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The Minimally-Invasive Oral Glucose Minimal
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Rate of Appearance, and Insulin Sensitivity
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Chiara Dalla Man

Abstract—Objective: Modeling the effect of meal com-
position on glucose excursion would help in designing
decision support systems (DSS) for type 1 diabetes (T1D)
management. In fact, macronutrients differently affect post-
prandial gastric retention (GR), rate of appearance (Ra), and
insulin sensitivity (SI). Such variables can be estimated, in
inpatient settings, from plasma glucose (G) and insulin (I)
data using the Oral glucose Minimal Model (OMM) coupled
with a physiological model of glucose transit through the
gastrointestinal tract (reference OMM, R-OMM). Here, we
present a model able to estimate those quantities in daily-
life conditions, using minimally-invasive (MI) technologies,
and validate it against the R-OMM. Methods: Forty-seven
individuals with T1D (weight= 78±13 kg, age= 42±10 yr)
underwent three 23-hour visits, during which G and I
were frequently sampled while wearing continuous glucose
monitoring (CGM) and insulin pump (IP). Using a Bayesian
Maximum A Posteriori estimator, R-OMM was identified
from plasma G and I measurements, and MI-OMM was iden-
tified from CGM and IP data. Results: The MI-OMM fitted
the CGM data well and provided precise parameter esti-
mates. GR and Ra model parameters were not significantly
different using the MI-OMM and R-OMM (p>0.05) and the
correlation between the two SI was satisfactory (ρ=0.77).
Conclusion: The MI-OMM is usable to estimate GR, Ra, and
SI from data collected in real-life conditions with minimally-
invasive technologies. Significance: Applying MI-OMM to
datasets where meal compositions are available will allow
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modeling the effect of each macronutrient on GR, Ra, and
SI. DSS could finally exploit this information to improve
diabetes management.

Index Terms—Bayesian estimation, continuous glucose
monitoring, diabetes management, meal composition.

I. INTRODUCTION

D IABETES mellitus is a metabolic disease characterized
by chronic elevated levels of blood glucose (BG) and

disorders in the metabolism of carbohydrates, lipids, and pro-
teins. This chronic condition is caused by a deficiency in insulin
secretion (type 1 diabetes, T1D), the development of resistance
to insulin (type 2 diabetes, T2D), or a combination of the
two [1]. Uncontrolled BG levels damage the vascular system
and lead to more severe clinical complications over time, includ-
ing cardiovascular disease, retinopathy, and nephropathy [2].
For this reason, people with diabetes, especially T1D, undergo
frequent administration of exogenous insulin analogs to keep
BG levels within the safe range (approximately between 70
and 180 mg/dL). However, optimal dosing of this hormone is
notoriously a challenging task, due to the presence of several
external factors that affect BG levels, such as meals, physical
exercise, or psychological stress.

Current T1D therapies involve the administration of an insulin
bolus before each meal to anticipate and compensate for the
post-prandial glucose excursion. However, current open- and
closed-loop control therapies do not take into account meal
nutrients different from carbohydrates [3], [4], [5], [6], even if
proteins and fats in the meal are known to strongly affect gastric
retention (GR, i.e., the fraction of food still in the stomach) [3],
[7], glucose rate of appearance (Ra, i.e., the velocity at which
glucose is absorbed in the bloodstream) [8], [9], as well as insulin
sensitivity (SI, i.e., the effectiveness of insulin in reducing BG
levels) [3], [10]. In turn, all these factors affect the glucose
excursion and can lead to a prolonged hyperglycemia if not prop-
erly considered in the calculation of the prandial insulin bolus.
Therefore, including the information about meal composition
in the control algorithms for insulin administration (from the
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simplest formulas to the most advanced automatic controllers)
would be a significant step toward optimal insulin dosing.
Recently, some attempts were made to develop a closed-loop
therapy that is able to account for fat intake [11], [12], however,
this was achieved by an iterative procedure requiring the patient
to undergo several meals with different amounts of fat until a
good glycemic target was reached. A more refined approach
would be the inclusion of the effect of the meal content directly
in the insulin delivery algorithm, however, this step is hampered
by the lack of a physiological model quantitatively describing
the effect of different macronutrients on BG dynamics. To do
this in an effective way, one needs a model able to estimate GR,
Ra, and SI, if possible, in daily-life conditions.

In [13], we proposed a reliable model quantitatively describ-
ing glucose traversing through the gastrointestinal tract (esoph-
agus, stomach, intestine), splanchnic bed, and its appearance
in the peripheral circulation. However, one needs an Ra profile
to identify such a model, which cannot be directly measured
but can be estimated, in hospitalized setting, using multiple
tracer dilution techniques [14]. Other models were proposed in
the literature to estimate Ra after an oral glucose and/or meal
challenge (OGTT/MTT), without the need for sophisticated
tracer techniques [15], [16]. For instance, the Oral glucose Min-
imal Model (OMM) [16] allows for simultaneously quantifying
both SI and post-prandial Ra after an OGTT/MTT, assuming a
simple piece-wise linear description of the unknown Ra profile.
However, parameters describing Ra have not a direct physiolog-
ical interpretation and, moreover, this method requires plasma
glucose and insulin data, thus, it is not usable in free-living
conditions. Recently, we incorporated the physiological descrip-
tion of the gastrointestinal tract into the OMM, overcoming the
first mentioned limitation of the OMM [17]. Such a modified
version of the OMM is still not suitable for our purpose, since it
is identified on plasma glucose and insulin data. Nevertheless,
here, it was used as the reference method (R-OMM).

To the best of our knowledge, few models [18], [19] tried to de-
scribe glucose dynamics in outpatient conditions exploiting data
provided by minimally-invasive (MI) devices, i.e., continuous
glucose monitoring (CGM) and insulin pump (IP), in subjects
with T1D. In both works, the aim was to describe some of the
key aspects of glucose regulation in order to evaluate what would
have happened if a different insulin dosing was administered.
To do that, the authors made some simplifications to the original
model structure, especially on the gastrointestinal glucose ab-
sorption module, which preclude their use to accurately quantify
the key variables characterizing glucose absorption (i.e., GR and
Ra). In this work, the aim is to extend the applicability of the
R-OMM to outpatient conditions, in subjects with T1D wearing
MI devices (i.e., CGM and IP), while also allowing an accurate
description of the key processes of gastrointestinal glucose
absorption. For such a scope, we resorted to a dataset of real
subjects with T1D containing both plasma glucose and insulin
measurements, as well as CGM and IP data, after receiving
a standardized mixed meal [20]. The simultaneous collection
of both plasma glucose and insulin measurements and MI data
allowed us to develop the here-called Minimally-Invasive OMM
(MI-OMM), identified from MI data, and compare its results in

terms of GR, Ra, and SI against the R-OMM identified from
plasma glucose and insulin data.

II. METHODS

A. Database

The database used in this study is that presented in [20]
and is composed of 47 subjects with T1D (age = 42.0±10.1
years, body weight, BW = 77.5±13.4 kg, body mass index,
BMI = 24.4±0.1 kg/m2), recruited in six different clinical cen-
ters (Academic Medical Center, Amsterdam, The Netherlands;
Centre Hospitalier Regional Universitaire, Montpellier, France;
Medical University, Graz, Austria; Profil Institute for Metabolic
Research GmbH, Neuss, Germany; University of Cambridge,
Cambridge, U.K.; and University of Padova, Padua, Italy) within
the AP@home FP7-EU project. The trial was conducted in ac-
cordance with the ethics principles set forth in the Declaration of
Helsinki and was approved by the medical ethics committees of
participating centers (clinical trial reg. no. ISRCTN62034905).
Briefly, each subject underwent three randomized 23-hour ad-
missions: one open-loop and two closed-loop sessions. During
the open-loop admission, subjects were treated with their usual
insulin therapy through an IP whereas, during the closed-loop
admissions, two different control algorithms were used for in-
sulin infusion. Subjects received a mixed meal for dinner (19:00,
first day), breakfast (08:00, second day), and lunch (12:00,
second day) containing 80 g, 50 g, and 60 g of carbohydrates
and standardized macronutrient composition, respectively, and
performed 30 minutes of moderate physical activity (15:00,
second day). In case of hypoglycemia, subjects were treated with
15 g carbohydrate snacks until the recovery to normal glucose
levels. Blood samples were collected to measure plasma glucose
and insulin every 15 min in the first 2 hours after a meal and
during physical activity, every hour during bedtime (from 23:00,
first day, to 7:00, second day), and every 30 min in the rest of
the admission.

Plasma glucose (Fig. 1, panel A) was measured using YSI
2300STAT Plus Analyzer (YSI Incorporated, Yellow Springs,
OH, USA) and plasma insulin (Fig. 1, panel B) was measured
using an insulin chemiluminescence assay (Invitron Ltd, Mon-
mouth, U.K.). Throughout the admissions, subjects wore a CGM
system (Dexcom Seven Plus CGM, Dexcom, San Diego, CA)
which collected glucose measurements every 5 minutes (Fig. 1,
panel C), and an insulin patch-pump (Omnipod, Insulet, Bed-
ford, MA) which administered insulin every 5 minutes (Fig. 1,
panel D). Calibration of the sensor was performed using finger-
stick glucose measurements (self-monitoring of blood glucose,
SMBG) before dinner (18:75, first day), before bedtime (23:00,
first day), before breakfast (07:00, second day) and before the ex-
ercise session (14:50, second day), as per manufacturer’s instruc-
tions. More information about the protocol is reported in [20].

For the purpose of this work, only data from 15 minutes before
(06:45 pm) to 8 hours after dinner (03:00 am) were considered
to avoid the need to model the so-called “dawn phenomenon”,
usually occurring from 03:00 to 07:00 [21]. From the 141
available sessions, 16 were discarded due to problems in insulin
administration (pump replacement, pump occlusion, or missing
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Fig. 1. Median (solid black lines) and 25th and 75th percentiles (gray shaded area) of the data used for model development and validation. Panel
A: plasma glucose concentration. Dashed lines represent mealtime. Panel B: plasma insulin concentration. Panel C: CGM sensor measurements.
Panel D: Insulin pump rate (right y-axis, solid line and shaded areas) and pre-prandial insulin bolus (left y-axis, dot and bars). The black dot
represents the median pre-prandial bolus while the lower and upper bars represent the 25th and 75th percentiles, respectively. All the plots are
aligned with mealtime at 19:00 on the first day (0 hours).

Fig. 2. Schematic representation of the models used in this work. Panel A: Reference oral minimal model (R-OMM) used in [17]. Panel B:
Minimally-invasive oral minimal model (MI-OMM) developed in this work, which integrates the R-OMM, a model of subcutaneous insulin absorption,
and a model of plasma-interstitium glucose kinetics. Circles represent state variables, continuous arrows represent mass transfers and inputs, and
dashed lines represent controls. Dashed lines with black dots represent the measurement variables.

bolus), and 8 due to missing or erroneous CGM sensor data.
Therefore, a total of 117 sessions of 8 hours were used for model
development and validation. In Fig. 1, median and interquartile
range (25th and 75th percentiles) of such data are reported.

B. The Reference Oral Glucose Minimal Model (R-OMM)

This model originated from the OMM [16] which describes
plasma glucose dynamics after a meal as a function of the

measured plasma insulin concentration and the unknown meal
glucose Ra. However, at variance with [16], where Ra was
approximated by a piece-wise linear function with fixed break-
points and amplitudes to be estimated from the data, here, we
used the structural model of the gastrointestinal tract proposed
in [13] which provides meaningful parameters describing the
physiology of the gastrointestinal tract (Fig. 2, panel A). This
revisited version of the model was already used as a reference
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model in other modeling studies [17]. Model equations are:{
Ġ(t) = −[p1 + X(t)]G(t) + p1Gb +

Ra(t)
VG

G(0) = G0

Ẋ(t) = −p2X(t) + p2SI[Ip(t)− Ib] X(0) = X0
(1)

where G(t) is plasma glucose, X(t) is insulin action in a remote
compartment, and Ip(t) is the plasma insulin concentration, Gb

and Ib are basal levels of glucose and insulin in plasma, VG is
the volume of glucose distribution, p1 is the fractional glucose
effectiveness, p2 is the rate constant describing the dynamics
of insulin action, and SI is insulin sensitivity, i.e., the ability
of insulin to suppress glucose production and enhance glucose
utilization. Ra(t) is the post-prandial glucose rate of appearance
in plasma and is described by the following differential equa-
tions [13], whose parameters and variables have a straightfor-
ward and clear physiological interpretation:⎧⎪⎪⎨
⎪⎪⎩

Q̇sto1(t) = −kmaxQsto1(t) + Dδ(t) Qsto1(0) = 0

Q̇sto2(t) = −kempt(t)Qsto2(t) + kmaxQsto1(t) Qsto2(0) = 0

Q̇gut(t) = −kabsQgut(t) + kempt(t)Qsto2(t) Qgut(0) = 0
Ra(t) = f

BW kabsQgut(t)
(2)

where D is the amount of ingested glucose, Q sto1(t) and Qsto2(t)
represent the amount of glucose in the stomach (solid and liquid
phase, respectively), and Qgut(t) is the amount of glucose in the
intestine. kmax is the constant rate of meal grinding, kabs the
constant rate of intestinal absorption, f is the fraction of glucose
that is actually absorbed in plasma (i.e., glucose bioavailability),
and BW is the body weight of the subject. kempt(t) represents the
rate of gastric emptying, which varies depending on the total
amount of glucose in the stomach Qsto(t)= Qsto1(t)+Qsto2(t),
according to the formula:

kempt(t) = kmin +
kmax − kmin

2

{
tanh[α(Qsto(t)− cD)]

− tanh[β(Qsto(t)− dD)] + 2
}

(3)

with α = 5/[2D(1− c)] and β = 5/(2D d), and c and d the
model parameters that determine the flex points of the curve
describing the behavior of kempt as function of Qsto, with kmin

and kmax the minimal and maximal constant rates of stomach
emptying. For a complete description of (3), we refer to the
original work [13].

C. The Minimally-Invasive Oral Glucose Minimal Model
(MI-OMM)

The MI-OMM model couples the R-OMM described in
(1)–(3), with the descriptions of subcutaneous absorption of
fast-acting insulin analogues [22], [23] (Section II-C1), and
plasma-interstitium glucose kinetics [24], [25] (Section II-C2)
(Fig. 2, panel B). The incorporation of these modules extended
the usability of the R-OMM to non-hospitalized experimental
settings since it allowed describing CGM data as a function
of subcutaneous insulin infusion rate and the ingested amount
of carbohydrates while keeping the model’s ability to provide
parameters and variables with a clear physiological meaning.

1) Subcutaneous Insulin Absorption and Plasma In-
sulin Kinetic Model: The subcutaneous insulin absorption
model [22], [23], coupled with a single-compartment model of
insulin kinetics in plasma [26], is described by the following
differential equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q̇sc1(t)=−(ka1+kd)Qsc1(t)+U(t−τI) Qsc1(0)=Qsc1,0

Q̇sc2(t)=−ka2Qsc2(t)+kdQsc1(t) Qsc2(0)=Qsc2,0

Q̇p(t) = −keQp(t) + ka1Qsc1(t)
+ka2Qsc2(t) Qp(0) = Qp,0

Ip(t) =
Qp(t)

VI

(4)
where U(t) is the pump rate infusion, Qsc1(t) and Qsc2(t) repre-
sent the amount of insulin in the subcutis (non-monomeric and
monomeric state, respectively), Qp(t) and Ip(t) are the insulin
amount and concentration in plasma, respectively. ka1 and ka2

are the constant rate of insulin absorption in plasma from the two
subcutaneous compartments, kd is the constant rate of insulin
dissociation in monomers, ke is the constant fractional insulin
clearance in plasma, and VI is the plasma insulin distribution
volume.

2) Interstitial Glucose Kinetic Model: The diffusion pro-
cess of glucose from the blood, G(t), to the interstitial space,
Gi(t), is modeled by a linear single-compartment model, cor-
rected for the plasma-to-interstitium glucose gradient in steady-
state conditions, as reported in [24], [25]:

Ġi(t) = − 1

τG
Gi(t) +

1

τG
G(t) Gi(0) = Gi,0 (5)

where Gi(t) is interstitial glucose concentration and τG is the
equilibration time constant between plasma and interstitium.

D. Model Identification

1) R-OMM Identification: The R-OMM is a priori noniden-
tifiable, i.e., an infinite number of solutions for model parameters
exists [27]. In particular, paralleling what was done in [16]
and [17], we fixed VG = 1.45 dL/kg and, to help numerical
identifiability, f=0.9. In addition, to avoid nonphysiological
parameter configurations we constrained kmax to be greater
than kmin and c to be greater than d, as done in [13]. Finally,
as done in [25] and [17], p1 was reparametrized to separate
the insulin-dependent and -independent components that both
contribute to the fractional glucose effectiveness [28]:

p1 =
GEZI

VG
+ SI Ib (6)

where Ib was obtained from the plasma insulin data at the end
of the meal session. Therefore, the final set of model parameters
of the R-OMM to be estimated was SI, p2, Gb, GEZI, kabs, kmax,
kmin, c, and d.

R-OMM was numerically identified on plasma glucose data
using the amount of carbohydrate ingested as input and plasma
insulin concentration as model forcing-function, hence assumed
to be known without error. Model parameters were estimated
using a Bayesian Maximum A Posteriori estimator [29], using
prior information coming from the literature [16], [30]. Mea-
surement error on glucose data was assumed to be independent,
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Gaussian, with zero mean and known standard deviation (con-
stant coefficient of variation, CV=2%).

2) MI-OMM Identification: The MI-OMM is a priori non-
identifiable. In particular, we fixed: VI=0.135 L/kg and, as
for the R-OMM, VG=1.45 dL/kg, and f=0.9. In addition, to
help numerical identifiability, we fixed to population values
τI=5.62 min, ka1= 1.34·10−4 min−1, kd= ka2+0.0155 min−1

[23], and the same constraints to parameter kmax and kmin, c,
and d were imposed as for the R-OMM. Parameter p1 was
reparametrized as reported in (6). In addition, here we calculated
Ib from pump data as

Ib =
Ub

ke VI BW
(7)

where Ub is the basal insulin infusion rate of the subject in the
last hour before the start of the experiment. Hence, the final set
of model parameters of the MI-OMM to be estimated was SI,
p2, Gb, GEZI, kabs, kmax, kmin, c, d, ka2, ke, and τG. MI-OMM
was identified simultaneously on CGM sensor and, if available,
SMBG data using the amount of the ingested carbohydrate and
the subcutaneously administered exogenous insulin profile as
model inputs. As known from literature [31], CGM traces of
old-generation sensors (like the Dexcom Seven Plus used here)
were affected by temporal and proportional drift and offset.
These were accounted in the model by modulating Gi(t) of (5)
as follows:

CGM(t) = (a0 + a1t) Gi(t) + b0 + b1t (8)

where a0, a1, b0, and b1 are the parameters describing the offset
(subscript 0) and the temporal drift (subscript 1) of the sensor
after a sensor calibration, to be estimated from the data in each
between-calibration interval. Of note, on some occasions, the
confidence interval of the estimated parameters of the CGM
error model may include the zero term. In this case, the CGM
error model can be simplified by fixing these values to zero.
Moreover, the noise superimposed to CGM, v(t), is known to be
colored. To account for that, we used the autoregressive model
of order 2 reported in [31]. Needless to say, the choice of the
appropriate CGM model depends upon the CGM device used
in the experiment. For instance, in more recent CGM devices,
drift and offset might be negligible and the superimposed error
noise could be described by a simpler model. Measurements
noise on SMBG data, w(t), was assumed to be independent,
Gaussian with constant CV=2%. To facilitate the a posteri-
ori identifiability, model parameters were estimated using a
Bayesian Maximum A Posteriori estimator [29], with the a
priori probability density function assumed to be log-normally
distributed, with known mean μp and covariance matrix Σp of
the log-transformed parameters, derived from the literature [16],
[23], [30], [31]. In summary, the objective function to minimize
was:

J(θ̂) = v̂TΣ−1
v v̂ + ŵTΣ−1

w ŵ + (θ̂ − μp)TΣ−1
p (θ̂ − μp) (9)

where v̂ is the difference between measured and predicted CGM,
Σv the covariance matrix of v(t), calculated from the autoregres-
sive model proposed by Facchinetti and coworkers [31] using
the Yule-Walker’s equation [32], ŵ is the difference between

measured SMBG and model predicted glucose concentration,
Σw the covariance matrix of w(t), and θ̂ is the estimated vector
of the log-transformed parameters.

Model identification was performed in MATLAB (MATLAB
R2020a, The MathWorks, Inc., Natick, Massachusetts, United
States [33]) using the ode45() solver to integrate differen-
tial equations and the lsqnonlin() built-in function to find
model parameters minimizing (9).

E. Model Assessment and Validation

The model assessment was performed by checking for ran-
domness and normality distribution of weighted residuals, a
posteriori identifiability, and physiological plausibility of pa-
rameter estimates [29]. Randomness of weighted residuals was
assessed by the Runs test and normality of the distributions by
the Kolmogorov-Smirnov test. Precision of parameter estimates
was expressed as percentage CV for those that can assume only
positive values and as standard deviation (SD) otherwise. In both
cases, SD was derived from the square root of the diagonal ele-
ments of the covariance matrix of the estimates, which, in turn,
was obtained as the inverse of the Fisher Information matrix.
Physiological plausibility of model parameters was assessed by
checking if the value of the estimates falls inside a physiological
range.

MI-OMM validation was performed by comparing key clini-
cally relevant quantities, i.e., SI, Ra(t), and GR(t) calculated as:

GR(t) = 100
Qsto(t)

D
(10)

derived from the MI-OMM, against those obtained from the
reference R-OMM. Finally, MI-OMM prediction of plasma
glucose and insulin profiles were visually compared against the
measured plasma glucose and insulin concentration that were
available in the dataset but not used in the identification process.

F. Statistical Analysis

Data and results are reported as median and interquartile
range (25th, 75th percentile) unless otherwise specified. Two-
sample comparisons were done by Student’s T-test, for normally
distributed variables, Wilcoxon’s signed rank test, otherwise.
Pearson’s correlation was used to evaluate univariate linear
correlation, in the case of normally distributed variables, or
Spearman’s ranked correlation, otherwise. Normality of the
parameter distributions was assessed by the Lilliefors’ test.

III. RESULTS

A. Model Assessment

The R-OMM predicted plasma glucose data well both in the
overall population and at a single individual level and provided
precise estimates of model parameters (not shown).

The MI-OMM was able to satisfactorily predict CGM data
both in the overall population and at a single individual level.
Mean and standard deviation of weighted residuals over time
are reported in Fig. 3. They were reasonably uncorrelated with
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Fig. 3. Average weighted residuals of the model (black solid line);
vertical bars represent ± one standard deviation.

Fig. 4. MI-OMM predicted signals for a representative subject. Panel
A: Model predicted CGM (thick black line) plotted against CGM data
(grey dots). Panel B: Model predicted G(t) (thick black line) plotted
against plasma glucose data (white dots) and SMBG measurements
(grey triangles). Panel C: Model predicted I(t) (black thick line) plotted
against plasma insulin data (white dots). Dashed vertical lines at time
zero indicate mealtime.

approximately unitary variance. The CGM signal predicted by
the MI-OMM and the measured CGM data are shown for a
representative subject in panel A of Fig. 4.

As an independent validation, plasma insulin and glucose con-
centration data predicted by MI-OMM (despite such data were
not used for model identification) well compared with their mea-
sured counterparts, as it can be seen in panels B and C of Fig. 4,

for the same representative subject. Estimated model parameters
are reported in Table I, together with the mean CV, proving
the ability of the model to estimate physiologically plausible
parameters with precision. The only parameter estimated with
poor precision was kabs, for which we found CV between 100%
and 112% in 7 out of 117 sessions. Estimated error parameters
are reported in Table II. They showed distributions comparable to
those reported in the original work. Their precision is expressed
as SD because the CV is not suitable for this type of variable
that can assume both positive and negative values.

B. Model Validation

The comparison of the MI-OMM with the R-OMM provided
satisfactory results. In particular, Spearman’s ranked correlation
between SI estimated with the two models was 0.77 (p<0.01).
In addition, the probability density functions of the SI estimated
with the two models were not statistically different (p=0.33).
The visual comparison of the two distributions is shown in panel
A of Fig. 5, while a point-to-point comparison is shown in panel
B of the same figure.

Moreover, the MI-OMM provided GR(t) and Ra(t) curves
similar to those obtained with the R-OMM, as it can be seen
in panels A and B of Fig. 6, where their medians and 25th
and 75th percentiles are reported. The model predicted also
plasma glucose well while overestimating plasma insulin peaks,
as shown in panels C and D of Fig. 6.

Finally, also the probability density functions of all the pa-
rameters related to the glucose absorption (i.e., kabs, kmax, kmin,
c, and d) estimated with the two models were not statistically
different (p>0.05).

IV. DISCUSSION

The performance of both decision support systems for di-
abetes management and artificial pancreas algorithms would
benefit from the knowledge of how and how much non-
carbohydrates macronutrients alter post-prandial gastric reten-
tion and glucose absorption [5]. A few studies were performed
in hospitalized settings, e.g., [6], [34], however, now that large
CGM data sets collected in free-living conditions are available,
it would be useful to have a tool to accurately estimate such key
variables in these experimental conditions from such minimally-
invasive devices.

In this work, we developed a semi-mechanistic model that
provides an accurate description of gastric retention, glucose
rate of appearance, and insulin sensitivity in patients with T1D
wearing a CGM sensor and an IP. We focused our attention
on those three quantities since they are known to be highly
affected by different meal compositions [5] and developed a
model to assess those variables, as accurately as possible, in
real-life conditions.

To do that, we started from a modified version of the validated
OMM [16], incorporating a semi-mechanistic model of glucose
transit through the gastrointestinal tract [13] and able to describe
GR, Ra and SI in hospitalized patients, using plasma glucose
and insulin measurements. Such a model was also used as a
reference (R-OMM) to assess the performance of the proposed
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TABLE I
ESTIMATED MODEL PARAMETERS

TABLE II
ESTIMATED ERROR PARAMETERS

MI-OMM, which extends the domain of validity of the R-OMM
to work in outpatient conditions, using data coming from MI
devices.

We proved that MI-OMM can satisfactorily fit the CGM pro-
files and generally provide precise and physiologically reliable
parameter estimates. The only exception was parameter kabs,
which was estimated with poor precision (100%< CV<112%)
in 7 out 117 analyzed sessions. This was imputable to the weak a
priori information associated with that parameter, which in fact
presented the highest a priori variance overall, with CV=168%.
A further validation of the model was the comparison of plasma
glucose and insulin prediction against the measured concentra-
tion. Plasma glucose concentration was predicted well, while
plasma insulin concentration was predicted with kinetics that
appear faster than the observed ones, thus, leading to the over-
estimation of the insulin peaks. This was probably due to the
employed prior distributions for ka2 and ke, which were derived
from a model developed on data coming from a single insulin
injection in hospitalized patients and, therefore, that may present
different kinetics than those shown in this case. However, this
does not seem to affect the quantities of interest, such as SI,
probably due to compensation with the parameter p2. Overall
model performance is still acceptable even if prior information
was not perfectly adequate for insulin kinetics parameters. This
is likely the result of the robust physiology-based model struc-
ture and the availability of an informative prior for the remaining
parameters, both contributing to the a posteriori identifiability
of this complex model and maintaining its physiological inter-
pretability.

The most important feature of the MI-OMM is that it provides
estimates of GR, Ra, and SI that well matched their R-OMM
counterparts, both in terms of correlation, median, and variabil-
ity. The same result holds for all the model parameters related
to the gastrointestinal tract, like minimal (kmin) and maximal
(kmax) gastric emptying and gut absorption (kabs). Further studies
are needed to assess if some, all, or none of these parame-
ters/curves are good predictors of meal composition, but we
foresee that meals with high relative fat content should present
slower GR and Ra profiles. To quantitatively characterize these
two curves one could compute indices like the half-life of the
GR curve [35], and the area under the Ra profile in the first 2
hours after the meal [36], normalized to the amount of ingested
carbohydrates. We found that also the distribution of these two
indices estimated from MI-OMM-derived curves well matched
their R-OMM-derived counterparts (not shown).

A first limitation of the presented work is that all the patients
received a mixed meal of 60 g of carbohydrates and standardized
macronutrient composition during the experiment. Therefore,
the variability observed in model parameters/curves is likely
to be underestimated compared to those one would find in
real-life conditions, where meals with different compositions
are consumed. This is a drawback of the dataset, which however
presented an important and unique feature, i.e., the frequent
collection of both plasma measurements and CGM data. Pre-
liminary results obtained on an independent dataset of subjects
with T1D, studied in real-life conditions while wearing CGM
and IP, showed promising results in terms of model ability to
detect differences between high-fat and low-fat meals [37].
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Fig. 5. Comparison between the SI estimated with the two models.
Panel A: Comparison between histograms (left y-axis) and probability
density functions (right y-axis). Light blue and orange bars represent
the frequency of SI estimated with the R-OMM and the MI-OMM, re-
spectively. Blue and red thick lines represent the log-normal distribution
curves fitted against SI obtained with the R-OMM and the MI-OMM,
respectively. Panel B: Point-to-point comparison of SI estimated with the
R-OMM and the MI-OMM. The dashed black line is the bisector of the
first quadrant.

A second limitation is that the assumptions for the calculation
of the initial conditions of the model (see Appendix A) might
have hampered the fit of the data in the first minutes, affecting
the estimate precision. For example, the slight undershoot in the
pattern of the residuals in the first hour (see Fig. 3) might be
caused by an inaccurate model initialization in some sessions.
This could have led to an imprecise estimation of the parame-
ter kabs whose estimation strongly relies on the measurements
immediately after the meal, which are directly related to the
rapid carbohydrate absorption. However, this problem would be
reasonably overcome if the model was incorporated in a control
algorithm working online, or ensuring that the patient is in a
reasonable steady state prior to starting the experiment.

A final remark is that the dataset of the present study was
collected using an outdated CGM sensor (Dexcom Seven Plus
CGM, Dexcom, San Diego, CA). With this in mind, we can

Fig. 6. Comparison of MI-OMM results (red lines and orange areas)
against curves obtained with R-OMM and original data (blue lines and
light blue areas). Thick lines represent medians, while shaded areas
represent 25th and 75th percentile ranges. Panel A: GR(t) obtained from
R-OMM and MI-OMM. Panel B: Ra(t) obtained from R-OMM and MI-
OMM. Panel C: Measured plasma glucose and G(t) obtained from MI-
OMM. Panel D: Measured plasma insulin and Ip(t) obtained from MI-
OMM.

speculate that the MI-OMM was tested in a challenging scenario,
still providing satisfactory results. More recent and accurate
glucose sensors are available to researchers and people with
diabetes all over the world. We believe that the performance of
MI-OMM could greatly improve if the model was fed with the
data collected with such devices. Furthermore, with the advent
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of real-time insulin sensors [38], [39], [40], the complexity
of the MI-OMM could be reduced by eliminating, in part or
completely, the insulin subsystem (Section II-C1) and using
measurements from the insulin sensors instead. In addition to
that, the direct measurement of plasma insulin would allow for
the identification of the MI-OMM in subjects with T2D, without
the need to extend the already-complex MI-OMM with a sub-
model for insulin secretion, which may be a rather challenging
task.

As already anticipated, we plan to apply the MI-OMM to the
aforementioned dataset containing data of patients with T1D
studied in real-life conditions while wearing CGM and IP. The
aim will be to detect differences in the GR, Ra and SI depending
on the type of meal, such as high vs low-fat content, or high-fat
vs high-protein content. Needless to say, before going to this
stage of our research we first needed to develop and validate
the MI-OMM in a dataset where plasma glucose and insulin
measurements were collected together with CGM and IP data.
Future work would also include the analysis of the MI-OMM
using nonlinear mixed-effects modeling. Within this framework,
we expect to introduce the information about meal composition
directly into the model, as a descriptor for model parameters.

Extending the R-OMM, used in hospitalized settings, to the
MI-OMM, applicable in real-life scenarios, can really be a
game-changer in the treatment of diabetes due to the recently
available large amount of data coming from wearable devices,
which would allow improving diabetes management while lim-
iting the need of expensive clinical trials and patient’s burden.
In addition, we believe that our model has the potential to
improve diabetes management by understanding the key factors
affecting meal absorption and insulin sensitivity in real-life
scenarios and consequently adjusting the treatment. This can
be potentially used to re-design current insulin therapies, or in
more advanced frameworks, the model itself could be incor-
porated in automatic controllers for insulin delivery or used to
inform machine learning techniques for detecting unannounced
meals. Finally, upcoming sensors and insulin infusion devices
would only improve model performances and extend its range
of applicability (e.g., patients with T2D) in the future.

V. CONCLUSION

In this work, we developed a model for the estimation of GR,
Ra, and SI after a meal, in patients with T1D wearing a CGM
sensor and an IP. The presented model is an extension of the
OMM, which was previously developed to work with data col-
lected in hospitalized settings. The MI-OMM is able to provide
an accurate and physiologically interpretable quantification of
those quantities in daily-life conditions as proven by comparison
with the R-OMM. GR, Ra, and SI are known to be strongly
affected by meal composition, and for this reason, the next step
of our work will be the application of the MI-OMM to a dataset
where meals with different compositions were consumed by the
patients with T1D, with the objective of detecting how and how
much each macronutrient affects GR, Ra, and SI, and thus also
the post-prandial glucose excursion. Thanks to the easily acces-
sible data that it requires, the MI-OMM has potentially multiple

other applications, such as the incorporation into controllers
for insulin delivery or algorithms for meal detection. Finally,
the employment of such knowledge in open- and closed-loop
diabetes therapies would allow a great step ahead toward the
optimal insulin dosing in patients with diabetes.

APPENDIX

A. Initial Conditions and Integration of Model Equations

In real-life conditions, it may happen that the system is not in
steady state at the time of the meal. This can lead to the problem
of setting the proper initial conditions for model integration.
Here below, we reported the strategy implemented in this work
to overcome this issue. For what concerns the submodel of the
subcutaneous insulin absorption (Section II-C1), it was inte-
grated from the time corresponding to the first available IP rate
datum, exploiting the fact that these data were available several
hours before the starting of the experiment. Therefore, we could
safely identify such time with –∞ and assume that the subsys-
tem was at steady state earlier than this time. The submodels
describing glucose-insulin dynamics and the interstitial glucose
kinetics (Section II-B, (1), and Section II-C2) were integrated
from t=–15 min, assuming Ra(–15)=0. Initial conditions were
calculated by solving (1) and (5):

Gi(–15) = CGM(–15) (11)

G(–15) = Gi(–15) + Ġi(–15) τG (12)

X(–15) =
Gb p1 − Ġ(–15)

G(–15)
− p1 (13)

where Ġi(–15) is the derivative of the CGM measurements at
–15 min, calculated by applying a weighted linear regression to
CGM data collected between –15 min and 0 min, and Ġ(–15)
was assumed equal to Ġi(–15). Conversely, for what concerns
the submodel for the gastrointestinal tract (Section II-B, (2)), it
was integrated from t=0, with all initial conditions set to zero,
assuming the stomach of the patient was empty at that time.
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