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Abstract—Objective: Accurate blood glucose (BG) pre-
diction are key in next-generation tools for type 1 diabetes
(T1D) management, such as improved decision support
systems and advanced closed-loop control. Glucose pre-
diction algorithms commonly rely on black-box models.
Large physiological models, successfully adopted for sim-
ulation, were little explored for glucose prediction, mostly
because their parameters are hard to individualize. In this
work, we develop a BG prediction algorithm based on a per-
sonalized physiological model inspired by the UVA/Padova
T1D Simulator. Then we compare white-box and advanced
black-box personalized prediction techniques. Methods: A
personalized nonlinear physiological model is identified
from patient data through a Bayesian approach based on
Markov Chain Monte Carlo technique. The individualized
model was integrated within a particle filter (PF) to predict
future BG concentrations. The black-box methodologies
considered are non-parametric models estimated via gaus-
sian regression (NP), three deep learning methods: long-
short-term-memory (LSTM), gated recurrent unit (GRU),
temporal convolutional networks (TCN), and a recursive
autoregressive with exogenous input model (rARX). BG
forecasting performances are assessed for several predic-
tion horizons (PH) on 12 individuals with T1D, monitored
in free-living conditions under open-loop therapy for 10
weeks. Results: NP models provide the most effective BG
predictions by achieving a root mean square error (RMSE),
RMSE = 18.99 mg/dL, RMSE = 25.72 mg/dL and RMSE =
31.60 mg/dL, significantly outperforming: LSTM, GRU (for
PH = 30 minutes), TCN, rARX, and the proposed physio-
logical model for PH=30, 45 and 60 minutes. Conclusions:
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Black-box strategies remain preferable for glucose predic-
tion even when compared to a white-box model with sound
physiological structure and individualized parameters.

Index Terms—Type 1 diabetes, individualized glucose
prediction, nonlinear physiological model, black-box meth-
ods, particle filter.

I. INTRODUCTION

TYPE 1 diabetes (T1D) is a chronic autoimmune disease
caused by the progressive destruction of beta cells in the

pancreas, which leads to the inability of producing endogenous
insulin by the organism, [1]. As a result, blood glucose concen-
tration (BG) tends to exceed the hyperglycemic threshold (BG
> 180 mg/dL), a situation that, if frequent and prolonged, could
lead to several serious cardiovascular long-term complications,
as well as nephropathy and neuropathy, [2]. To reduce BG
levels, administration of exogenous insulin several times a day
is necessary. Unfortunately, excessive exogenous insulin dosing
could lead patients to hypoglycemia, i.e., BG< 70 mg/dL, which
is dangerous even in the short-term since it could cause fainting,
light-headiness, coma and even death, [3].

Effective T1D treatment relies on BG frequent monitor-
ing, made through either the classic fingerstick device, [4], or
more modern minimally invasive continuous glucose monitoring
(CGM) sensors, [5], [6], [7], and is far from being trivial, [8].
Indeed, T1D management represents, from a patient perspective,
a life-long learning process to understand how several everyday
factors (e.g., illness, diet, and physical activity) affect BG levels
and how interventions (e.g., rescue carbohydrate intake and, of
course, insulin administration) can be used to keep BG in the
safe range. In this context, many efforts have been made by the
research community to provide new tools able to help patients
with T1D, [9], [10]. Among them, CGM-based algorithms able
to predict future BG concentration in real-time have the potential
to significantly improve T1D therapy efficacy, [11], by enabling
proactive therapeutic decisions based on the expected future
glucose levels, rather than the current one.

Despite several different methodologies have been proposed
for real-time BG prediction, [11], the problem remains open
due to several unknown disturbances altering BG levels and
to the high inter-/intra-patient variability in glucose physiol-
ogy. The existing prediction techniques rely on a mathematical
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model which describes the relationship between a certain set
of input features and BG. The choice of a suitable model of
glucose-insulin regulation is a critical step and the options spans
from “black-box” models, completely data-driven, to models
based on mechanistic/semi-mechanistic nonlinear description of
metabolic physiology.

A rich literature has focused on the first option, [11], [12],
exploring a broad spectrum of black-box approaches that ranges
from linear techniques (auto-regressive, auto-regressive moving
average, etc.), typically used in time-series analysis, [13], [14],
and system identification, [15], [16], [17], to the nonlinear
approaches commonly adopted in machine learning (support
vector regression, random forests, gaussian process, feed for-
ward neural networks, autoregressive networks, etc.), [18], [19],
[20], and including the powerful deep learning techniques, [21],
[22], [23].

Among the white-box models, the nonlinear physiological
models available in the T1D literature, there are the so-called
minimal models, [24], that proposed simplified descriptions of
the physiology with a few equations and model parameters.
This parsimonious parametrization grants identifiability in pre-
defined experimental conditions. Unfortunately, these models
have proved too rigid and simplistic to allow accurate predic-
tion, [11]. A possible white-box alternative are maximal models,
commonly used in computer simulations, [25], [26], [27], [28].
They provide a more realistic physiological description by using
several equations with many parameters. Despite their appealing
feature of having a clear and solid physiological ground, their
use for glucose prediction were substantially less investigated,
since their many parameters are hard to be estimated form easily
accessible patient data (i.e. CGM, meal and insulin data), making
them hard to personalize and thus limiting their predictive effec-
tiveness. Moreover, they have a nonlinear structure, requiring
sophisticated tools both for parameters estimation and for the
computation of glucose prediction.

In this work, we face the above mentioned challenges and
explore the potential of using a white-box maximal-model based
methodology for glucose prediction, comparing it to black-box
alternatives. The white-box model adopted is inspired by the
UVA/Padova T1D Simulator, [28], accepted by the US Food
and Drug Administration (FDA) as a replacement of animal
preclinical testing of closed-loop drug delivery systems. A
Bayesian approach, implemented by Markov Chain Monte
Carlo (MCMC), [29], is used to estimate the large number of
parameters in the presence of complex nonlinear dynamics. The
obtained personalized model is then used within a nonlinear
prediction scheme based on a particle filter methodology, [30].

The so derived white-box glucose prediction approach is com-
pared to four black-box algorithms: a nonparametric techniques
that recently proved effective in glucose prediction, [17], three
deep learning algorithms (long short term memory (LSTM),
gated recurrent unit (GRU), temporal convolutional network
(TCN)), and a recursive autoregressive with exogenous input
(rARX) model. Algorithms’ assessment has been performed
for different prediction horizon (PH) on a dataset which com-
prises 12 subjects monitored for about 10 weeks in daily-life
conditions.

The paper is organized as follows. Section II describes the
nonlinear physiological model of glucose-insulin regulation
used for BG prediction. Section III describes the black-box
methodologies considered for this work. Section IV illustrates
the dataset and the evaluation metrics. Section V reports the
results and discussion. Finally, Section VI summarizes the main
findings, draws some conclusions and proposes possible future
developments.

II. WHITE-BOX GLUCOSE PREDICTION MODEL

In this work we explored the use of a white-box maximal
models for glucose prediction. The approach is based on two
components: i) a nonlinear model of glucose-insulin regulation,
which is personalized to capture patient-specific physiology
using a Bayesian methodology, and ii) a particle filter that
leverages on such model and, handling the non-linearity, allows
to formulate glucose predictions.

In the following, Section II-A describes the structure of the
physiological model, Section II-B discusses the model iden-
tification procedure, and Section II-C reports details on the
employed prediction scheme.

A. Physiological Model of Glucose-Insulin Regulation

The physiological model of glucose-insulin regulation used in
this work has two inputs, insulin infusion I(t), and carbohydrate
intake CHO(t), and one output, the interstitial glucose con-
centration IG(t). The model is composed of three subsystems
describing subcutaneous insulin absorption, oral glucose absorp-
tion, and glucose-insulin kinetics. As for a preliminary version of
the model presented in [31], we started from the maximal physi-
ological model implemented in the UVA/Padova T1D Simulator
(T1DS), [32], and to simplify it as much as possible to reduce the
number of parameters to be estimated for individualization while
retaining its ability to achieve good glucose prediction. The
details about model structure and its parameters can be found in
Appendix A.

The overall physiological model is a nonlinear time-invariant
state-space model:{

ẋxxphy(t) = fphy(xxxphy,uuuphy, t,θphy)

y(t) = IG(t)
(1)

where xxxphy(t) is the state vector, defined as

xxxphy(t) := [xins, | xoral, | xglu]
T

where xins is the state vector of the subcutaneous insulin ab-
sorption subsystem, xoral is the state vector of the oral glucose
absorption subsystem, andxglu is the state vector of the glucose-
insulin kinetics subsystem;

uuuphy(t) := [I(t), CHO(t)]

is the input vector; fphy(·) is the state update function obtained
combining (6), (7), and (9); θphy is the set of unknown model
parameters (formally defined in Appendix A) whose estimation
will be discussed in the next section.
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B. Offline Bayesian Estimation of Personalized Model
Parameters by Markov Chain Monte Carlo

Model personalization has been performed by identifying
for each patient the unknown model parameters θphy using
the training data Y := {CGM(tk), tk = k · Ts, k = 1, . . . , D}
and U := {uphy(tk), tk = k · Ts, k = 1, . . . , D} where D is
the number of data points available.

The identification has been performed by adopting a Bayesian
approach and specifically, in this work θphy is estimated through
its posterior mean defined as

θ̂phy = E[θphy|Y, U ] =

∫
θ pθ|Y,U (θ|Y, U)dθ (2)

In fact the posterior mean is known to be the minimum
variance unbiased estimator of θphy .

The Bayes theorem allows to obtain the a posteriori density
function pθ|Y,U (θ|Y, U) as:

pθ|Y,U (θ|Y, U) =
pY |θ,U (Y |θ, U)pθ(θ)∫
pY |θ,U (Y |θ, U)pθ(θ)dθ

(3)

where pY |θ,U (Y |θ, U) is the likelihood function, i.e., the proba-
bility of observing a certain Y given the parameter vector θ and
the input U .

Even using (3), the integral in (2) is analytically intractable,
therefore it has to be approximated by resorting to MCMC [29].
In particular, we generate N samples θi, i = 1, . . . , N from
the posterior distribution pθ|Y,U (θ|Y, U), by creating a Markov
Chain whose stationary distribution is exactly this posterior
(target distribution). Then, these samples θi are used to perform
Monte Carlo integration to obtain a point estimate of θphy:

θ̂phy =
1

N

N∑
i

θi. (4)

To build such a chain, the Single Component Metropolis-
Hastings (SCMH) algorithm has been used [29]. Implementative
details about the implemented SCMH procedure can be found
in Appendix B. An open-source software implementation of the
proposed offline Bayesian estimation approach can be found at.1

C. Real-Time Glucose Prediction Through Particle Filter

Up to this point, we focused on estimating the parameters of
the physiological model of a T1D subject, to capture the patient-
specific dynamics. This process can be done “offline” using the
available information obtained from retrospective patient data.

As mentioned above, in this section, we will present how we
used such a personalized model to predict, in real-time, future
glucose concentrations. This task has to be performed “online”,
so we resorted to a sequential algorithm that at each timestep tk,
when a new measurement y(tk) = CGM(tk) becomes avail-
able, updates the current estimate of the model state x(tk) and
uses it to infer future glucose concentration. In particular, we em-
ploy the particle filter (PF), [30], the state-of-the-art sequential
Bayesian prediction technique capable of handling the nonlinear
structure of the model.

1[Online]. Available: https://github.com/gcappon/replay-bg

PF is based on the recursive update of the posterior probabil-
ity function p(x(tk)|y(t1:k),u(t1:k)) where y(t1:k) is a short-
hand for the variables y(t1), . . . , y(tk) and u(t1:k) indicates
u(t1), . . . ,u(tk).

The recursive update of p(x(tk−1)|y(t1:k−1),u(t1:k−1)) is
performed through two fundamental steps, i.e., one step-ahead
prediction and measurement update.

The one step-ahead prediction step assumes that the posterior
probability p(x(tk−1)|y(t1:k−1),u(t1:k−1)) is available at time
tk−1 and uses such a posterior probability to infer

p(x(tk)|y(t1:k−1),u(t1:k))

Then, when at time tk a new measurement, y(tk), becomes
available, in the measurement update step such a measurement
is used to compute the posterior probability

p(x(tk)|y(t1:k),u(t1:k)).
The two steps are then repeated for each available measure-

ment in the dataset.
PF performs these steps using a sampled approximation of

the probability functions at play:

p(x(tk−1)|y(t1:k−1),u(t1:k−1))

≈
P∑

p=1

wp(tk−1)δ(x(tk−1)− xp(tk−1)).

where {xp(tk−1)}Pp=1 is a set of P points, called “particles”, in
the support of p(x(tk−1)|y(t1:k−1),u(t1:k−1)). Each particle is
associated to a weight {wp(tk−1)}Pp=1,

∑
p w

p(tk−1) = 1, and

p(x(tk)|y(t1:k−1),u(t1:k))

≈
P∑

p=1

w∗p(tk)δ(x(tk)− xp(tk)).

where {xp(tk)}Pp=1 are the P particles representing
p(x(tk)|y(t1:k−1),u(t1:k)), each associated to a weight
{w∗p(tk)}Pp=1,

∑
p w

∗p(tk) = 1.
The one step-ahead prediction step of the PF is particularly

convenient. It can be shown that

p(x(tk)|y(t1:k−1),u(t1:k))

=

∫
p(x(tk)|x(tk−1))p(x(tk−1)|y(t1:k−1),

u(t1:k−1))dx(tk−1)

where p(x(tk)|x(tk−1)) is fully described by the state update
equations of (1).

Regarding the measurement update step, it is possible to
demonstrate that it holds

p(x(tk)|y(t1:k),u(t1:k))
∝ p(y(tk)|x(tk),u(t1:k))p(x(tk)|y(t1:k−1),u(t1:k))

where p(y(tk)|x(tk),u(t1:k)) is the likelihood function that is
fully specified by (1).

Details on how these quantities are calculated in practice are
reported in Appendix C.

https://github.com/gcappon/replay-bg
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As an additional result, the posterior probability
p(x(tk)|y(t1:k),u(t1:k)) is furtherly used by the PF to
compute the posterior probabilities

p(x(tk+i)|y(t1:k),u(t1:k+i)), ∀i = 1, . . . , PH

describing the state distribution predicted i steps-ahead in time
up to PH steps ahead (with PH the prediction horizon).

In particular, it is possible show that:

p(y(tk+i)|y(t1:k),u(t1:k+i))

= p(y(tk+i)|x(tk+i)), ∀i = 1, . . . , PH

that is completely specified by (1).
Finally, a point estimate of future CGM values at time

tk+i, i = 1, . . . , PH can be derived using the expectation of
the posterior:

ŷ(tk+i|tk) = E[p(y(tk+i)|x(tk+i))], ∀i = 1, . . . , PH.

An open-source software implementation of the proposed
real-time glucose prediction approach based on PF can be found
at.2

III. BLACK-BOX GLUCOSE PREDICTION MODELS

A. Linear Non-Parametric Models

Although the metabolic physiology is nonlinear, several con-
tributions have shown that its approximation with linear models
is an appealing option for BG prediction, [17], [33]. For this
reason, our analysis considered the use of an advanced nonpara-
metric (NP) identification techniques for linear models, [34].
In particular, this approach estimates the unknown impulse
response related to insulin, meal and glucose, from noisy mea-
surements. Unlike the standard approach that constraints the
unknown functions to a parametric structure, [35], the nonpara-
metric approach estimates the unknown impulse responses over
a infinite-dimensional set given by a Reproducing Kernel Hilbert
Space (RKHS). Such a space is completely specified by the
choice of the kernel. In this case, the Stable Spline kernel is
used as it incorporates key prior knowledge, such as smoothness
and stability of the predictor impulse responses to be estimated.
In [17], this approach proved to be the most effective among
several linear and nonlinear methods for glucose prediction.

B. Nonlinear Deep Learning Approaches

As described in [11], [36], there are a growing number of deep
learning methodologies to forecast BG levels. In particular, due
to their ability to handle time-series and sequential data, there is
an increasing trend to develop both recurrent and convolutional
neural networks (RNN and CNN, respectively) for BG fore-
casting, [21], [22], [37]. Unlike traditional feed-forward neural
networks in which the information flows from the input towards
the output layer, RNN are characterized by recurrent units with
loops propagating the information back to the same unit, [38].
So, each learning step takes into account not only the current

2[Online]. Available: https://github.com/checoisback/phy-predict

Fig. 1. Schematic representation of BG forecasting with LSTM, GRU
and TCN.

input, but also what was learnt from the previous inputs, [38].
In this work we implemented two multi-input RNN based on: i)
Long Short Term Memory (LSTM) cells and ii) Gated Recurrent
Units (GRU). Specifically, they are composed by a single hidden
layer which comprises 30 units, as in [21]. Similarly to [23], [39],
we also investigated the use of CNN-based algorithms, by de-
veloping a Temporal Convolutional Network (TCN) which com-
bines 3 causal and dilated convolutional layers (equipped with
8, 16, and 32 filters) that are used for extracting features from
the inputs. Finally, all the proposed deep learning algorithms
are fed by three input channels (past history of glucose data,
meal intake, and insulin injections) and equipped with an output
layer (dense), comprising a number of units corresponding to
the future BG levels to forecast (in this work 12, corresponding
to a PH = 60 minutes, sampling time is 5 minutes), as in [21],
[40]. As shown in Fig. 1, once fed by input data, the algorithms
provide as output a trajectory of 12 future consecutive glucose
samples. Of note, the deep learning models are developed within
Python (Keras library) and trained using a Nvidia Titan RTX.

C. Recursive Models

Finally, we explored adaptive strategies that have the potential
to accommodate the changes over time in patient metabolism.
In particular, we implemented the personalized recursive au-
toregressive model with exogenous input (rARX) proposed by
Finan et al. [41]. As the other methodologies, this approach takes
in input past CGM values, carbohydrate intakes, and insulin
recordings. Beside using this data to predict future CGM values,
each time a new CGM sample is collected the model parameters
are adapted according to a well-established recursive estimation
scheme [35].

IV. METHODOLOGY ASSESSMENT

A. Dataset

The dataset used in this study is the Ohio Type 1 Diabetes
Mellitus dataset updated on the 2020 release, [42], from now
on referred as the OhioT1DM. The OhioT1DM dataset, com-
prises 12 subjects with T1D monitored with a Medtronic Enlite
CGM system for 8 weeks. Participants wore an insulin pump
(Medtronic 530 G or 630 G) and a wearable system (Basis
Peak fitness or Empatica Embrace) to measure physiological
variables, such as skin temperature, skin conduction, and heart
rate. In addition, subjects reported information on meals: tim-
ing, amount, and type (that is, breakfast, lunch, dinner, snack,
hypoglycemia treatment). Each subject in the OhioT1DM data

https://github.com/checoisback/phy-predict
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TABLE I
COMPARISON BETWEEN PERFORMANCE METRICS (MEDIAN [25TH-75TH]) OBTAINED USING THE PHY, NP, LSTM, GRU,

TCN, AND RARX MODELS FOR PH = 30, 45, 60 MINUTES

set is split into a training set (about the intial 6 monitoring
weeks) and into a test set (roughly the last 10 days). This dataset
represents a challenge for BG predictive algorithms: glucose
dynamics recorded in daily-life conditions are much more com-
plex to describe than those generated by simulation tools or
those recorded during well-controlled in-hospital trial sessions,
since in the former the patient is exposed to substantially larger
disturbances to glucose homeostasis. Handling data recorded
under free-living conditions raises some technical issues mainly
about synchronization and completeness of the recorded in-
formation. In particular, the OhioT1DM dataset presents long
portion of missing CGM readings and the sampling time is
not homogeneous. Therefore, all signals were aligned into a
uniform time grid with a sampling period of Ts = 5 minutes.
Any CGM gap in the training set shorter than 30 minutes was
interpolated with a first order polynomial while a simple and
causal zero-order-hold imputation was performed on the test set.
A preliminary investigation indicates that alternative real-time
extrapolation techniques (e.g. linear extrapolation) do not lead to
a significant improvement in the overall prediction performance.

B. Algorithms Assessment Metrics

Evaluation of prediction accuracy has been performed in the
test set by comparing the obtained glucose predictions with the
actual CGM values using different PH . Two, frequently used,
performance metrics are considered: the root mean square error
(RMSE) and the time gain (TG), defined as follows:

RMSE(i) =
1√
m
‖y(tk+i)− ŷ(tk+i|tk)‖2, ∀i = 1, . . . , PH.

where ‖ · ‖2 denotes the �2 norm. The larger the RMSE the
worst the prediction.

TG(i) = i · Ts − delay (y(tk+i), ŷ(tk+i)) , ∀i = 1, . . . , PH.

where delay (s1(tk), s2(tk)) [min] quantifies the delay be-
tween two signals s1(tk) and s2(tk) and is based on the cross-
correlation (xcorr), a measure of similarity of the two signals.
Specifically, the delay is defined as the temporal shift τ that max-
imizes the cross-correlation (xcorr) between s1 and a τ -shifted
version of s2:

delay (s1(tk), s2(tk)) = argmax
τ

xcorr (s1(tk), s2(tk − τ)) .

(5)
The higher TG, the more prompt and useful the prediction
and TG = 0 means that the model prediction is comparable to
looking at the current glucose level.

Performance metrics of Physiological model (within the PF)
are compared against NP, LSTM, GRU and TCN models using a
paired t-test unless the hypothesis of normal distribution was re-
jected by a Lilliefors test (p-value< 0.05). In this case, Wilcoxon
ranksign test was used. Reported p-values are two-tailed and
considered statistically significant when < 0.05.

V. RESULTS AND DISCUSSION

Table I reports the prediction performance in terms of RMSE
and TG, for PH = 30, 45, and 60 minutes achieved by the
white-box physiological model (hereafter labeled as PHY), and
the considered black-box methodologies (i.e., NP, LSTM, GRU,
TCN, and rARX). From Table I, three main outcomes can be
observed: i) black box algorithms outperform PHY in terms of
RMSE, for all prediction horizons, ii) all methodologies seem
to achieve similar TG (no statistically significant difference was
found when comparing all pairs of prediction approaches with a
paired t-test corrected with the Bofferroni method), and iii) that
there are no large differences in terms of RMSE between the
considered black-box approaches.

Specifically, the RMSE obtained by PHY is larger than the one
of the other methodologies by approximately 5 mg/dL, 7 mg/dL,
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Fig. 2. Representative subject (ID:570) of the OhioT1DM dataset. The upper panel shows CGM data (grey dashed line) and the 30-min ahead
prediction obtained using PHY (blue line), NP (yellow line) and LSTM (red line). Middle panel shows the CHO content of the meal, in g/min. Bottom
panel shows injected insulin (U/min).

and 9 mg/dL for PH = 30, 45, and 60 minutes, respectively.
This corresponds to a performance deterioration of about 25%.
The NP approach allows to achieve the lowest RMSE: median
RMSE = 18.99 mg/dL, RMSE = 25.72 mg/dL and RMSE =
31.60 mg/dL for PH = 30, 45 and 60 minutes, respectively. The
performance improvement is found to be statistically significant
with respect to LSTM and GRU (p-value = 0.04 and p-value
= 0.03) for PH = 30 minutes, while no significant difference is
found for longer prediction horizons. Furthermore, NP model
showed to be significantly better than TCN, with p-value =
0.001, p-value = 0.006 and p-value = 0.009, for PH = 45 and
PH = 60 minutes, respectively. The NP approach achieves the
largest median improvement with respect to PHY, decreasing
RMSE by 26.5%, 26.2% and 24.9%, for PH = 30, 45 and 60,
respectively (p-values < 10-4 for all the considered PHs). The
numerical results obtained in this work by LSTM, GRU and
TCN are comparable with what has been obtained in other liter-
ature contributions dealing with the assessment of individualized
deep learning algorithms for BG forecasting in the OhioT1DM
dataset, [22], [23], [33]. In [22], a recurrent convolutional net-
work granted a mean RMSE = 20.6 mg/dL, 26.8 mg/dL and
33.9 mg/dL for PH = 30, 45 and 60 minutes, respectively.
Similarly, the TCN and the LSTM tested in [23] achieved a
mean RMSE = 20.23 mg/dL and RMSE = 20.11 mg/dL for PH
= 30 minutes, and RMSE = 34.21 mg/dL and 33.10 mg/dL for
PH = 60 minutes. Finally, despite permitting model adaptation,
rARX performs slightly worse than the other black-box models
employed in this work but still better than PHY, by achieving a

median RMSE = 20.18 mg/dL, 27.91 mg/dL and 34.14 mg/dL
for PH = 30, 45 and 60 minutes, respectively.

To the best of our knowledge, there are only two other lit-
erature contributions investigating maximal model individual-
ization, [43], [44]. However, both in [43], [44], rich datasets
of frequent plasma glucose and insulin measurements collected
in a clinical setting were required, thus strongly limiting the
applicability of these methodologies to be used on data collected
in free-living conditions. Furthermore, none of two models
derived was used for glucose prediction.

Regarding the use of particle filters to obtain glucose predic-
tions, the work of [45] showed the potential of this approach
for the scope. However, in the prediction scheme of [45], they
adopted an average model, thus not personalizing the method-
ology at the patient level.

With the aim of better understanding the consistent difference
between PHY and black-box models in glucose prediction, we
consider an illustrative example on a one-day long data portion
extracted from the test set, depicted in Fig. 2. In the top panel,
CGM data (grey dashed line) of a subject of the OhioT1DM
dataset (ID:570) is shown with the 30-minute ahead-in-time
prediction of PHY, NP, and LSTM models, in blue, yellow
and red, respectively. Middle and bottom panels show meal
and insulin data, respectively. Analyzing the extracted portion
of data, there are two meals with similar amount (30 g/min at
9:10, 35 g/min at 17:35) and two similar corresponding insulin
boluses delivered with the so-called dual-wave mode, [46]. It
is interesting to note that the two corresponding postprandial
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responses are very different. In the first case, glucose increases
from 200 mg/dL to 300 mg/dL within an hour after the meal,
whereas, in the second case, glucose remains almost flat (about
20 mg/dL excursion) and then decreases after an hour, reaching
hypoglycemia. The first postprandial excursion is aligned with
the physiological expectation that a meal should be followed by
a glucose increase, while in the second postprandial excursion
this does not happen, for causes that are hard to guess and that
might span from an high fat meal composition to psychological
stress slowing down digestion. The (unavoidably simplified)
physiological model structure has not the flexibility to cover both
types of responses and the model imposes a similar shape to the
two postprandial glucose excursions leading, as a consequence,
to an extremely large prediction error observed during the second
meal. On the contrary, the black-box approaches prove more
flexible and are able to produce two different postprandial shapes
despite the similar inputs.

As a final consideration, we report a preliminary investigation
of the computational power required to compute a prediction
using each method. In fact, in the final deployment of a glucose
prediction algorithm, this step might have be performed in
real-time on portable hardware. As a proxy, we considered the
computation time required on a DELL desktop PC equipped
with an Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz, 16.0 GB
RAM. The code was not optimized, PHY (considering N=5000
particles), NP and rARX are implemented in Matlab while
LSTM, GRU and TCN were implemented using Python (Keras
library). Therefore, this result offers only an early exploration
of this issue. The average time required to PHY to compute the
30-minutes ahead prediction is about 30 ms and is one order of
magnitude larger than the time required to the other methods: the
NP method needs 2 ms, rARX 0.05 milliseconds and the non-
linear methods (less than 3 milliseconds). Moreover, it should be
noted that the computation time of PHY is strongly affected by
the number of particle considered (here 5000), whereas the other
approaches exhibit a computational time less sensitive to the
method hyperparamters. The time required to train the models
is not considered, as this computationally demanding step could
be performed on a remote server.

Future work will attempt to increasing the flexibility of white-
box models. This will include considering time-varying model
parameters estimated in real-time by the PF, to track patient-
specific intraday variability and meal-to-meal differences in
CHO absorption. Moreover, further investigations will compare
white-box and black-box modeling approaches for control pur-
poses, i.e. when they are used within a model-based closed-loop
controller or as core element of a decision support systems.
In fact, it is unclear if superior prediction performance will
translate into superior glycemic control or if the physiologically
grounded, albeit simplified, structure of white-box model could
lead to more robust and effective control actions. Finally, future
work will analyze the impact of newer and more accurate CGM
sensors on prediction accuracy. In fact, the CGM sensor used in
the dataset considered in this work was less accurate than the
newer generation devices currently available in the market [47],
[48].

VI. CONCLUSION

Real-time glucose prediction algorithms are key for develop-
ing next-generation tools to improve diabetes care. The diabetes
research community intensively focused on the use of black-box
prediction approaches, investigating many techniques spanning
from linear models to deep learning-based approaches. On the
other hand, white-box maximal models for glucose predictions
are less investigated, due a number of technical difficulties they
pose.

This work compared five black-box methodologies (a non-
parametric technique that recently proved effective in glucose
prediction, [17], a LSTM, [33], a GRU, a TCN, [23], and a
rARX [41]), with a newly developed white-box technique based
on a nonlinear physiological model of glucose-insulin dynamics,
whose parameters are individualized through a MCMC approach
and embedded in a PF to predict future glucose values. On the
data under study, collected by T1D patients in free-living con-
ditions, the considered black-box methodologies significantly
outperform the white-box approach for all the PH under study.
Moreover, among the data-driven algorithms, the best perfor-
mance are achieved by the linear NP approach, that grants
statistically significant improvement in the performance with
respect to LSTM and GRU for PH = 30 minutes, and to TCN
for all the considered PH. One possible reason for the differences
in performance between white-box and black-box models might
reside in the fact that the first are less flexible in accommodating
the large variety of patterns observed in the data and that might be
caused by multiple unmodeled factors, including variability in
meal absorption, different meal compositions, stress, illnesses,
physical activity, inaccuracy in estimating carbohydrate content
of a meal. Future works will aim at increasing the flexibility of
white-box models and at comparing white-box and black-box
model for control purposes.

APPENDIX A
PHYSIOLOGICAL MODEL OF GLUCOSE-INSULIN REGULATION

This appendix reports a detailed description of the nonlinear
physiological model of glucose-insulin regulation used by the
white-box glucose prediction approach presented in Section
II. The model is composed of three subsystems describing
subcutaneous insulin absorption, oral glucose absorption, and
glucose-insulin kinetics, to each presented in one of the follow-
ing sections.

A. Subcutaneous Insulin Absorption Subsystem

The subcutaneous insulin absorption model is a slightly sim-
plified version of the one used in the T1DS model, described
in [49] and illustrated in Fig. 3. The model is composed of
three compartments. Exogenous insulin I is infused to the first
compartment where it appears after a delay β. In the first
compartment, representing insulin in a non-monomeric state,
insulin is transformed in a monomeric state and then diffused to
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Fig. 3. Subcutaneous insulin absorption subsystem scheme.

Fig. 4. Oral glucose absorption subsystem scheme.

the plasma. The model equations are:⎧⎪⎨
⎪⎩
İsc1(t) = −kd · Isc1(t) + I(t− β)/VI

İsc2(t) = kd · Isc1(t)− ka2 · Isc2(t)
İp(t) = ka2 · Isc2 − ke · Ip(t)

(6)

where Isc1 (mU/kg) and Isc2 (mU/kg) represent the insulin in a
non-monomeric and monomeric state, respectively; Ip (mU/l) is
the plasma insulin concentration; kd (min−1) is the rate constant
of diffusion from the first to the second compartment; ka2
(min−1) is the rate constant of subcutaneous insulin absorption
from the second compartment to the plasma; ke (min−1) is
the fractional clearance rate; VI (l/kg) is the volume of insulin
distribution; β (min) is the delay in the appearance of insulin in
the first compartment. A priori information on model parameters
has been obtained from the literature, [49]. Specifically, VI

and β have been set to population values, i.e. 0.126 l/kg and
8 min, respectively. Furthermore, kd has been constrained to
kd ≥ ka2 since the two combinations are interchangeable. Un-
known model parameters, identified via the MCMC procedure
presented in Section II-B, are θins = [ka2, kd].

B. Oral Glucose Absorption Subsystem

The oral glucose absorption subsystem model, taken
from [50], represents a simplified version of the model used
in the T1DS and is illustrated in Fig. 4. It describes the gastro-
intestinal tract as three-compartment system: the first two com-
partments account for food in the stomach (solid and grinded
state), while the third compartment models the upper small
intestine where CHO is absorbed. Model equations are:⎧⎪⎨

⎪⎩
Q̇sto1(t) = −kgri ·Qsto1(t) + CHO(t)

Q̇sto2(t) = kgri ·Qsto1(t)− kempt ·Qsto2(t)

Q̇gut(t) = kempt ·Qsto2(t)− kabs ·Qgut(t)

(7)

where Qsto1 (mg/kg) and Qsto2 (mg/kg) are the glucose amount
in the stomach in a solid and liquid state, respectively; Qgut

Fig. 5. Glucose-insulin kinetics subsystem scheme.

(mg/kg) is the glucose concentration in the intestine; kgri
(min−1) is the rate constant of grinding; kempt (min−1) is the rate
constant of gastric emptying; kabs (min−1) is the rate constant
of intestinal absorption; CHO (mg/kg/min) is the ingested car-
bohydrate rate. Model (7) allows to estimate the rate of glucose
appearance in plasma Ra (mg/kg/min) as:

Ra(t) = f · kabs ·Qgut(t) (8)

where f (dimensionless) is the fraction of the intestinal content
absorbed in the plasma. A priori information on model (7) has
been obtained from the literature, [50]. In particular, we set f
equal to 0.9 and we constrained kgri = kempt. Furthermore, kabs
has been constrained tokabs≤ kempt since the two combinations
are interchangeable. As such, the unknown model parameters,
estimated using the MCMC approach presented in Section II-B,
are θoral = [kabs, kempt].

C. Glucose-Insulin Kinetics Subsystem

The subsystem of glucose-insulin kinetics is based on a well-
known two-compartment model that describes the impact of the
plasmatic insulin action and glucose rate of appearance in plasma
glucose concentration introduced in [51]. The model is further
equipped with a third compartment to describe the transport of
glucose from plasma to the interstitium where it is measured by
the sensor. The model is illustrated in Fig. 5. Model equations
are:⎧⎪⎨
⎪⎩
Ġ(t) = −[SG+ ρ(G)X(t)] ·G(t) + SG ·Gb +Ra(t)/VG

Ẋ(t) = −p2 · [X(t)− SI · (Ip(t)− Ipb)]
˙IG(t) = − 1

α (IG(t)−G(t))
(9)

whereG (mg/dl) is the plasma glucose concentration,X (min−1)
is the insulin action on glucose disposal and production; SG
(min−1) is the glucose effectiveness describing glucose ability,
per se, to promote glucose disposal and inhibit glucose pro-
duction; Gb (mg/dl) is the basal glucose concentration in the
plasma; VG (dl/kg) is the volume of glucose distribution; p2
(min−1) is the rate constant of insulin action dynamics;SI (ml/μ
U·min) is the insulin sensitivity; Ipb (mU/l) is the basal insulin
concentration in the plasma; IG (mg/dl) is the interstitial glucose
concentration; α (min) is the delay between the plasmatic and
interstitial glucose concentration compartments; and ρ(G) is
a function, introduced by [52], that allows to better describe
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the insulin action in the hypoglycemic range by increasing its
impact when glucose concentration decreases below a certain
level. Furthermore, to account for patient-specific intraday in-
sulin sensitivity variability, [53], the parameter SI is considered
time-varying over the day:

SI =

⎧⎪⎨
⎪⎩
SIB if 4 AM < t ≤ 11 AM

SIL if 11 AM < t ≤ 5 PM

SID otherwise

(10)

A priori information on parameter distributions has been ob-
tained from the literature, [54]. Particularly, VG has been fixed to
population value, i.e. 1.45 dl/kg. Unknown model parameters of
glucose-insulin subsystem, identified via the MCMC procedure
presented in Section II-B, are θglu = [SG, SIB , SIL, SID, Gb,
p2].

APPENDIX B
OFFLINE BAYESIAN ESTIMATION: IMPLEMENTATIVE DETAILS

We partitioned θphy into five sets θphy :=
[θ1,θ2,θ3,θ4,θ5], namelyθ1 := [SG, SIB ],θ2 := [SIL, Gb],
θ3 := [SID], θ4 := [p2, ka2, kd], θ5 := [kempt, kabs].

This partitioning scheme has been chosen since it improves
MC mixing and allows to break the correlation between SI and
p2, known to be critical from the literature, [55]. An iteration i
of the algorithm consists of five steps p = 1, . . . , 5 and each step
updates the p-th partition of θphy , θp, by approval/rejection of a
sample φp extracted from the proposal density function qp(·|·).
Specifically, as prescribed by the SCMH procedure, approval
occurs with probability α

α = min

(
1,

π(φp|θi,−p)qp(θi−1,p|φp,θi,−p)

π(θi−1,p|θi,−p)qp(φp|θi−1,p,θi,−p)

)

with π(θp|θi,−p) proportional to the posterior of θp given that
the other components θ−p assume the value θ−p = θi,−p:

π(θp|θi,−p) = pY |θ,U (Y |θp,θi,−p, U)pθ(θp|θi,−p, U)

where θi,−p comprises all the other components of θphy except
for θp, and pθ(θp|θi,−p, U) is the prior probability distribution
of θp given θi,−p. Precisely, θi,−p contains the most updated
version of each component as available at the current stage
of the algorithm: θi,−p = [θi,1, . . . ,θi,p−1,θi−1,p+1,θi−1,5].
Components up to p− 1 have already been updated when pro-
cessing the p-th components at iteration i, while other compo-
nents, from p+ 1 to 5, have not been updated yet, so their value
computed in the previous iteration i− 1 is used.

For what it concerns the proposal distribution, we used a
Gaussian centered in the value assumed by θp in the previous
chain iteraction

qp(·|·) = N(θi−1,p,Σp)

whereΣp is a tuning parameter that regulates the acceptance rate
of the chain. We set Σp to a diagonal matrix whose components
are an estimate of the conditional standard deviation of each
element of partition p, sd(θphyp

|Y, U), multiplied by a scaling
factor 2.4/

√
d, where d is the number of parameters to be

Algorithm 1: Adaptive Single Component Metropolis Hast-
ings.

estimated in p-th partition, as suggested in [56]. This estimates is
computed by running two exploratory MCMCs fornIter = 600
iterations and updated every 1500 iterations of the algorithm,
thus implementing an adaptive SCMH.

Finally, the convergence of the MCMC has been verified
through the well-known Raftery-Lewis criterion, [29], which
provides the number of iterations necessary to ensure the Markov
Chain to represent the target posterior distribution.

The Adaptive Single Component Metropolis Hasting is sum-
marized in Algorithm 1.

APPENDIX C
REAL-TIME PREDICTION THROUGH PARTICLE FILTER:

IMPLEMENTATIVE DETAILS

In the following, we present the numerical scheme imple-
mented by PF to perform the one step-ahead prediction, mea-
surement update, and multiple step-ahead prediction.

One step-ahead prediction step: Recalling that, at time tk−1,
p(x(tk−1)|y(t1:k−1),u(t1:k−1)) is available in a sampled form
defined by set of P particles {xp(tk−1)}Pp=1 with associated
weights {w(tk−1)

p}Pp=1,
∑

p w(tk−1)
p = 1 such that

p(x(tk−1)|y(t1:k−1),u(t1:k−1))

≈
P∑

p=1

wp(tk−1)δ(x(tk−1)− xp(tk−1)),

PF performs the one step-ahead prediction step by drawing a
new set of particles {xp(tk)}Pp=1 from p(x(tk)|x(tk−1)):

xp(tk) ∼ p(xp(tk)|xp(tk−1)). (11)
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This probability is specified by (1):

p(xp(tk)|xp(tk−1)) = N(f(xp(tk−1),uuu, tk−1,θ),Σv).

In view of this, to draw the new set of particles it is sufficient
to let each particle xp(tk−1) evolve according to model (1), and
corrupt it with a realization of the noise v.

Measurement update step: The PF algorithm sets the weight
w∗p(tk) of each p-th particle xp(tk) to the likelihood function
evaluated on xp(tk)

w∗p(tk) = p(y(tk)|xp(tk),u(t1:k)). (12)

In particular, the statistics of the stochastic modelling error e,
p(y(tk)|xp(tk),u(t1:k)) is defined as:

p(y(tk)|x(tk),u(t1:k)) = N(y(tk)− yp(tk), SDε). (13)

where yp(tk) is obtained using (1) and SDε is the constant
standard deviation of the error.

Weights are then normalized such that
∑

p w
∗p(tk) = 1.

This provides a sampled form representation of the posterior
density

p(x(tk)|y(t1:k−1),u(t1:k))

≈
P∑

p=1

w∗p(tk)δ(x(tk)− xp(tk)).

Resampling step: To improve the accuracy of PF, the measure-
ment update step is completed by updating the set of particles.
Specifically, {xp(tk)}Pp=1 are substituted with a new set of
P particles, {x∗p(tk)}Pp=1 generated from the sampled repre-
sentation of p(x(tk)|y(t1:k−1),u(t1:k)) such that Pr(x∗p(tk) =
xp(tk)) =w∗p(tk). This step is performed by a well-established
resampling algorithm [57].

As a result, all new particles {xp(tk)}Pp=1 are associated to
the same weight w∗p(tk) = 1/P , thus the approximation of
p(x(tk)|y(t1:k−1),u(t1:k)) simplifies to

p(x(tk)|y(t1:k−1),u(t1:k)) ≈ 1

P

P∑
p=1

δ(x(tk)− xp(tk)).

Multiple steps-ahead prediction: Multiple steps ahead pre-
dictions can be obtained as follows. First, the probabilities
p(x(tk+i)|y(t1:k),u(t1:k+i)), ∀, i = 1, . . . , PH are obtained in
sampled form starting from p(x(tk)|y(t1:k),u(t1:k)) and prop-
agating the P particles {xp(tk)}Pp=1 i steps ahead as we
did in the one step-ahead prediction step. Then, the set
of particles {yp(tk+i|tk)}Pp=1 is computed and used to ob-
tain p(y(tk+i)|y(t1:k),u(t1:k+i))∀, i = 1, . . . , PH in sampled
form.

Finally, a point estimate of glucose i steps-ahead, y(tk+i),
is obtained as the average computed over the sampled form of
p(y(tk+i)|y(t1:k),u(t1:k+i)), i.e.:

ŷ(tk+i|tk) = 1

P

P∑
p=1

yp(tk+i|tk), ∀i = 1, . . . , PH.

The implemented PF is summarized in Algorithm 2.

Algorithm 2: Particle Filter.
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