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3D-2D Distance Maps Conversion Enhances
Classification of Craniosynostosis
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Niclas Hagen , Friedemann Ringwald , Urs Eisenmann , Jürgen Hoffmann, Michael Engel,

Christian Freudlsperger , and Werner Nahm

Abstract—Objective: Diagnosis of craniosynostosis us-
ing photogrammetric 3D surface scans is a promising
radiation-free alternative to traditional computed tomogra-
phy. We propose a 3D surface scan to 2D distance map con-
version enabling the usage of the first convolutional neural
networks (CNNs)-based classification of craniosynostosis.
Benefits of using 2D images include preserving patient
anonymity, enabling data augmentation during training, and
a strong under-sampling of the 3D surface with good clas-
sification performance. Methods: The proposed distance
maps sample 2D images from 3D surface scans using a
coordinate transformation, ray casting, and distance ex-
traction. We introduce a CNN-based classification pipeline
and compare our classifier to alternative approaches on a
dataset of 496 patients. We investigate into low-resolution
sampling, data augmentation, and attribution mapping. Re-
sults: Resnet18 outperformed alternative classifiers on our
dataset with an F1-score of 0.964 and an accuracy of 98.4%.
Data augmentation on 2D distance maps increased perfor-
mance for all classifiers. Under-sampling allowed 256-fold
computation reduction during ray casting while retaining
an F1-score of 0.92. Attribution maps showed high ampli-
tudes on the frontal head. Conclusion: We demonstrated a
versatile mapping approach to extract a 2D distance map
from the 3D head geometry increasing classification per-
formance, enabling data augmentation during training on
2D distance maps, and the usage of CNNs. We found that
low-resolution images were sufficient for a good classifica-
tion performance. Significance: Photogrammetric surface
scans are a suitable craniosynostosis diagnosis tool for
clinical practice. Domain transfer to computed tomography
seems likely and can further contribute to reducing ionizing
radiation exposure for infants.
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I. INTRODUCTION

A. Craniosynostosis

CRANIOSYNOSTOSIS is characterized by the premature
fusion of skull sutures resulting in irregular growth pat-

terns. It affects infants and its prevalence is estimated to be three
to six cases per 10,000 live births [1], [2]. For isolated cases cran-
iosynostosis is distinguished into different subtypes, depending
on the prematurely fused suture: sagittal synostosis (scapho-
cephaly), metopic synostosis (trigonocephaly), unilateral coro-
nal synostosis (anterior plagiocephaly), lambda synostosis (pos-
terior plagiocephaly), and bicoronal synostosis (brachycephaly).
Although brachycephaly synostosis includes the fusion of both
coronal sutures, the medical community counts it among isolated
synostosis. As dictated by Virchow’s law, the premature closure
of a suture blocks the expansion perpendicular to the suture and
causes compensatory growth parallel to it, leading to distinct
head deformities for each type [3]. Craniosynostosis can lead to
elevated intracranial pressure [4] which is linked to reduced brain
growth and diminished neuropsychological development [5]. To
decrease the intracranial pressure and enable a normal skull
development, surgical remodeling of the skull is the most com-
mon therapy. Complications are rare [6] and in most cases a
normalized head shape can be achieved [7]. For further reading
about craniosynostosis, the reader is referred to [8].

Early diagnosis is crucial and can only be performed in
specialized hospitals. During diagnosis, a combination of visual
examination, palpation, cephalometric measurements, and med-
ical imaging is performed. Traditional computed tomography
(CT) imaging is considered the gold standard, but exposes the
infants to ionizing radiation [9]. Black bone magnetic resonance
imaging (MRI) [10] avoids the harmful radiation but requires
sedation or general anesthesia to prevent the children from
moving. Sonographic examinations [11] and 3D photogramme-
try are radiation-free alternatives. Especially photogrammetric
3D scans provide inexpensive and fast means to objectively
quantify head shape suitable for monitoring head development
before and after surgery [12]. A reliable and fast, machine-aided
classification using 3D surface scans might eliminate the use
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Fig. 1. 2D distance map classification pipeline. Each dataset sample is preprocessed to remove corruptions. After distance extraction according
to the mapping approach, the image can be assembled, and a CNN-based classification can be performed.

of ionizing radiation during CT-based diagnosis and could be
performed by pediatricians within minutes.

B. Classification of Craniosynostosis

Automatic classification approaches of craniosynostosis have
been proposed on CT data, 3D photogrammetric surface scans,
and 2D images from different perspectives. Early CT-based
studies were performed on 2D data [13] to distinguish between
scaphocephaly and a control group. Approaches on 3D data used
a combination of crafted features and statistical modeling [14].
Recently, the use of radiation-free 3D stereophotographs for
head shape assessment and classification of craniosynostosis
gained momentum. In our own group we developed a statistical
shape model (SSM)-based classification approach [15]. Ray-
based classification of craniosynostosis was proposed by [16],
who extracted distances from a defined center point using a
feedforward neural network (FNN) with an accuracy of 99.5%.
Image and machine-learning-based classification approaches for
the classification of plagiocephaly were proposed [17], but were
not applied to craniosynostosis. Multi-image 2D approaches
could identify different types of craniosynostosis with feature-
based classifiers and a pre-trained CNN model [18].

CNNs are popular image-based classifiers and often a good
choice for classification problems due to a flexible model design,
the easy adaption of many pre-trained models facilitating trans-
fer learning, and the possibility to perform many different types
of data augmentation during training. However, for classifying
3D data, a transformation from 3D to 2D is required, which
had not been proposed for classifying head deformities. Data
augmentation on the 3D data as in [16] was therefore limited
to adding noise to the input features. 3D transformations such
as left-right patient mirroring and rotational misalignment have
to be applied before training and cannot be randomized during
training as the distance extraction is computationally expensive.

C. Scope of This Work

The first contribution of this work is a mapping approach
to obtain 2D images from 3D surface scans of the head. We
combined ideas from [19] who proposed asymmetry maps for
plagiocephaly patients and [16] who used ray casting for dis-
tance extraction. Using 2D images instead of the original 3D
geometry has some desirable properties when dealing with 3D
patient data: patient anonymity is preserved (back-conversion

would only yield a 3D scatter plot), and typical 2D image-
based processing steps using filter kernels (such as interpolation,
up-sampling with an under-sampled resolution, smoothing, or
gradient computation) are enabled. As the 2D distance maps are
subject to a defined coordinate frame, location-specific image
processing can be applied, for example stronger smoothing in
certain regions.

Regarding classification, the encoding of the 3D geometry
onto a 2D image enables using CNNs on the image domain.
Sophisticated network structures have been tested extensively
on CNNs and there is a wide range of pre-trained networks
available enabling transfer learning, which is usually considered
helpful when dealing with small datasets. Also, image-based
data augmentation strategies such as horizontal flipping, or
horizontal shifting give more flexibility to the applicant. Data
augmentation can be applied without much computational cost
during training and enables additional randomization. 2D im-
ages can be re-scaled easily and we show that classification
performance can be maintained while systematically reducing
image resolution. The second contribution of this work is the
first CNN-based classification of craniosynostosis using 3D
surface scans, which is enabled by the usage of the 2D distance
maps. Introducing this new classification approach, we take
the opportunity to also conduct the first comparison study of
craniosynostosis classifiers on, to the best of our knowledge, the
largest dataset of craniosynostosis patients to date. We consider
two alternative approaches [15], [16] for the first time tested
on the same patients, enabling a quantitative comparison of
different classifiers under the same conditions. For the benefit of
the community, we released the Python modules for the distance
map creation which can also be used on our previously published
SSM [20].

II. MATERIALS AND METHODS

Fig. 1 gives a full overview of the pipeline from the raw data to
the distance map creation and the craniosynostosis classification.

A. Dataset and Preprocessing

We obtained the photogrammetric surface scans from the
Department of Oral and Maxillofacial Surgery of the Heidelberg
University Hospital, where patients with craniofacial diseases
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Fig. 2. Landmarks provided in the dataset. The chosen landmarks for
the coordinate system were sellion, and left and right tragion (underlined
and on top).

are routinely recorded for monitoring and documentation pur-
poses. We used a standardized protocol, which had been exam-
ined and approved by the Ethics Committee Medical Faculty of
the University of Heidelberg (ethics number S-237/2009). The
study was carried out according to the Declaration of Helsinki
and written informed consent was obtained from parents. The 3D
surface scans were recorded using a 3D image recording system
(Canfield VECTRA-360-nine-pod, Canfield Science, Fairfield,
NJ, USA) and the children wore tight-fitting hairnet caps to
minimize artifacts caused by the hair. For each recording, we
obtained a triangular surface mesh which was later annotated
with 10 cephalometric landmarks and the medical diagnosis by
the surgeon. The available landmarks are visualized in Fig. 2.

Out of the scans that were acquired between 2011 and 2021,
we extracted only the preoperative scans closest to the oper-
ation date to avoid duplicate scans of the same patient. We
selected craniosynostosis patients with coronal (brachycephaly
and unilateral anterior plagiocephaly), sagittal (scaphocephaly),
or metopic suture fusion (trigonocephaly), as well as a control
group without any suture fusion. Besides healthy subjects, our
control group also contained scans of children with mild posi-
tional posterior plagiocephaly. While positional plagiocephaly
patients were later treated with helmet therapy or laying reposi-
tioning, all craniosynostosis patients underwent surgical remod-
eling of the cranium. The four classes are displayed in Fig. 3. The
final dataset consisted of 496 subjects. A violin plot [21], [22],
[23] of the 496 patients’ class and age distribution is displayed
in Fig. 4. Regarding the selection of classes, our approach is
comparable to other classification studies, which distinguished
between craniosynostosis and non-craniosynostosis classes, in
particular [14], [15], [16].

We used the Python module pymeshlab from the open-source
software Meshlab [24] to preprocess the 3D surface scans. We
removed isolated parts, duplicate faces and vertices, and closed
holes in the surface scans in a fully automated manner, as those
types of artifacts could lead to incorrect data in the distance
maps. Additionally, parts at the ears were often characterized by
large edge lengths, so we used isotropic explicit remeshing [25]
with a target length of 1 mm to obtain regular meshes. The med-
ical staffs’ clothes and hands could be ignored since they only

Fig. 3. Head shapes of the four classes in the dataset. Top row: front
view, bottom row: top view.

Fig. 4. Top: The type of head deformities for the four classes. Bottom:
Class and age distribution of the subjects in the dataset. Parenthesis
indicate number of samples per class.

had body contact at the torso of the child to position it and did not
affect the scan of the head. After alignment using the landmark-
based coordinate system, everything below the child’s neck can
be cut off to speed up computation during image creation.

B. Distance Mapping

We used the patients’ anatomic landmarks for the creation of
a common coordinate system similar to the frontal, sagittal, and
median planes. For a coordinate system we chose left and right
tragion (located on the ears), as well as the sellion (located on
the nose), as they were located on different ends of the head and
because the midpoint between the two ears is approximately in
the center of the head. The location of the center point is similar
to the computed cranial focus point definition [26] for CT data.
We defined the center point pc as the midpoint of left and right
tragion (ptl and ptr) to serve as the origin of the new coordinate
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frame:

pc =
1

2
(ptl + ptr) (1)

The axis direction ux was defined as the frontal axis with the
direction from the origin to the sellion located on the nose:

ux = ps − pc (2)

uy was defined orthogonal toux, corresponding to the median
axis from the center to the left tragion

uy = (ptl − pc)− ux
ux · (ptl − pc)

||ux|| . (3)

uz was constructed to be orthogonal to the two previous
directions, thus corresponding to the sagittal axis:

uz = ux × uy (4)

The direction vectors [ux,uy,uz]
T were each normalized to

an orthonormal basis [ex, ey, ez]T.
Two angle directions to sample the head surface for the

2D image were set up. We proposed three different mapping
approaches each requiring a specific coordinate frame to map
the points from the Cartesian space to the image domain: Spher-
ical, arch-spherical, and cylindrical, visualized in Fig. 5. The
mathematical descriptions of the three mappings are explained
below.

1) Spherical: The spherical mapping used a spherical co-
ordinate transform for the ray creation to obtain the direction
vectors ds

ds =
[
cosϕ cos θ, sinϕ cos θ, sin θ

]T
. (5)

The start point ps of the ray was defined as the origin:

ps = pc (6)

The two angle intervals were0 ≤ ϕ < 2π and 0 ≤ θ < π/2 in
the image domain. To retain the up-down relation of the distance
map image, we placed the image origin in the bottom left corner
and defined the direction for θ from the lower left corner to the
upper left corner (see Fig. 5, top right panel).

2) Arch-Spherical: The arch-spherical transform was de-
signed to retain a frontal-vertical relationship when looking at
the head from the top perspective and to provide a more regular
sampling of the tip of the head with the direction da

da =
[
sinϕ cos θ, cosϕ, sinϕ sin θ

]T
, (7)

and the start point again being placed in the origin:

ps = pc (8)

The corresponding angle intervals for ϕ and θ both ranged
from 0 ≤ ϕ < π, but the direction in which we measured ϕ
was defined clockwise (mathematically negative) to retain the
left-right relation.

3) Cylindrical: For the two spherical-based mappings, a
grayscale gradient could be observed from the larger height than
width of the human head. By using a cylindrical-based mapping
instead of a spherical one, we could reduce the distance variation

Fig. 5. Visualization of the mapping types. Left: Angle definitions and
coordinate frames. Hit points from the rays resulting from a 20 × 20
sampling are visualized. Right: Distance maps corresponding from the
mapping with angle axes.

for a larger part of the image. One key feature was that the center
point was not constant, but moved towards the tip of the head
for each pixel row. Thus, the direction dc was defined as

dc =
[
cosϕ, sinϕ, 0

]T
, (9)

and contrary to the previous approaches, the start point for
each ray was defined as

ps = pc + h · uz. (10)

The ϕ angle ranged from 0 ≤ ϕ < 2π and h from 0 to the tip
of the head. Regardless of the mapping type, the angle intervals
were sampled equidistantly. As with the spherical image, we
used the reversed image direction (x-axis from the bottom left
corner to the upper left corner) of h to retain an up-down
relationship.
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C. Image Creation

Each angle interval was sampled equidistantly in 224 steps,
resulting in one ray direction for each of the 2D image pixels. We
determined the intersection of the 3D mesh surface with each
ray and extracted the distance from the starting point to the hit
point. We used oriented bounding boxes (OBB) trees from the
vtk Python package [27] to speed up computation. The extracted
distances were arranged in a 2D image grid, corresponding to the
angle directions (e.g.,ϕ and θ in the spherical mapping approach,
see also Fig. 5). If multiple hit points were encountered (for ex-
ample at the auricula, the outermost part of the ear), we chose the
minimal distance as the “correct” distance. If no hit point could
be determined (for example due to corruptions in the scans), we
interpolated missing values on the equally-spaced image grid
as the mean of its four neighbors (which models missing pixels
according to Laplace’s equation) [28]. Small artifacts resulted
from the tip of the head which we left unchanged. However,
if required, they might be minimized on the image domain
using smoothing. We created the actual image by converting
the distances to integer pixel intensity values from 0 to 255.
We explored two different normalization schemes to transform
the distance range to the required image intensity range: Linear
re-scaling and per-pixel-based re-scaling.

Linear re-scaling uses only one linear transformation for
all images and pixel values. We computed mean distance and
standard deviation across all scans and distances (regardless
of their ray orientation) to obtain one transformation to map
the distances of [−3σ,+3σ] to the image domain of [0, 255].
This way, short distances between center point and 3D surface
correspond to low image intensities and, consequently, intensity
gradients within the same image correspond to distance changes
in the underlying 3D geometry.

The second approach, per-pixel re-scaling, used one linear
transform for each pixel position (corresponding to one trans-
formation per direction). This way, the intensity range is better
sampled for each pixel, but the mapping is non-uniform, mean-
ing that intensity gradients within one image do not correspond
to distance changes in the 3D geometry, but instead correspond
to intensity values relative to this pixel in the other images.

Fig. 6 shows the different scaling approaches for the same
distance map and Fig. 7 the different mapping types. Other
normalization approaches might also be possible, e.g., scaling
with respect to a control group or min-max scaling irrespective
to other subjects. Our Python source code1 [29] for the distance
map creation was made publicly available and can be combined
with our synthetic dataset [20].

D. Experimental Setup and Network Training

The last step consisted of training a CNN on distance maps.
Five test scenarios were considered and described in the next
paragraphs: The first three evaluated classifier performance,
while the forth and fifth scenarios studied the properties of our
proposed method.

1https://github.com/KIT-IBT/cd-map

Fig. 6. Linear and per-pixel scaling applied to the different pathologies
using the spherical mapping. For the visualization of the hit points, we
used 20 × 20 rays instead of 224 × 224. For visualization purposes we
used a blue-yellow colormap instead of grayscale.

1) Classification Comparison: The first test was designed
as a comparison between different CNNs using our proposed
distance maps and alternative approaches from the literature.

We considered a vanilla CNN trained from scratch only on
the image data. To find the optimal number of convolutional
layers, we trained the CNN with an increasing number of layers
starting from 1 until 18. The highest metrics were scored by
the CNN with 5 convolutional layers which is the one we
further considered. For the pre-trained CNNs, this included
Resnet18 [30], AlexNet [31], GoogLeNet [32], and small and
large Mobilenet [33].

As alternative approaches we considered SSM-based clas-
sification using linear discriminant analysis (LDA) [15] and
FNN-based classification [16]. The SSM-based approach was
developed in our own group, so we trained the classifier on
the updated dataset. Regarding the FNN classifier [16], we
re-implemented the FNN as described in the original paper [16].

https://github.com/KIT-IBT/cd-map
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Fig. 7. Mapping methods with different scalings for one subject. For
the visualization of the hit points, we used 20 × 20 rays instead of
224× 224. From left to right: Spherical, arch-spherical, and cylindrical.
From top to bottom: Linear scaling and per-pixel scaling. For visualiza-
tion purposes we used a blue-yellow colormap instead of grayscale.

After initial testing, we removed the dropout and batch-norm-
layers which improved the performance on our dataset. The
FNN-based approach was tested on an icosphere-based extrac-
tion scheme as originally proposed [16] and on the distances
extracted using our proposed mapping. This way, the FNN could
be tested on both inputs.

2) Mapping Comparison: We compared the three map-
pings and two scaling approaches using the same network
(pre-trained Resnet18) to test if the mapping had a substantial
influence on the performance metrics. We show an exemplary
set of images derived with the different mappings in Fig. 7.

3) Data Augmentation Strategy: We tested image-based
data augmentation on pre-trained Resnet18, the vanilla CNN,
and the FNN on the linear, spherical mapping. We included
four types of data augmentation: pixel noise, intensity noise,
random flipping and random horizontal shift. Pixel noise was
applied to each pixel as white Gaussian noise with standard
deviation of σ = 1/255. Intensity-noise was applied to the full
image (making the image brighter or darker) as white Gaussian
noise with σ = 5/255 and can be interpreted as enlarging or
shrinking the full head. Random flipping in horizontal direction

Fig. 8. True 224 × 224 image in comparison with the three different
interpolation methods nearest neighbors, bilinear, and bicubic from a
7 × 7 image.

was applied with a probability of p = 0.5 and corresponds
to a symmetric mirroring of the patients. The horizontal shift
was designed as white Gaussian noise with standard deviation
of σ = 20/360 · 2π, shifting the image to one direction and
inserting the cut-off part on the other side. This corresponds to
a head rotation during recording, as if the subjects were looking
slightly left or right.

Note that mirroring and shifting of 2D images can be per-
formed “on the fly” during each training epoch. On 3D data,
mirroring and rotating have to be performed before the training
starts, can not be adjusted during training, and the data loaders
are required to make sure that the mirrored samples stay in the
same training or test set. On 2D images, the created images
are different during each epoch and the randomization can be
adjusted during training, making it overall more flexible.

4) Resolution: This test was designed to reduce computa-
tional cost for the distance map creation. As 224 × 224 is a
standard size for CNN input images, the original approach used
one ray per pixel. We tested to use onlyn× n rays withn ranging
from 7 to 224 in steps of 7. We interpolated the smaller images
with intermediate points to obtain the CNN input dimension of
224. We tested three interpolation methods: nearest-neighbor-
mapping, bilinear and bicubic image interpolation (Fig. 8). We
used again a pre-trained Resnet18 and the linearly scaled spher-
ical mapping to ensure comparability among the experiments.

5) Attribution Maps: We intended to visualize which parts
of the image (and consequently from the 3D surface scans)
contributed to the model’s predictions by using integrated gradi-
ents [34]. Additionally, interpretability approaches might be able
to rule out possible overfitting caused by a focus on unimportant
parts of the head such as the ears (which are only expected to play
a major role for coronal synostosis or plagiocephaly). We used
the captum package [35] for computing integrated gradients. For
visualizing the heatmap resulting from the integrated gradients
on the 3D head surface, we projected each point of the 3D surface
onto the image, bilinearly interpolated the respective attribution
value, and back-projected the attribution value to each 3D point.
We used the following three different back-transformations for
the spherical, arch-spherical, and cylindrical transformation:

[
r, ϕ, θ

]T
spherical

=

⎡
⎢⎣

√
x2 + y2 + z2

arccos (z/r)

atan2(y, x)

⎤
⎥⎦ (11)
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TABLE I
CLASSIFIER COMPARISON ON LINEAR, SPHERICAL MAPPING. FOR EACH

METRIC, WE DISPLAY CROSS VALIDATION MEAN ± STANDARD DEVIATION

[
r, ϕ, θ

]T
arch−spherical

=

⎡
⎢⎣

√
x2 + y2 + z2

arcsin (y/r)

atan2(z, x)

⎤
⎥⎦ (12)

[
ϕ, ρ, z

]T
cylindrical

=

⎡
⎢⎣
atan2(y, x)√

x2 + y2

z

⎤
⎥⎦ (13)

6) General Training Strategy: All classification scenarios
were carried out using stratified 10-fold cross validation. The
same random number generator was used for each experiment
ensuring a consistent split of train and test samples across all
different classifiers for the same fold. All neural networks were
trained with cross entropy loss, Adam optimizer, a batch size
of 32, and weight decay of 0.63. The initial learning rate for
AlexNet was 1 · 10−4 and for all other networks 1 · 10−3. Pre-
trained networks were trained with 300 epochs and a step size of
10, while we trained from-scratch networks with 1000 epochs
and a step size of 100. The SSM-based classifier was trained
with the same hyperparameters as in our previous work [15] on
the new dataset. We built our framework on Pytorch [36] and
Scikit-learn [37]. Pytorch’s pre-trained models were trained on
ImageNet [38]. For model evaluation, we used accuracy, g-mean,
and macro F1-score and computed mean values and standard
deviations across all cross validation splits.

III. RESULTS

A. Classification Comparison

As summarized in Table I, all classifiers showed good perfor-
mance with mean accuracies above 0.95. CNN-based classifiers
generally performed better than the FNN and the SSM. The
highest accuracies, g-means, and F1-scores were achieved by
GoogLeNet and Resnet18. Standard deviations for F1-score
and g-mean computed across the ten folds were lowest for
GoogLeNet and Resnet18 (indicating smaller disturbances for

TABLE II
RESNET18 ACCUMULATED CONFUSION MATRIX WITH LINEAR, SPHERICAL
MAPPING. MEAN AND STANDARD DEVIATIONS WERE COMPUTED ACROSS

ALL FOLDS

TABLE III
MAPPING AND SCALING APPROACHES USING RESNET18. DISPLAYED IS

CROSS VALIDATION MEAN ± STANDARD DEVIATION

different training conditions) and increased for the other net-
works. The CNNs scored higher accuracies, g-means, and F1-
scores than the alternative FNNs. In general, accuracy ranged
from 0.954 to 0.984 which corresponds to 15 fewer misclassified
test samples. We provide the confusion matrix with sensitivities
and specificities of the pre-trained Resnet18 classifier in Table II.

We included training times for each cross validation split
measured on a high performance cluster running Red Hat Enter-
prise Linux using a Nvidia Tesla V100. GoogLeNet required the
longest training (306 s). In comparison, distance extraction for a
224× 224 image took on average 102 s using a single thread on
an Intel Xeon Gold 6230 processor. However, multiple scans can
processed in parallel since they are independent of each other.
Training times for each classifier are included in Table I.

B. Mapping Comparison

We display classification results for different mapping ap-
proaches using the pre-trained Resnet18 in Table III. All ac-
curacies were 0.976 or above. All three metrics were consis-
tently higher than the classification approaches in Table I except
GoogLeNet. For the arch-spherical and cylindrical approach,
the per-pixel mappings performed slightly better than the linear
approach, but were in the range of one standard deviation.

C. Data Augmentation Strategy

Table IV shows the classifier performance using “on the fly”
2D image-based data augmentation, compared to the networks
without data augmentation (Table I). All classifiers improved
g-mean and F1-score. FNN showed the largest improvements in
all three metrics.

D. Resolution

In Fig. 9, we show the cross validation mean of accuracy,
g-mean, and F1-score over pixel resolution for the Resnet18
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TABLE IV
CLASSIFIER COMPARISON ON LINEAR, SPHERICAL MAPPING USING

IMAGE-BASED DATA AUGMENTATION. DISPLAYED IS CROSS VALIDATION
MEAN ± STANDARD DEVIATION. THE SECOND LINE FOR EACH CLASSIFER

SHOWS THE IMPROVEMENTS COMPARED TO TABLE I

Fig. 9. Mean cross validation metrics as functions of the number of
pixels p to create an p× p image. Three different interpolation methods
were used to create an up-scaled image: Nearest neighbors, bilinear,
and bicubic interpolation.

classifier with spherical mapping and linear scaling. Starting
with a pixel resolution of 14 and higher, g-mean was 0.81 or
higher, accuracy 0.96 or higher, and F1 score 0.92 or higher.
Using 14 rays per direction resulted in a 256-fold computation
reduction for the ray tracing while bicubic image interpolation
still yielded a g-mean larger than 0.95. All three interpolation
methods jittered slightly and with similar amplitudes.

E. Attribution Maps

Fig. 10 indicates the mean attribution across all scans for the
different mappings. All three mappings assigned attribution to
the frontal part of the head where typical deformations of sagittal
and metopic craniosynostosis can be observed. The precise
location varied on the mapping and was slightly shifted to the
right for the spherical and cylindrical mappings, and slightly
shifted to the left for the arch-spherical mapping.

IV. DISCUSSION

We proposed a flexible mapping approach to create 2D
distance maps from 3D head geometries, which we used for

Fig. 10. Mean attribution for all subjects in the image domain with a
transparent overlay of the map (left) and projected onto the 3D surface
for the respective mapping (right). From top to bottom: Spherical, arch-
spherical, and cylindrical mapping. The 2D image shows a transparent
overlay of the grayscaled distance map as a visual guide, while attribu-
tion is colored in blue. A larger value means higher attribution.

the classification of craniosynostosis. We introduced multiple
mapping variants with different coordinate systems and scaling
approaches. We extended the ideas of [16] and structured the
extracted distances in a 2D grid. While CNNs had been used
for camera pictures from above [18], we propose an encoding
strategy which include the 3D data encoded in 2D image inten-
sity and employed the first CNN for craniosynostosis on such
a type of encoding. This was also used for the first systematic
study to investigate the effects of reducing the 2D image res-
olution (and consequently sampling frequency of the 3D head
surface) for classifying craniosynostosis. The 2D distance maps
enable the usage of “on the fly” data augmentation methods
typically employed for CNNs and can be used as an intermediate
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visualization before a machine learning classifier is employed,
which preserves patient anonymity and is a suitable option for a
cross-domain dataset.

Using pre-trained networks was effective, especially
Resnet18 showed good performance and scored highest in all
three metrics. However, a vanilla CNN trained from scratch
could outperform Mobilenet and Alexnet and showed that pre-
training is beneficial, but not a prerequisite for good classifica-
tion performance. The network choice showed a larger influence
on the three metrics than mapping choice (spherical, arch-
spherical, or cylindrical) or scaling choice (linear or per-pixel
scaling). This indicates that there is no “better” transformation,
for the CNN, as long as the geometry is represented in the image.
The mapping type might be more relevant when considering data
augmentation methods, as only the spherical and cylindrical
mapping allow a horizontal shift for rotation misalignment.
Image-based data augmentation lead to an improvement of
g-mean and F1-score for all three tested classifiers. The original
FNN classifier could be improved when using 2D image data
and even more when introducing data augmentation during train-
ing. Taking into account the standard deviations, Resnet18 and
GoogLeNet showed the most consistent performances across
all ten folds while other classifiers showed higher standard
deviations for g-mean and F1-score.

Using different image resolutions revealed that a low-
resolution sampling of the head surface with a resolution of
14 rays per direction still showed classification results with
g-mean and accuracy above 0.95 for bicubic up-scaling. This
corresponds to a 256-fold ray-reduction of triangular ray in-
tersection. Classification could be performed with substantially
lower resolution than previously performed on 3D surface scans.
Since low-resolution images represent spatial frequencies well
and suppress high spatial frequencies, it suggests that low spatial
frequencies are most relevant for the classifiers. High-resolution
artifacts (which may result from the ears or the often visible tip
resulting from the caps) might be weakened. The reduction of
input parameters for machine-learning-based classifiers might
be a promising follow-up study and pave the way towards an
interpretable classifier trained on few, carefully selected fea-
tures. Although the resolution study was performed only on the
spherical linear mapping, the results are likely valid for the other
mappings as they showed little influence on the classification
performance overall. The observed accuracy fluctuation of 1–
1.5% for the different resolutions was likely caused by different
network training conditions, although all samples among splits
were kept consistent. Low-resolution images might reduce the
required precision of scanning devices or enable domain transfer
to CT imaging, even with high slice thickness.

One reason for the success of the CNNs might be that the filter
kernels on the 2D image ensure that the classifier is trained on
locally confined features. This impedes the simple correlation of
spatially not connected input pixels and might be beneficial for
classification performance. In contrast, FNNs interpret the image
as a large 1D feature vector, thus allowing the creation of features
based on random correlations across the image. A second reason
might be that pre-trained networks might cope more easily with
the small amount of data often present in medical classification

problems. Especially Resnet18 and GoogLeNet seemed to be
able to effectively fine-tune the fully connected layers after pre-
training. However, the vanilla CNN proved to be an effective
classifier without using pre-training and even surpassed some of
the pre-trained network architectures.

Attribution maps intend to provide insights of how the classi-
fier made its decision and suggest that the CNN was indeed trig-
gered by features specific to the condition. Qualitatively, parts of
the head which would be considered less important by humans
(such as the ears) were assigned only little attribution. Higher
attributions were assigned to the forehead with a prominent spot
on either the left or right side of the head, corresponding to
pathological differences between the classes, suggesting that
the network makes use of geometric relevant parts of the head.
It has to be noted that attribution mapping is generally not a
replacement for explainable classification and generalizations
from attribution mapping need to be interpreted carefully [39].

There are also limitations to this study. As with many studies
in biomedical engineering, our dataset contains only some hun-
dred samples, even though it is the largest dataset of craniosyn-
ostosis patients used in a classification study to date. Optimally,
multiple datasets should be used to further validate the models,
which might increase trust in patients and physicians. However,
as craniosynostosis head scans show the face of the patients,
there are currently no publicly available clinical datasets and
data sharing is often complicated due to patient data regula-
tions. Other groups might make use of our publicly available
SSM [20]. Data augmentation or data synthesis might be an
option to make the classification models as robust as possible.
We showed that image-based random horizontal flipping and a
random horizontal shift during training improved classification
performance for CNNs and FNNs alike.

The three proposed distance map variants sample the 3D
geometry with equidistant angle intervals which leads to non-
equidistant sampling intervals on the 3D surface, resulting in
more points at the tip of the head (see Fig. 7). However, this
apparently did not hamper classification performance. One dis-
advantage of the 2D distance mapping is the reliance on the
three manually annotated landmarks. Future work should focus
on automatic registration of the scans, for example using random
sample consensus (RANSAC).

In general, our mapping approach is not tied to 3D surface
scans and might be used in other domains, for example for CT
scans, head shape analysis or any shape analysis for spherical-
like objects. Distance maps from MRI and CT could be used for
classification purposes or combined with surface scans to obtain
a cross-domain dataset from all three modalities. Especially the
domain transfer to CT scans seems promising: It seems likely
that low-resolution-maps from existing CT or x-ray imaging can
achieve similar results, potentially reducing ionizing radiation
if a radiography is still desired or inevitable.

V. CONCLUSION

We presented distance mapping approaches to transform 3D
head shape information on 2D intensity-encoded images which
were combined with CNN-based classifiers for craniosynostosis.
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The conversion to 2D images enables the usage of “on the fly”
data augmentation (horizontal mirroring and shifting), enables
the usage of pre-trained CNNs, and preserves patient anonymity.
We systematically reduced resolution of the images and showed
that using the 2D image structure, low-resolution images can
be used for classification without a substantial decrease of
classification accuracy. Resnet18 achieved the best classification
performance, showing that 3D surface scans are suitable for a
reliable classification of the most common types of craniosyn-
ostosis. Although our mapping encoded 3D photogrammetric
surface scans, it is not inherently confined to this domain and
could be used for a combined image-based classification dataset.
To facilitate this process, we publish our Python source code as
free and open source software and enable other groups to use
our code.
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