provide the parameter estimates, fi,, de-
scribing the average dynamics of the target population.

2) Parameter Distribution Update: Assuming that only av-
erage data are available, the new parameter distribution is
LN(f1y,, Yp) with covariance matrix Xy of the original T2D
population. If the data allow to estimate the target population
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variability (i.e., individual data are available), the new parameter
distribution becomes LN(fi,, ip).

3) In Silico Subject Generation: The in silico population
is generated by randomly extracting a certain number of model
parameter vectors (p; ), each one representing an in silico subject,
from the joint parameter distribution LN(fi, ijp) obtained at
step 2. Similarly to [4], [12], parameter vectors with Maha-
lanobis distance greater than the 95" percentile are discarded,
so implausible parameter combinations are avoided.

In particular, in order to get an in silico population of M sub-
jects M : {p;, pa, ..., Pps}>asetof L>M subjects (defined as
L :{py, Py, -..,pr}) is generated, each of them undergoing
the same experiment as the target population (likely, an oral
glucose or mixed meal tolerance test). Among the possible
combinations of M subjects taken from L, the optimal set M,
corresponding to the tailored population, is selected as the one
that maximizes the following similarity score (S):

S = (FITg + FIT; + FITg,) /3 2)

where each FIT index is calculated with respect to the average
glucose (G), insulin (1), C-peptide (Cp) curves. For example,

Zf\[: 1 (Gtarget (2) _ Gtailored (Z))2
2

FITg=1-—
Z;V: 1 (Gtarget (Z) _ Gtarget)

3

where G'#¢" and G"°rd are the average glucose curves of
the target and tailored populations, respectively, GGt479¢t is the
G""2° sample mean, N is the number of time points and i is the
time point index. In addition, in the case that variability data
(e.g., standard deviation) also are available, a refined similarity
score S* can be evaluated to better match the target population
variability:

S* = (FITg + FITg 0+ FITgpi
+ FIT; + FITr 1o + FITT by
+FITey + FlTcp o + FITC;,,J”;) /9 “4)

where subscripts lo and hi refer to average F standard deviation
curves, respectively.

4) Incorporation of Additional Modules (Optional): If
needed, additional modules simulating a specific treatment (e.g.,
a model of long- or short-acting subcutaneous insulin kinetics,
or the PK/PD model of an antidiabetic drug to be tested) can
be incorporated into the simulator at this step. If no additional
modules are needed, this step can be skipped.

5) Simulator Assessment: The resulting tailored simulator
is finally validated by comparing clinical data (preferably not
derived in the same cohort used for model identification) to the
simulations, in which the in silico scenario matches the reference
clinical trial.

C. Case Study: Creating a Virtual Insulin-Naive T2D
Population

As case study, we present the application of the described
pipeline to create a T2DS for testing basal insulin therapy

initiation in insulin-naive T2D subjects, i.e., patients who start
basal insulin therapy to compensate the impairment in insulin
secretion and action.
1) Model Identification:

a) Database: Data used to tune the T2DS to the insulin-
naive population are taken from [19]. Briefly, a total of 260
European American insulin-naive T2D patients (122 female,
age = 5549 years, BMI = 32.444.5 kg/m?) were randomized
to three treatment arms (IDeg, Liraglutide, or IDegLira) and
underwent two mixed meal tolerance tests (MMTT), before (visit
1) and at the end of a 26-week period of once-daily treatment
administration (visit 2). In both visits, subjects consumed a sin-
gle, standardized, mixed meal containing 96 g of carbohydrates
(CHO). Plasma glucose, insulin and C-peptide concentrations
were measured at t = —10, 15, 30, 45, 60, 90, 120, 180, and 240
min, with 0 indicating the start of the meal.

b) Model identifiability and parameter estimation:
The T2DS model [12] was fitted to plasma glucose, insulin
and C-peptide average data available from [19]. Only data from
visit 1 (i.e., before treatment) were used to fit the baseline
characteristics of the target population.

It is worth noting that the T2DS model is not a priori identi-
fiable from the available data. Indeed, given the complexity of
the model, the sole availability of plasma glucose, insulin and
C-peptide makes it impossible to estimate a unique combination
of model parameters by using standard identification techniques,
such as nonlinear least squares or maximum likelihood. Hence,
T2DS model parameters describing insulin sensitivity (V.
kps), insulin secretion (P, P,, P4) and hepatic extraction
(HEp) were identified using a Maximum A Posteriori (MAP)
estimator implemented in MATLAB R2021b [20], while the
remaining parameters were fixed to population values [12]. In
particular, the a priori information was taken from [12], and
corresponded to the original joint parameter distribution derived
from triple-tracer data [13], [14], [15], [16]. This strategy was
proposed and validated in a previous work [18]. To note, insulin
sensitivity, secretion and hepatic extraction are known to be the
key parameters that mostly characterize T2D pathophysiology
and differ among populations, as already found in previous
analysis [21].

Measurement error on average plasma glucose data was as-
sumed to be independent, Gaussian, with zero mean and known
coefficient of variation (CV = 2%). Measurement error on
plasma insulin (/) and C-peptide (Cp) data were assumed to
be independent, Gaussian, with zero mean and known variance
linked to insulin and C-peptide measurements (in pmol/L), i.e.,
Var(l) = 6 4 0.0055 x I? and Var(Cp) = 2000 + 0.001 x Cp?,
as described in [22]. The precision of parameter estimates was
expressed by the coefficient of variation (CV, defined as the ratio
between the standard deviation of the estimated parameter and
the parameter value), which is related to how much variation of
a specific parameter influences the model prediction (the lower
the CV, the higher the sensitivity of model prediction to the
parameter).

2) Joint Parameter Distribution Update: The estimated
model parameters and the demographic characteristics (i.e., age,
BW, BMI) were used to update i, to insulin-naive average
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TABLE |
TITRATION ALGORITHM

FPG target: [70-90] mg/dL
Starting dose: 10 U

FPG (mg/dL) Dose adjustment (U)
<56 -4
[56-70) -2
(90-180] +2
(180-270] +4
>270 +6

Dose adjustments were done every 3 days, based on the last 3-day FPG.
FPG: fasting plasma glucose. U: units of insulin.

(fipc)- Since here we lacked individual subject data, i, was
kept identical to the early-stage T2D population [12].

3) In Silico Subject Generation: In silico insulin-naive
T2D subjects were generated from the joint parameter
distribution LN(ft,,Xp) and underwent a 4-hour MMTT with
96 g of CHO. The final simulated insulin-naive T2D population
of 100 subjects was selected based on §* of (4), as the one
best matching the average and variability of glucose, insulin
and C-peptide time courses of the reference data set.

4) Incorporation of Additional Module: Long-Acting In-
sulin Pharmacokinetics: A model of subcutaneous absorption
of long-acting insulin degludec (IDeg), was incorporated into
the simulator to enable the simulation of basal insulin therapy in
the simulated tailored population, as previously described [11]:

Iy ()= —ka-Ip(t)+F-D I1 (0)=0

Ip ()= —ka Ipp (t) + ka I (t) Ip2 (0)=0
Ig (t) = —ka g3 (t) + ka g2 (t) Iy3 0)=0
Ra; (t) = ko - I3 (t)

where D (mU/kg/min) is the insulin dose administered into the
subcutis, F (dimensionless) is the bioavailability, ks (min') is
the rate constant of molecular complex conversion, k, (min'!) is
the rate constant of insulin absorption to plasma, and Rajy is the
insulin rate of appearance in plasma.

In a previous work [23], this model was identified on average
IDeg serum concentrations measured in 49 [23] and 63 insulin-
dependent T2D subjects [25] receiving 0.4 U/kg or 0.6 U/kg
IDeg once-daily injections, respectively. This provided a good
description of IDeg therapy in T2D individuals.

5) Assessment of the Insulin-Naive T2DS:

a) Database: A setof 773 European American T2D sub-
jects (302 female, age = 59410 years, BMI = 30.9+4.8 kg/m?),
reported in [26], underwent a 52-week trial, in which they were
up-titrated to their individual optimal once-daily IDeg dose
following the titration rule reported in Table I. The IDeg starting
dose was 10 U. In the 52 treatment weeks, each subject-specific
IDeg dose was adjusted every 3 days on the basis of the average
fasting plasma glucose (FPG) of the last 3 days, ensuring titration
towards a predefined FPG target of 70-90 mg/dL.

FPG and IDeg daily dose were recorded throughout the trial
to evaluate the efficacy of the treatment.

b) In silico trial: The in silico 100 insulin-naive T2D
subjects performed the same experimental scenario described

in [26]. Specifically, each in silico subject underwent a 52-
week 3-meal/day IDeg titration trial. Simulated meal times and
amounts were distributed during the days as implemented in
[10], [11], to mimic real-life habits: three meals per day were ran-
domly generated for each subject assuming mealtime uniformly
distributed in the intervals 06:30 am-08:00 am (breakfast),
11:30 am—01:00 pm (lunch), 06:30 pm—08:00 pm (dinner); meal
amounts were randomly sampled from a uniform distribution
with mean =4 standard deviation of 58.2 + 22.5 g (breakfast),
77.7 £ 27.0 g (lunch), 83.9 +32.3 g (dinner). Subjects were
up-titrated to their individual optimal IDeg dose following the
titration rule reported in Table I. An inter-occasion variability in
IDeg bioavailability was generated by randomly modulating the
subject-specific nominal value with Gaussian noise with zero
mean and coefficient of variation equal to 8.5% [11].

Simulated continuous glucose monitoring (CGM) data, FPG,
IDeg doses and number of severe hypoglycemic events (classi-
fied as plasma glucose < 54 mg/dL) were collected during the
entire trial.

The insulin-naive T2DS was assessed against clinical data by
comparing the distributions of simulated and real FPG, its final
deviation from baseline (Aggy,), IDeg dose, and the cumulative
number of severe hypoglycemic events.

Outcome distributions were reported as mean =+ standard
deviation if normally distributed, as median and [25% — 75"]
percentiles, otherwise. The normality of outcome distributions
was assessed by the Lilliefors test, and unpaired comparison (in
silico vs. in vivo) was performed based on outcome distribution:
t-test for normally distributed values, Mann-Whitney U-test
otherwise. Significance level was set to P = 0.05 for all the
statistical tests.

D. In Silico Validation

In order to provide a robust validation of the tailoring method,
we tested if we were able to reproduce the in silico insulin-naive
population generated in the previous section C. In fact, using the
simulated population as target, not only sparse concentration
data but continuous variables are available for performance
assessment.

The 100 in silico insulin-naive T2D subjects, generated in
Section C, were randomized in two groups of 50 subjects, one
(training) used as target for T2DS tuning and the other one (fest)
used for the assessment steps.

Specifically, the training data set consists of individual plasma
glucose, insulin and C-peptide concentrations obtained in 50
in silico subjects undergoing a 4-hour MMTT with 96 g of
CHO. Despite the availability of individual data, we supposed
availability of average and variability measurements only. Thus,
the T2DS model [12] was fitted to the MMTT glucose, insulin
and C-peptide average data, as in Section II-C-1. This allowed
to update fi;, to a new average (fi,c2) and to generate a new
cohort of 100 in silico subjects from the joint parameter distri-
bution LN(fipc2,2p) following the same procedure described
in Sections II-C-2, II-C-3.

The new in silico population was then validated by running the
same 52-week IDeg titration trial described in Section II-C-5,
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Fig. 2. Model predictions (blue line) of plasma glucose (left), insulin (center), and C-peptide (right panel) compared to the respective average

clinical data (orange dots) [19]. Vertical bars represent standard deviation of the measurement error.

and comparing the simulated individual CGM data, FPG, IDeg
doses and number of severe hypoglycemic events to the re-
spective counterparts available for the test set, i.e., the second
group of 50 simulated subjects. Besides the distributions of
FPG, Aggr,, IDeg dose, and cumulative number of severe hy-
poglycemic events, the statistical comparison also involved the
CGM-based glucose control metrics [28], i.e., glucose average
(Mean), standard deviation (SD), coefficient of variation (CV),
percent time in range 70-180 mg/dL (TIR), below range <70
mg/dL. (TBR70), below range <54 mg/dL (TBR54), above
range >180 mg/dL (TAR180) and above range >250 mg/dL
(TAR250).

[ll. RESULTS
A. Insulin-Naive T2D Simulator

1) T2DS Model Identification: The T2DS model well fits
average glucose, insulin and C-peptide concentrations of clinical
study [19], as shown in Fig. 2. Model parameters describing in-
sulin sensitivity, secretion and hepatic extraction were estimated
with good precision and reported in Table II (i, ). Consistently
with the more severe disease condition of advanced insulin-naive
vs. early-stage T2D, estimated V., ks, Py, Ps, Py, and HE,,
were lower than the respective values in the original prior fi,
(estimated in early-stage T2D subjects).

2) In Silico T2D Subject Generation and IDeg Incorpora-
tion: Based on the results obtained at the previous step, the joint
parameter distribution was updated according to fi, reported in
Table II, and a cohort of 100 in silico insulin-naive T2D subjects
was generated as described in Sections II-C-3. The resulting
tailored population, undergoing the same 4-hour MMTT with 96
g of CHO, satisfactorily matched the measured glucose, insulin,
and C-pepetide data, in terms of both average and variability,
as proven by the similarity score (S* = 0.87), with the lowest
(but still acceptable) similarity index obtained for the average +
standard deviation insulin curve (F'I17 5; = 0.80).

In order to compare the ability of the original early-stage
T2D in silico population vs. the tailored one in reproducing

TABLE Il
MODEL PARAMETER ESTIMATES

. - e Ay
Process Parameter Unit i, (CV%) (CV%)
mg/kg/min per 0.018 0.024
Insulin Vine pmol/L 0045 (19%)  (35%)
Sensitivity mg/kg/min per 0,009 0.005 0.006
v pmol/L : G1%)  (87%)
. 49 5.8
D, 10 min! 6.7
' ) )
Insulin PR 154 14.9
Secretion s 107 min 201 (B%)  (4%)
0 276.1 299.4
D, 10 294.8 (14%) (15%)
Hepatic . . 0.34 0.44
Extraction L dimensionless 048 aow)  (36%)

Estimated model parameters compared to the original early-stage T2DS prior
(fL,) [12] by fitting the T2DS model on average clinical data [19] (f,c) or
average in silico training set (Hyc,). Precision of parameter estimates is
reported in parenthesis as percent coefficient of variation (CV, defined as the
ratio between the standard deviation of the estimated parameter and the
parameter value). CV is missing for basal B-cell responsivity (@) since it is
calculated and not estimated from data [22].

the available data, Table III reports the root mean square error
(RMSE) and mean absolute error (MAE) calculated from mean
and mean £ SD curves of glucose, insulin and C-peptide:
as it can be observed, the quality of the model prediction is
substantially improved (meant as reduced RMSE and MAE)
with the tailored population vs. the original one.

Each subject was then equipped with an individual set of [Deg
therapy parameters as described in Section II-C-4. By doing so,
the tailored T2DS implementing insulin therapy was created.

3) T2DS Assessment: The progression of FPG and IDeg
dose during the 52-week titration is shown in Fig. 3. The titration
algorithm mostly acts in the first 10-12 weeks, increasing the
IDeg dose to lower FPG towards the glucose target, as observed
in study [26]. At the end of the trial, in silico results were similar
to clinical outcomes: final FPG was 102 + 22 mg/dL (Apgy, =
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TABLE IlI
PREDICTION INDEXES

Data vs. Simulation
(tailored population)

Data vs. Simulation
(original population)

RMSE MAE RMSE MAE

Glucose (mg/dL)

Mean 249 22.1 6.1 53

Mean+SD 46.0 39.8 14.5 12.0

Mean-SD 379 354 17.0 16.1
Insulin (pmol/L)

Mean 59.9 532 319 27.0

Mean+SD 539 474 335 29.3

Mean-SD 79.4 68.4 61.6 51.4
C-peptide (pmol/L)

Mean 380.1 312.9 40.1 32.8

Mean+SD 506.3 379.4 134.9 121.5

Mean-SD 382.4 365.3 106.3 101.1

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) for
glucose, insulin and C-peptide mean and mean + standard deviation (SD)
data vs. simulation obtained using both the original and the tailored in silico
populations.

FPG

4 8 12 16 20 24 28 32 36 40 44 48 52
Time (weeks)

IDeg dose

0 1 1 L L 1 1 1 L L

4 8 12 16 20 24 28 32 36 40 44 48 52
Time (weeks)

Fig. 3. Upper panel: Simulated fasting plasma glucose (FPG) progres-
sion during the insulin degludec (IDeg) titration period of 52 weeks.
Lower panel: IDeg dose distribution during the 52-week titration period.
In silico data are reported as mean (thick line) + standard deviation
(shaded area), while in vivo data are reported as mean (circles) +
standard deviation (vertical bars).

—64 + 27 mg/dL) in silico vs. 106 + 37 mg/dL (Aggr, = —68
+ 45 mg/dL) in vivo, P = 0.335; final IDeg dose was 0.56 £
0.43 U/kg in silico vs. 0.59 £ 0.35 U/kg in vivo, P = 0.434.
To note, inter-individual FPG variability, described by standard
deviation, was lower in the in silico vs. in vivo cohort.

The cumulative number of severe hypoglycemic events per
patient/year also was comparable among studies: 1.81 in silico
vs. 1.52 in vivo. A similar difference was found between two
subject groups in [26], and resulted neither statistically nor
clinically significant.

B. In Silico Validation

1) T2DS Model Identification: The T2DS model well fits
average glucose, insulin and C-peptide concentrations of the
simulated training set, as shown in Fig. 4. Model parameters
describing insulin sensitivity, secretion and hepatic extraction
were estimated with precision and reported in Table II (fi,c2)-
Ve kps, Py, P, and HE;, were comparable with the ﬂpc
estimates. To note, although &, was higher, the total S-cell
responsiveness (®;,;) was similar (16.3 and 15.9 . 10 min™',
for fipc and fi, o, respectively) and lower than fi, (19.9 . 10
min!).

2) In Silico T2D Subject Generation and IDeg Incorpora-
tion: The joint parameter distribution was updated according to
fipc2. and a cohort of 100 in silico insulin-naive T2D subjects
has been generated as described in Sections II-C-3. The obtained
distributions of key metabolic parameters were statistically iden-
tical to both training and test sets (see Fig. S1 in the online
Supplementary Material). The resulting tailored population,
undergoing the same 4-hour MMTT with 96 g of CHO, well
matched the training set glucose, insulin, and C-pepetide curves,
in terms of both average and variability (Fig. 5), resulting in a
similarity score $* = 0.93, with the lowest similarity obtained for
average -+ standard deviation insulin curve (F'IT7 j; = 0.89).

Again, individual sets of IDeg model parameters were added
to each subject to enable insulin therapy.

3) T2DS Assessment: The progression of FPG and IDeg
dose during the 52-week titration is shown in Fig. 6. No statis-
tically significant differences were found when comparing both
FPG and IDeg doses in the two populations throughout the 52
weeks. In particular, at the end of the trial, final FPG was 102 £
19 mg/dL (Apgy, = -67 + 29 mg/dL) in the tailored population
vs. 100 + 21 mg/dL (Agsr, = -63 £ 25 mg/dL) in the simulated
test set, P = 0.269, final IDeg dose was 0.61 £ 0.50 U/kg in the
tailored population vs. 0.60 £ 0.42 U/kg in the simulated test
set, P = 0.879.

The increase in the cumulative number of severe hypo-
glycemic events (Fig. 7) was comparable among the studies,
with a final rate of 1.85 and 1.68 episodes per patient/year, for
tailored population and test set, respectively.

Finally, no statistically significant differences were found
when comparing the distributions of CGM-based glucose con-
trol outcomes (Table IV).

[V. DiSCUSSION

Given the progressive nature of T2D, therapies differ de-
pending on the stage of disease progression. Based on this
consideration, we aimed to maximize the applicability of the
Padova T2DS, to support drug development and therapeutic
decisions in a given target population with T2D. Since multiple-
tracer data (necessary for an optimal estimation of all T2DS
model parameters) usually are not available, we developed an
alternative method to tailor the T2DS to a specific population
of interest (Fig. 1). The idea was to exploit data available in the
target population (usually average plasma glucose and hormone
profiles and possibly their variability) and capture, by T2DS
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Fig. 4. Model predictions (blue line) of plasma glucose (left), insulin (center), and C-peptide (right panel) compared to the respective average

training set data (orange dots). Vertical bars represent standard deviation of the measurement error.
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Fig. 5.

Mean (continuous or dashed lines) + intersubject variability (i.e., standard deviation, shaded areas) of plasma glucose (leff), insulin

(center), and C-peptide (right panel) obtained by simulating a 4-hours mixed meal tolerance test with 96 g of carbohydrates in the training set

(orange) and tailored population (blue).

model identification, possible differences in key metabolic pa-
rameters with respect to the original early-stage population [12].
This result, merged into the available statistical information (i.e.,
the joint distribution of T2DS model parameters [12]), allowed
generating a new cohort of virtual patients, tailored to the T2D
target population.

As a case study, we presented the set up of a T2DS for testing
basal insulin therapy initiation in advanced insulin-naive T2D
patients. In particular, after fitting the T2DS model to average
clinical data of the target population, we generated a tailored
cohort of virtual subjects. Interestingly, the tailored population
was able to satisfactorily predict the target population dynamics,
much better than what achievable with the early-stage popula-
tion originally included in the T2DS (Table III). This further
underlines the utility of the proposed methodology to provide
reliable simulations in a target population.

Then, we equipped the T2DS with a model of IDeg [11],
[23] to enable basal insulin therapy, and simulated basal insulin
therapy initiation in the tailored population. We showed that

the tailored population satisfactorily predicted clinical trial out-
comes, in terms of FPG, IDeg dose progressions (both average
and, to a lesser extent, variability) and rate of hypoglycemic
episodes.

Despite these positive results, it is important to discuss the
observed differences in FPG variability at the end of the titration
period, which was higher in vivo vs. in silico. This can be
attributed to several factors in the clinical study [26], including
subject compliance to the titration rule and trial drug handling,
which resulted in an ineffective insulin titration in the 7% of
the population (data obtained from Clinical Trial Report no.
NN1250-3579, available at www.novonordisk-trials.com). On
the contrary, the in silico trial granted the optimal adherence to
insulin titration by design. This represents the main limitation
of the current simulator, therefore future developments will in-
clude the possibility to simulate more realistic patient behavior,
including imperfect adherence to insulin therapy. However, it is
important to point out that the possibility of performing an ideal
comparison is the intrinsic value of running simulation.


www.novonordisk-trials.com
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Upper panel: Distribution (boxplot) of simulated fasting plasma glucose (FPG) during the insulin degludec (IDeg) titration period of 52

weeks, in the test set (orange) and tailored population (blue), respectively. Lower panel: Simulated IDeg dose distribution (boxplot) during the
52-week titration period, in the test set (orange) and tailored population (blue), respectively. Each boxplot reports the outcome median value
(central tick), the interquartile range (colored box), minimum and maximum values (whiskers), and outliers (dots).
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In addition, it is worth mentioning that no IDeg PK data was
available for the target insulin-naive T2D population. Therefore
we assumed that the iDeg PK variability in insulin-naive T2D
subjects was the same of the T2D patients of studies [23], [25].
This aspect might have potentially contributed to the observed

TABLE IV
CGM-BASED METRICS

Outcome Tailored Test set P
Mean (mg/dL) 161.4 + 204 156.5 +19.8 0.168
SD (mg/dL) 43.0 =144 46.5 £15.5 0.566
CV (%) 29.5 £6.5 29.6 +7.4 0.596
TIR (%) 655 £14.5 679 +13.7 0.317
TBR70 (%) 1.7 [0.9 - 2.3] 1.9 [1.1 -3.2] 0.121
TBR54 (%) 0.3 [0.1 - 0.5] 0.4 [0.2 - 0.8] 0.080
TARI180 (%) 327 £143 29.6 £13.6 0.201
TAR250 (%) 5.0 [1.2 - 12.5] 2.3 [09 - 8.9] 0.128

Values are reported as mean + standard deviation and statistical P obtained
by unpaired t-test for normally distributed outcome, as median and [25" —
75" percentiles and statistical P obtained by Mann-Whitney U-test,
otherwise.

different FPG variability. However, it is to note that the above
limitations are related to the case study and do not invalidate the
proposed methodology.

In order to provide further validation of the methodology, we
re-applied it to match the newly generated in silico insulin-naive
population, now considered as target. By doing so, we generated
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a second insulin-naive T2D cohort, so we could perform a robust
statistical comparison, also including the analysis of the most
common glucose control outcome metrics based on CGM data.
The performance of the method achieved in simulation was
similar to those obtained on real data, even increasing the match
of FPG variability.

Finally, it is important to underline the potential benefit of
using a tailored simulator, that is the possibility to test a certain
treatment in a population with specific characteristics. Indeed,
in the present work, we focused on optimally titrating IDeg in
European American T2D subjects, quantifying the insulin need
for optimal glycemic control (0.56 + 0.43 U/kg). The same
insulin amount might be uneffective or, even worse, dangerous
if administered in a different, i.e., more insulin resistant or more
insulin sensitive population, respectively. Therefore, working
with a tailored simulator is fundamental to provide optimal treat-
ment dose guidance to the target population, before perfoming
clinical trials in humans.

V. CONCLUSION

We developed a method for tuning the Padova T2DS from
early-stage to advanced insulin-naive T2D subjects, by ex-
ploiting commonly available plasma glucose and hormones
concentrations taken from clinical meal-test studies. This
methodology has the potential to develop virtual populations
representative for the T2D subpopulations of interest and that
can be used to perform in silico clinical trials to guide the
development of novel T2D treatments, including basal insulin
therapies.
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