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Parametric Modeling and Deep Learning for
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Abstract—Objective: The problem of reliable and widely
accepted measures of pain is still open. It follows the objec-
tive of this work as pain estimation through post-surgical
trauma modeling and classification, to increase the needed
reliability compared to measurements only. Methods: This
article proposes (i) a recursive identification method to
obtain the frequency response and parameterization using
fractional-order impedance models (FOIM), and (ii) deep
learning with convolutional neural networks (CNN) classi-
fication algorithms using time-frequency data and spectro-
grams. The skin impedance measurements were conducted
on 12 patients throughout the postanesthesia care in a
proof-of-concept clinical trial. Recursive least-squares sys-
tem identification was performed using a genetic algorithm
for initializing the parametric model. The online parameter
estimates were compared to the self-reported level by the
Numeric Rating Scale (NRS) for analysis and validation of
the results. Alternatively, the inputs to CNNs were the spec-
trograms extracted from the time-frequency dataset, being
pre-labeled in four intensities classes of pain during offline
and online training with the NRS. Results: The tendency of
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nociception could be predicted by monitoring the changes
in the FOIM parameters’ values or by retraining online the
network. Moreover, the tissue heterogeneity, assumed dur-
ing nociception, could follow the NRS trends. The online
predictions of retrained CNN have more specific trends to
NRS than pain predicted by the offline population-trained
CNN. Conclusion: We propose tailored online identification
and deep learning for artefact corrupted environment. The
results indicate estimations with the potential to avoid over-
dosing due to the objectivity of the information. Signifi-
cance: Models and artificial intelligence (AI) allow objective
and personalized nociception-antinociception prediction in
the patient safety era for the design and evaluation of
closed-loop analgesia controllers.

Index Terms—Artificial intelligence, closed-loop analge-
sia control, fractional order impedance model, frequency-
domain analysis, recursive identification, spectroscopy.

I. INTRODUCTION

MODELING for control of anesthetic states is a potent
tool accelerating the individualization path in personal-

ized medicine while enabling optimal control algorithms being
deployed in interdisciplinary applications [1]. Efforts to objec-
tively quantify the rather subjective pain sensation in communi-
cating patients and to extract helpful information have existed
for decades, but the breakthrough was delayed by a lack of
trust and endorsement of technological progress [2]. Recent
developments in decision-support cyber-physical systems for
drug delivery management and protocols motivate the need
for closing the loop with feedback from a specific nociception
monitor during the anesthetic state [3]. In particular, input-
output parametrizations increase the ability to predict pain for
optimization in advanced control strategies such as predictive
control, thereby mimicking clinical expertise and practice [4].
Hence, mathematical models give new opportunities for the
design and evaluation of closed-loop anesthesia controllers [5].
Multiple control strategies have been proposed in literature for
anesthesia [6], [7]. However, modeling pain pathways did not
capture the main focus of the systems and control community
until only recently, the witness being the scarce literature reports
on the topic: merely 31 relevant articles [8]. Of the few math-
ematical modeling attempts, the seminal gate control theory of
Melzack and Wall [9] was later revisited in the mathematical
analysis of Britton and Skevington [10]. Some attempts were
further proposed by Xu et al. [11] and Cecchi et al. [12]. Given
the uncertainty, lack of labeled data and large physiological
complexity, artificial intelligence computational tools such as
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machine learning algorithms can also detect the presence or
absence of pain.

Machine learning emerged into pain research for its capa-
bility to process data sets largely available in medical applica-
tions [13], [14]. Endorsed by dynamic physiological variabil-
ity, automatic pain recognition outperforms traditional, rather
subjective assessment tools. It employs a monitorization that is
continuous, objective, and more sensitive to even slight varia-
tions in pain-related threshold levels. Publications focused on
this research direction highly differ by the use of several pain-
descriptive features in machine learning algorithms to classify
pain in different contexts – both in clinics and in day-to-day
environment – for a multitude of pain/analgesia diagnostics [15],
[16]. Hitherto, many of the previous studies [14] have been
exploratory on healthy adults and experimental pain stimulation,
lacking validation significance in clinical contexts [17]. We
overcome this need by using data acquired in postoperative
patients, where the personal subjective influences on pain expe-
rience are considered through the self-reported NRS. Moreover,
in [14], 70% of all reviewed works have used facial expression
as the modality for pain recognition, with electro-dermal ac-
tivity (EDA) the second-most used that stands out with the best
performance. Our dataset contains measurements of voltage and
current signals, correlated to EDA.

Approaches to real-time data acquisition are of utmost impor-
tance in postoperative pain management as it has the potential to
avoid under- and over-dosing of pain medicines [18]. To this end,
questions of great interest have been raised about the commonly
used subjective patient-reporting tools, opioid prescriptions,
postoperative pain management, and objective pain monitors
based on surrogate endpoints [19], [20]. Several objective mon-
itors have emerged to improve the subjective standard methods to
assess pain [21]. A core topic has been the analgesia/nociception
monitoring for opioid guidance, both peri- and postoperatively,
inconclusive yet in terms of common use or preferred device in
practice [22]. Moreover, these are population-based solutions,
yet one must acknowledge that patient-specificity is needed
in personalized analgesia and anesthesia management. Lookup
tables or ad-hoc drug infusion rates used in hospitals mainly rely
on clinical judgment, often not accounting for the intra-patient
nociception variability happening during surgery, which drives
the analgesia state. In contrast, the variability is directly man-
aged by personalized model- or AI-based methods, identified or
retrained in real time.

In this study, mathematical modeling and deep learning clas-
sification of pain measured during postanesthesia care unit
(PACU) recovery are used to determine whether the time-
frequency analysis of electro-dermal activity maps better on
to pain intensity self-reporting data. This work proposes a
novel methodology for a parametric recursive identification of
postoperative data using our previous physiological fractional-
order parametric model [23]. Furthermore, this work explores
the added value of using spectrographic-based CNNs for per-
sonalized classification/scaling of postoperative pain, through
objective pain related 3D images. Online data processing is
motivated by the changing states of the physiological system
throughout PACU residence time, as post-surgical nocieption
evolution is both a time- and a frequency-domain varying
system. Our methodology involves online model adaptation,
leading to model calibration per each patient over the postoper-
ative period. Consequently, the online model identification and
CNN retraining enable the predictions of variations in trending

TABLE I
PATIENTS CHARACTERISTICS

slopes of nociception-related signals in real time while being
computationally friendly. The innovative step in the pain man-
agement methodology is that the recursive algorithm used for
the data identification allows online adaptation of the parameter
estimates. Additionally, the clinical data enables the exploitation
of the medication information, for comparing the predictions of
the estimated model evolution versus the actual golden standard
NRS trend after the moment of receiving opioids. This model
can then be included as part of a model-based control scheme
where drug dosages can be optimized for each patient and in
real-time.

The research hypothesis states that changes in identified
parameters of parametric bioimpedance models or in EDA
spectrogram-CNN classification are correlated with skin proper-
ties and postoperative pain, i.e., early predictions of variation in
the nociception levels. Based on our prototype, we could extrap-
olate that the electrochemical events of nociceptive transmission
can be pre-detected in the frequency response before they are
cognitively perceived by a person [24]. In this context, the NRS
is a subjective demonstration of pain sensation. This article also
investigates the effect of opioids on the models values. The
end significance relies on the drug usage optimality, generating
the novelty of research in terms of opioid intake linked to the
measured analgesic effect.

II. METHODS

A. Physiological Data From Postoperative Patients

The physiological data used in this work is available from
our observational trial conducted on awakening, postoperative
patients [25]. For this work, we analyzed partial data from pain
measurements from 12 patients monitored during the postopera-
tive recovery period after general anesthesia, with their biometric
details given in Table I. The pain was assessed continuously
by the pain monitor for 140 minutes, and every 7 minutes
the patients subjectively reported their pain using the golden
standard in clinics, namely NRS. Standard care and medication
were decided by the nurse. Our primary publication [25] has
reported details on the entire study design and clinical investiga-
tion protocol and results. The study was approved by the Ethics
Committee of Ghent University Hospital (EC/2017/1517, 2018,
PI: M. Neckebroek), registered at clinicaltrials.gov
(NCT03832764, 2019). Each patient has signed a written in-
formed consent before enrolment.
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B. Measurement System and Signal Processing

The time and frequency bioimpedance monitor device
used for data acquisition during the clinical trial was the
prototype Anspec-PRO (Ghent University, Ghent, Bel-
gium) [24], approved for research by the Federal Agency
for Medicines and Health Products Belgium (FAGG) no.
AFMPS/80M0707, 2018. Once tested in an experimental setup
on awake healthy subjects having thermally- and mechanically-
induced acute pain [24], Anspec-PRO monitor has also been
successfully validated to detect clinical postsurgical pain [25].

In postanesthesia pain, the incision-induced activity is char-
acterized by distinct pharmacological and pathophysiological
mechanisms compared to acute pain (felt at the moment of
injury). Hence, the nociceptor activity is triggered by the con-
version of the stimulus energy into an electrical signal and
its transmission into the body, through the voltage-gated ion
channels, nerve endings, etc. However, a noxious stimulus leads
to action potentials in nociceptive fibers that propagate not only
to the central nervous system but also antidromically into periph-
eral branches [26]. These changes in the signalling pathways
could be detected by measuring the bio-electrical-impedance.
The core Anspec-PRO methodological principle is based on
measuring the skin current and voltage signals after inducing
a multiple-frequency voltage input (1) into skin [24], apriori
designed having the form:

u(t) =

29∑
Nf=1

ANf
sin(ωNf

t+ φNf
), (1)

where t is the time variable, ANf
[V] represents the amplitude,

φNf
[rad] the phase and ωNf

= 2πfNf
[rad/s] the angular

frequency of each sinusoid. The multisine is then a sum of sinu-
soids having the number of frequencies Nf = 1 . . . 29, for the
frequency range f = 100, 150 . . . 1500 Hz linearly distributed
over 29 points. The excitatory electrical signal is then modulated
by the variations of the signaling conditions originating from
nociception effects throughout the body and implicitly the skin.
Three electrodes are placed on the patient’s palm hand, where
changes in electrical permeability are detected [27]. As the
skin tissue is frequency-dependent on the excitatory alternating
electrical signal, the modeling of the biological response is em-
powered by the availability of the frequency response function
from Anspec-PRO. Moreover, this frequency response presented
as spectrograms endorses a CNN to enable feature extraction
based on data-driven learning.

For converting the time vectors (i.e., multisine u(t) [V],
current c(t) [C] and voltage x(t) [V] signals) in the frequency
domain, the spectral power density function with modified aver-
aged periodogram method is used [28]. The measured data from
one patient with a number of samples per minute N = 900.000
samples had a sampling frequency Fs = 15 kHz and a sampling
time Ts = 1/Fs. It was divided into p sequences of equal length
L = N/p, for a frequency resolution bandwidth of 50 Hz. The
total measured data for one patient was thenTm = N · 140[min]
samples. To minimize the effect of leakage frequencies in-
troduced by signal discontinuities, each discrete-time domain
sequence ui(n), xi(n) and ci(n) was filtered by an appropriate
windowing function w(n) (i.e., Blackman window filter), with
the digital time t = nTs, n = 0 . . . N − 1 and the sequences
i = 1 . . . p. The frequency components of the current and voltage
signals were returned via the Fast Fourier Transform (FFT) for

each discretized sequence Ui(jω), Xi(jω) and Ci(jω). The
sampled sequences had the angular frequency discretized toω =
2πfTs = 2πk/N [rad/sample], with f = kFs [cycles/sample]
the digital frequency and k = 0 . . . N − 1 the index of the fre-
quency component in the FFT. After introducing a scaling factor
B = 1/L

∑L−1
k=0 ω

2(k), the complex cross-spectrum function
was applied to each modified periodogram Pi, as follows:

PXUi
(jω) =

Ts

LB
X∗

i (jω)Ui(jω)

PCUi
(jω) =

Ts

LB
C∗

i (jω)Ui(jω), (2)

with X∗
i (jω), C

∗
i (jω) the complex conjugated functions for the

sequence i = 1 . . . p, and j =
√−1 the imaginary unit. U(jω)

[V] denotes the offline designed excitatory input, X(jω) [V] is
the actual voltage measured over the skin impedance and C(jω)
[A] is the measured current running through the skin, all signals
digital. The final estimate is then obtained by averaging over the
modified periodograms Pi:

SXU (jω) =
1

p

p∑
i=1

PXUi
(jω)

SCU (jω) =
1

p

p∑
i=1

PCUi
(jω). (3)

All signal processing was performed in Matlab–Mathworks.
From here, the data was processed differently for each algorithm
employed in this article as follows:

1) Modeling Data Preparation: Consequently, a vector of
the complex skin impedance Ẑ(jω) was computed as the ratio
of the cross-power spectrum of the measured signals:

Ẑm(jω) =
SXU (jω)

SCU (jω)
, (4)

for each minute m = 1 . . . 140 with the discrete-time angular
frequency ω a vector containing the 29 excited frequencies from
(1). Notice that both the known multisine excitation signal u(t)
and the unknown nociception stimulus are inputs to the system
to be characterized by a parametric model and its estimated
coefficient values.

The impedance vector was obtained from (4) every minute for
each patient. For the entire postoperative period of the 140 mon-
itored minutes, the described modified averaged periodogram
method was repeated for each consecutive minute, resulting
in a matrix of Ẑ(jω, t) for each patient. Before the recursive
identification, the bioimpedance dataset Ẑ(jω, t) was mapped
into 7-minutes moving windows:

ˆ̄Zint(jω) =
1

7

m−6∑
m=int

Ẑm(jω), (5)

corresponding to the intth interval, int = 7 . . . 140. The signal
processing data interval uses a 7-minutes moving window to
process data recursively and moves forward 1 minute of data
at a time, therefore its content overlaps over the remaining
past 6 minutes with the past estimation data segment. Fig. 1
illustrates the moving window algorithm, using (4) and (5)

for the definitions of Ẑm(jω) and ˆ̄Zint(jω), while t1→134 is
representative for the regression vector calculated in (8). The
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Fig. 1. Moving window procedure of the monitored bioimpedance data
dataset Ẑm(jω), advancing every minute m. At each current time tm, a

corresponding bioimpedance interval ˆ̄Zint(jω) mapped into a 7-minutes
window is available for the recursive identification.

data signal interval was chosen to incorporate 7 minutes because
of the pain NRS reporting interval length.

2) Classification Data Preparation: As the inputs of the
CNN are spectrograms of the product of current and voltage
signals, then the electrical power Ŵsec(jω) at skin level was
calculated:

Ŵsec(jω) = SXU (jω)SCU (jω). (6)

for sec = 1 . . . 140 · 60/5[seconds] the index of the measured
second for which the power is calculated. The taxonomic classi-
fication used for pain intensities consisted of intervals instead of
single values of NRS, due to the individual and subjective char-
acter of self-reported scales and pain threshold. The taxonomy
represents 10 intensities of pain from the NRS between 0–10
arranged in 4 classes: No pain (NRS: 0–1), little pain (NRS:
2–3), medium pain (NRS: 4–6), and heavy pain (NRS: 7–10).

C. Fractional-Order Impedance Modeling

1) Model Formulation: The frequency response data esti-
mated with (4) can now be used to identify a parametric model.
Our prior work demonstrated the potential of FOIMs in detecting
and analyzing nociceptor stimulation followed by related tissue
memory effects in awake and aware healthy individuals in [23]
and to model transmission in signaling pathways [29]. The
physiological pain dynamics are directly linked to the electrical
properties exhibited by a tissue (time and frequency variable
systems) [26], which are captured as impedance measurements.

The lumped FOIM model proposed in [23] considers the core
working principles of the nociception system. The nociceptive
pathway starts with the transduction of noxious stimulation by
nociceptors, following the transmission of the neural activity
as action potentials along the peripheral sensory nerves. The
transduction in surgical trauma also involves an inflamma-
tory response, causing the depolarization of the nociceptor’s
membrane. Excitable membranes could be represented by a
resistance-inductance-capacitance (RLC) circuit. The mem-
branes can be thought as capacitors, i.e., the insulating lipid
bilayers surrounded by conductive electrolyte solutions, while
some ion channels can provide inductance-like properties [30].
From here, the transfer of information throughout the spinal
nociceptive circuits is under powerful inhibitory and facilitatory
control. This pain modulation that is present only because the
patients are awake, is highly dependent on the plasticity induced
in the spinal nociceptive pathways, including the anti- and pro-
nociceptive output from the brainstem’s bidirectional control.
Here, combinations of models essentially based on exponential
and power-law functions are likely to represent the modulation
of the electrical activity. Finally, the central perception processes
the centrally transmitted pain-signaling activity, the patients

being conscious. In our study, pain perception is present, as the
patients were awake.

To summarize, the lumped FOIM model can be characterized
as differ-integral (depending on the sign of the non-rational
order), related to the physiological pathway of pain in awake
postanesthesia patients. The proposed lumped mathematical
model is then:

ẐFOIM (s) = R+
TD

sα1
+

TS

sα2
+ Psα3 , (7)

where TD [F−1] denotes transduction, TS [F−1] transmission
and P [H] indicates perception. The parameters TD and TS are
analog toC−1, whereC [F] represents the electrical capacitance,
while P is analog to electrical inductance L [H]. The resistance
R [Ω] has been added as a calibration factor (lower bound 0), and
α1, α2, α3 ∈ (0, 1). As this model is based on the physiological
pathway of pain, some of the ongoing physiological processes
may be impaired. Therefore, some of the terms in the equation
might not always be included or sensitive to changes in tissue
bioimpedance [23]. Opioid administration is expected to affect
the parameters values.

2) Identification Methods: The estimation technique used
for fitting the bioimpedance dataset was the least squares estima-
tor, implemented in a recursive computation of the parameters
estimates for the FOIM model in (7). The search optimization
problem was approached through adaptive heuristic search al-
gorithms, namely the genetic algorithm (GA).

3) Model Initialization – Genetic Algorithm: To overcome
the problem of arbitrary choice of the FOIM’s parameters
when first time estimated, the GA function ga in Matlab–
Mathworks from the Global Optimization Toolbox was ini-
tially used for each patient. It solves stochastic global search
optimization problems by repeatedly modifying a population of
individual solutions. Over successive generations of elite reten-
tions until stopping conditions are met, the algorithm produces
the crossover and mutation children optimal set [31].

The initialization procedure started with the first 7-minutes

averaged impedance data ˆ̄Zint7(jω) (5) measured in PACU
from the patient. Using 105 random iterations of the GA, the
best-fitting vectors of FOIM parameters were estimated for each
patient. Bounders were used for estimating the FOIM parame-
ters, as follows: lower bound 0 forR,P, α1−3, and upper bound 1
for the fractional parameters α1−3. The model initialization was
performed for each patient, resulting in an individually identified
set of parameters. In order to choose the global best-fitting solu-
tion per patient, we calculated the goodness of fit (gof) of each
optimal parameters vectors generated after each GA iteration.
The gof values were represented as histograms, knowing to
which set of parameters corresponds the gof. The parameters
set with the highest incidence were considered for the model
initialization in the online procedure for the same patient, having
at least the gof<0.1. A fit value gof=0 indicates a perfect fit
between the data and the estimated model outputs, giving a fitting
percentage equal to (1-gof) × 100.

4) Online Parameters Estimation – Recursive Algorithm:
The online system identification methodology enabled contin-
uously recalculating of the FOIM parameters each time new
data became available. This is valuable for model identification
in real-time during the monitoring period. For this work, the
model was updated periodically, with reference to its past values.
Specifically, from the 8th minute to the end of the monitor-
ing period (int = 8 . . . 140 moving windows), the impedance
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Fig. 2. Deep CNN structure. Data progresses from left to right: the
spectrogram is inputted in the network, successively feature abstrac-
tions of the input data are mapped, finally achieving the output. The
system outputs one of the 4 levels of pain intensity. The network is
organized into several layers.

ẐFOIM was estimated each minute using the recursive least-
squares system identification with the Levenberg-Marquardt
non-linear algorithm, based on the previous data. The Matlab–
Mathworks Optimization Toolbox was used for the least-squares
estimator, which is one of the simplest estimation techniques,
motivated by low numerical aspects of using the least-squares
cost function minimization.

The recursive least-squares parameter estimator for
fractional-order systems is detailed in Supplemental Text
I.A, employing the following equations recalculated each time
instant:

θ̂(t) = θ̂(t− 1) + P (t)ϕ(t)[y(t)− ϕT (t)θ̂(t− 1)] (8)

P (t) =
1

λ

[
P (t− 1)− P (t− 1)ϕ(t)ϕT (t)P (t− 1)

λ + ϕT (t)P (t− 1)ϕ(t)

]
(9)

where θ̂ is the estimated parameter vector, P (t) the covariance
matrix of θ̂(t), ϕ(t) the regression vector, y(t) the measured
output, and 0.95 < λ < 1 the forgetting factor.

5) Statistics and Comparisons: The primary aim of the
study was to estimate the components of the model and test
the hypothesis they can predict in real-time the changes in
bioimpedance originating from surgical trauma. To facilitate
comparisons across the model parameters and the self-reported
NRS values at the same time points, estimated parameters were
presented in boxplots corresponding to an interval of 7 min-
utes. An important analysis for motivating the individualized
parametric optimization was the inter-patient variability. An
analysis of variance (anova) was performed for each estimated
parameter and the comparison between the patients was eval-
uated through the multiple comparison test (multcompare),
detectable difference: p-value < 0.05.

D. Spectrographic-Based Classification Algorithm

A deep learning method (i.e., learning through pre-labeled
inputs) is proposed: a CNN with a spectrogram input and one
coded label, based on the self-reported NRS for training the
CNN and for evaluating the prediction performance.

1) Training Algorithm: The CNNs’ training algorithm com-
prises the sequential steps of forward pass implementation,
loss function calculation, backward pass implementation, and
weight values update, completed during each iteration. The
CNN architecture is depicted in Fig. 2 and detailed in the
Supplemental Fig. 3. First, the input images pass across the
entire network during the forward pass. Since the node weights
and filter values were chosen at random when training began,
there would be no obvious class preference in the output. Still
unable to look at meaningful underlying features yet, the CNN
cannot correctly classify the inputs. The loss function is then

described as cross-entropy to calculate the difference between
the predicted and actual classes. As the loss, which depends on
the weight values, should be kept to a minimum, the weight
values must be updated in the opposite direction of the gradient
of the loss function, which is computed for each layer from the
final layer to the first one (backward pass). Finally, to avoid
becoming trapped in local minimums, the learning rate (or step
size) is then selected suitably.

We tested two approaches aiming to classify in real-time the
pain intensity experienced by new patients. The CNNs were
evaluated offline and online in different combinations of the
dataset, as presented in Supplemental Text II.

2) Offline Training and Testing: At this stage, the assump-
tion was that a full postoperative dataset was available to process.
The CNN was trained offline using different datasets: spec-
trograms generated for the 140 minutes monitoring period of
the best/worst/all patients and the first 25%, 50%, 75% of this
interval for all patients (to check the limitations of the prediction
potential when less data is used for training). The spectrograms
were generated every 5 s (respectively 20 s for the dataset
containing all patients). The CNN was trained on the following
labeled spectrograms, randomly chosen and equally obtained for
each class: 336 (for worst patients), 420 (for best), 670 (for all),
756 (for 25% procedure), 1512 (for 50%), and 2000 (for 75%).
The grouping of patients into ‘best’ or ‘worst’ was decided based
on the correlation analysis between the NRS and the pain index
calculated using Anspec-PRO data [25] (Supplemental Table I).
The training continued for 30 epochs, as the training data was
used multiple times and then shuffled into new batches every
epoch. The stochastic gradient descent iterative optimization
was implemented with a 0.9 momentum and a learning rate of
0.0001.

The testing of the CNNs was performed on the patients not
included in the training, hence on 10% from the training data
corresponding to ‘worst’, ’best’, and ’all patients’ procedures,
and on the remaining percentages for the 25%, 50%, and 75%
procedures. For short training computation times, the pain-level
estimation was based on a spectrogram generated every minute,
leading to 140 pain estimates per patient. The images generated
for 7 consecutive minutes received the same label (NRS) dur-
ing the training, following the patient’s reporting interval of 7
minutes from the clinical protocol. To lessen the influence of
potential outliers, a moving average of 7 estimations was imple-
mented. The offline procedure is summarized in Supplemental
Fig. 4.

3) Online Retraining and Testing: Having available the
3D featured data, monitored continuously by Anspec-PRO de-
vice [24], the pain level could be estimated in real-time by
an online analysis. To evaluate the ability of the AI system
to personalize the pain prediction across patients, we used the
offline trained architecture on the best patients dataset and
retrained it online on the rest of the patients. Freezing layers
1 and 2 during retraining, the filter values remained fixed in
the convolutional layer and only weights in the subsequent
layers were updated. This step intended the network to use the
already learned pain-related features and not become unfavor-
able sensitive to patient-specific features. The learning rate was
lowered to 0.00001 to avoid the possible impact from individual
corrupt spectrograms. For testing the online procedures, the
pain was predicted using a spectrogram generated every 10 s,
with a moving average of 30 s (to overcome high fluctuations).
The CNN was retrained every 7 minutes, when the NRS was
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Fig. 3. Histogram plots of the goodness of fit obtained from the FOIM
identification using the initialization procedure of the first 7-minutes
averaged frequency response.

available from the patient for labeling the latest spectrograms
and adding them to the training dataset. The online analysis
is summarized in Supplemental Fig. 5, 2 procedures being
tested:

� Using cumulative data from all past spectrograms, gain-
ing the advantage of training from a bigger dataset. For
retraining, 10 random spectrograms per label from the new
dataset were combined with 60 random spectrograms per
label from the dataset recorded until that point.

� Using only the latest batch of spectrograms, instead of
keeping all. Otherwise, this procedure is similar to the
previous one, but the calibration of the CNN training set
was done only on the latest interval.

4) Evaluation Metrics: The comparison metrics are the re-
ceiving operating curves (ROC) and confusion matrices. ROCs
are calculated using sensitivity (true positive predicted value rate
TPR) and false-positive rate FPR=1–specificity:

TPR =
TP

P
, FPR = 1− TNR = 1− TN

N
, (10)

where true positive TP is the no. of correctly predicted occur-
rences of the specific class, positive P is the no. of the genuine
occurrences of the class, true negative TN is the no. of correctly
predicted absences of the class, negative N is the no. of genuine
occurrences of different classes to the specific one. Given the
quality of signals and limited dataset, any performance above
65% was considered successful.

III. RESULTS

A. Fitting Goodness of the Recursive Model
Identification

The histograms resulting from the model (7) initialization
procedure are illustrated in Fig. 3, depicting the underlying shape
of the distribution of the goodness of fit gof for two of the
patients. The goodness of fit ranged between 0.0015–0.13, with
a mean value of 0.0338. The model initialization went forward
using the 96.62% fitting.

B. Inter-Patient Variability Requires Personalization

To access the extent of person-to-person variability, the fitting
parameters groups were analyzed and showed a significant dif-
ference per group. The small p-value indicates the group means
are different, but the integral order parameters R, TD, TS, and
P are shown in Fig. 4 to have similar means for 80% of the
patients. However, this is not the case for the fractional-order
parameters α1−3, having a different distribution over the entire

Fig. 4. Inter-patient variability analysis of the identified FOIM
parameters.

TABLE II
MEAN VALUES (STANDARD DEVIATIONS ±SD) AND 95% CONFIDENCE

INTERVALS (CI) OF THE FOIM IDENTIFIED PARAMETERS

(0,1) range. This is important for the assumption that population-
based models relying on means per group of patients are not able
to differentiate between specific individuals. Hence, it requires
a personalized approach, i.e., online parameter estimation for an
adaptive model per patient.

Statistical results are detailed in Table II, indicating a large
standard deviation (SD). A patient-specific approach is therefore
motivated against population-based models that concentrate on
mean values mainly. The mean values of the estimated param-
eters TD and TS are in the same range, but with different
signs. Recalling the FOIM model from (7), TD, TS = C−1

are analogue to the inverse of capacitance. Knowing that a
capacitive reactance has the form of XC(ω) = −(ωC)−1 [Ω],
then the terms TDs−α1 and TSs−α2 from (7) could be anal-
ysed in relation to it. A capacitive reactance represents the
opposition to the change of voltage, probably the change of
the biopotential difference generated by the membrane trauma-
evoked depolarization. Looking at the electrical formula of the
capacitance C(t) = i(t)

dv(t)/dt , the sign of C is negative if the
derivative is negative, hence for v < 0, the graph decreases. A
negative derivative means the voltage quantity is decreasing. The
voltage has a negative slope during the membrane repolarization
when the membrane is brought back to negative values after
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Fig. 5. Variance analysis of the identified FOIM parameters against the self-reported NRS (red stars), R, and P showin earlier than NRS the
decreasing pain/nociception trends, exemplified for one patient (no. 16). The long arrow indicates the infusion of a strong opioid, while the short
arrow stands for a light opioid infusion.

depolarization within the action potential [32]. This occurs when
the system of cells returns to its rest state, i.e., when the noci-
ception stimulation/sensitivity starts to decrease. Nevertheless,
postsurgical pain has different pathophysiology. Hence, TD
is no longer caused by active stimulation, but indirectly by
peripheral and central sensitization. It provokes enhanced nerve
spontaneous and evoked activity, hence the augmented neural
response to postsurgical trauma occurs in parallel to the neural
transmission. The TD term in our model may then represent
both the sensitization and the ascending transmission pathways
activity as well. In addition, the descending transmission is
supposed to be modeled by the TS term. Following this, the
FOIM terms (+)TD and (−)TS have different signs, as TS is
assumed to model the decrease in voltage, hence the opposition
to the voltage change, not generating anymore the membrane
depolarization during nociceptive sensitization, i.e., TD.

C. Pain Evaluation by FOIM Parameters Faster
Than NRS

Following the clinical investigation plan of the observational
trial, when one NRS value was reported at intervals of 7 minutes
for each patient, the identified parameters were interpreted at
the same intervals. Accordingly, for a proper comparison, the
variance analyses of each parameter were plotted against NRS
in Figs. 5 and 6. The time lag between the self-reported NRS
and the identified R,P parameters may be observed for one
patient in Fig. 5. Notice that NRS values from intervals 2–4
equalling 0 did not mean zero pain, but the patient was brought
asleep in PACU, i.e., no biased values were taken for NRS. For
intervals 8, 14, and 17, the R values (left axis) tend to decrease
earlier than the patient reports the NRS, represented in the figure
by the red stars (right axis). Similarly, NRS trends are delayed
in Fig. 6 when compared to the same parameter R, but also
with α2 parameter for other two different patients. This obser-
vation may indicate the delay of the subjective method using

NRS in postoperative pain evaluation. By contrast, having at
hand the pain-modifying impedance measured through Anspec-
PRO allows online parametric identification during PACU stay.
Hence, the nociception phenomena are assessed until the patient
perceives it as pain, as some of the estimated parameters have
shown to exhibit more sensitivity to the nociception than the
total estimated impedance. However, a sensitivity analysis was
not part of these preliminary results due to the low number of
samples.

When looking at the surgery type the patients from Figs. 5
and 6 underwent, these were gynecology and urology (Table I),
hence the same body location. Nevertheless, other patients hav-
ing the same surgeries did not show a time lag between the same
parameters and NRS. Thereby, no strong correlation could be
identified between the surgery location and the parameters’ sen-
sitivity for the moment. It also suggests that not only the surgery
type is important, but also other patient-specific characteristics.
Since the impedance is highly dependent on the fat distribution
throughout the body, the body mass index (BMI) would need
more in-depth analysis.

D. Tissue Heterogeneity Follows NRS Trends

Having at hand the index of heterogeneity η applied in
bioimpedance on a similar FOIM [33], [34], we inferred as
well the dermal tissue heterogeneity, assumed to change when
nociception occurs. The patient’s fluid management would affect
the electrochemical phenomena at skin level and postsurgical
trauma-evoked hyperalgesia, motivating the heterogeneity index
calculation. This has led to the notion that η should increase
as the nociception transmission starts, following the sensory
nervous system’s process activation and sweat glands secre-
tions [26]. Consequently, η was calculated and represented every
minute in comparison to the self-reported NRS, considered
the evidence for our rationale. Indeed, observing Fig. 7, the
heterogeneity index η follows the trend of NRS. Moreover, NRS
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Fig. 6. Variance analysis of the identified FOIM parameters against the self-reported NRS (red stars), R, and α2 showing earlier than NRS the
decreasing pain/nociception trends, on different patients (no. 18, 22). The long black arrow indicates the infusion of a strong opioid, while the short
arrow stands for a light opioid infusion.

Fig. 7. Heterogeneity index η calculated every minute and compared against the self-reported NRS (red stars), denoting to be correlated: η follows
NRS, but NRS is frequently time-lagged (dashed black arrows).
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Fig. 8. Performance of one offline trained CNN (on all patients) in pain prediction. (a) The ROCs and AUCs are shown for each class of pain,
following our non-binary taxonomic classification: Class 1: no pain (NRS: 0–1), Class 2: little pain (NRS: 2–3), Class 3: medium pain (NRS: 4–6),
Class 4: heavy pain (NRS: 7–10). (b) The confusion matrix displays in each cell the number of observations and the percentage from the total.
Diagonal and off-diagonal cells correspond to correctly and incorrectly classified spectrograms, respectively. The rows correspond to the predicted
class (Output Class) and the columns correspond to the true class (Target Class). (c) Correlation between NRS predicted by the CNN and actual
response reported by the patient.

is frequently time-lagged, as exemplified in Fig. 7 through the
dashed black arrows, suggesting the ability of our method to
avoid over-dosing through over estimation of sensory pain.

E. Offline Classification Distinguishes 4 Pain Levels

The offline algorithm was double-validated. First, the val-
idation was performed on the training patients but excluding
the precise training spectrograms. The CNN trained on ‘best’
patients obtained the highest accuracy of 56.55% and the lowest
validation loss of 1.6, proving that the selection of the dataset
was more appropriate than its dimension for this application.
Moreover, the training time was under 3 minutes for this CNN,
which is an essential aspect when using it in the real-time classi-
fication of pain intensity. The second task was testing the CNN
for accuracy, using spectrograms from all patients or untrained
patients. As expected, the CNN trained on ‘all patients’ achieved
the highest test accuracy, 73.08%. The validation, test results
an computational times of each procedure implemented for the
offline estimation of pain levels are overviewed in Supplemental
Table II.

To verify the feasibility of using CNNs for detecting pain
levels, we tested whether the CNNs could distinguish between
4 levels of pain. Fig. 8(a) plots the TPR (or sensitivity) against
the FPR (or 1-specificity), with the area under this curve (AUC)
reported for indicating the quality of the prediction. With an
AUC>0.88 for all classes shown in Fig. 8(a), the CNN trained on
all patients outperformed the other CNNs. The same conclusion
is supported by the confusion matrices. Fig. 8(b) denotes lower
distributions outside the diagonal of the confusion matrix of
the same CNN trained on all patients, showing a predominant
correct classification of pain intervals, at the cost of using all
patients’ datasets. Furthermore, the correlation analysis between
the NRS values reported by the patient and predicted by the
same CNN obtained a good coefficient of determination (R2 =
0.57), in Fig. 8(c). However, as the validation loss reported in
Supplemental Table 2 was high, this network needs calibration
if applied to new patients.

F. Online Predictions CNN Have Closer Trends to NRS

Two online procedures were proposed for retraining the CNN
to investigate their potential use. The online procedure with

the best performance in pain classification was the second one,
obtaining AUCs>0.8 for all 4 classes and a main distribution
within the confusion matrix across the diagonal, as illustrated
in Fig. 9(c) and (d). In contrast to procedure 2, the first pro-
cedure easily confused little and medium pain, as shown in
Fig. 9(a) and (b). If we consider how people describe pain
based on their most recent experience, it seems that pain was
better identified when compared to the most recent few minutes
(7 in this example). The procedure with the highest degree of
accuracy was the second one (Supplemental Table II), demon-
strating that cumulative data was not necessary. As the com-
putational time of the CNN in this application is crucial for the
patient’s safety, fast computation times of 10 s were obtained for
each retraining step during the online procedure (Supplemental
Text II.B).

Alternatively, the goal of online training was not to outperform
offline training, the population-based classification, but rather to
obtain an individualized classification for each patient. Conse-
quently, the temporal trends were investigated. Fig. 10 reveals
that online retraining of the CNN using procedure 2 achieved a
more appropriate predicted-pain trend to the NRS, demonstrat-
ing a good approach. The differences in magnitude between the
reported and predicted pain levels could be attributed to the sub-
jective factors of the experienced pain versus its physiological
surrogates.

IV. DISCUSSION

A. Clinical Significance in Pain Prediction

Personalized and predictive models offer significant opportu-
nities to improve nociception prediction through modeling and
identification tools, relevant when done in real time. Linking
the estimated parameters to pain evoked in awake patients
or to opioid infusion in anesthesia, the medical staff has ac-
cess to an objective assessment of nociception/anti-nociception
balance. The proposed AI system is feasible for objective
and individualized assessment of pain intensity. Based on the
preliminary results, the proposed methodology successfully rec-
ognizes the pain-related electrical variability among 4 pain lev-
els. The application of the FOIM and CNN in the postoperative
clinical context is valuable since their potential real use is tested.
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Fig. 9. Online training of CNNs performs better for procedure 2 (cumulative data) in terms of ROC curve (c) and confusion matrix (d), while
procedure 1 (latest data) lacks the sensitivity for identifying classes 2 and 3 (little and medium pain). (a) and (b) CNN retrained using procedure 1
(with past cumulative data), (c) and (d) CNN retrained using procedure 2 (with lastest 7-minutes data).

Fig. 10. Online predictions of retrained CNN have more specific trends to self-reported NRS than pain predicted by the population-trained CNN.
The temporal trends of the predicted pain levels are compared to the patient-specific NRS values.

Patient care may greatly benefit from the objectiveness and
continuity of this methodology for pain assessment [35], [36].
The subjectivity otherwise inherent in medical decision-making
is minimized, evolving into automation that can improve the
accuracy of diagnosis, provide personalized treatment options
and streamline the healthcare industry overall. As findings pose
questions regarding the extent of objectivity and reliability in
nociception self-evaluation [37], AI implies reducing the risk
for over-dosing when the predicted pain is observed to be lower
than the reported one.

Even if several studies concluded that nociceptive stimulation
causes a significant increase in the Bispectral index (BIS),
the specificity of BIS in detecting pain is still unclear [38].
Since BIS will be therefore of limited physiologic relevance for
anti-nociception assessment during anesthesia [38], [39], using
Anspec-PRO as a nociception monitor drives future develop-
ment of interaction models to the analgesics’ effect.

B Intrinsic Tracking of Opioids Effect

To study the effect of opioids in the mathematical model, the
infusion starting time was indicated in Figs. 5 and 6 by black
arrows on the R graph only. The impact of opioids on FOIM
parameters was different, but R reacts negatively after opioid
insertion. For this study, the quantitative analysis of the influence
of dose changes in opioid titration on FOIM parameters could
not be possible because no such data was monitored. Albeit this
limitation, the preliminary indications on R changing after opi-
oid infusion could be a starting point for a parametric sensitivity
analysis.

C Implications for Drug-Infusion Control Systems

The prospects of the FOIM are mainly in anesthesia au-
tomation for the prediction of drug-to-effect dynamics in the
optimization scheme. An example of adaptive model predictive
control was proposed in [40] which integrates into the control
algorithm the optimization of the required drug dose appropriate
to deal with the estimated pain level (or equivalent drug con-
centration). The advantage of using FOIM over integer-order
models is a minimal number of parameters to be identified, and
also relatively great flexibility in capturing complex dynamics
in the frequency domain, as a wide variability has been observed
mainly in the fractional parameters. Even though the model
identification was done using data from awake patients, this
work represents the first step towards anesthesia, motivated
by the availability of the self-reported pain level in order to
compare and interpret the model’s parameters in relation to
the NRS-considered experience of pain. The lumped-parameter
nociception model also reveals new opportunities to facilitate
the pre-clinical evaluation of controllers in the form of in-silico
test models, when the model is used to imitate the nociception
process. Altogether, a wide range of clinical scenarios is avail-
able to be simulated, leading to confidence gained in the efficacy
of model-based controllers, compared to rule-based controllers
designed by iterative trial and error processes [41].

Beyond the regulatory loop, the models obtained from patient
data can fill the gap in the patient simulator concerning the
dynamic model for analgesia prediction [4]. Supposing FOIM
to intrinsically consider nociception effects, our proposed data-
driven model of pain is possible to model surgical disturbance
effects [42], hence minimizing uncertainties in a closed-loop
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Fig. 11. Proposed integration of the technological solution into computerized anesthesia to objectively predict the actual analgesia level. The
optimization of such an automated system is complex and requires the patient model identified in real-time with actual data, after initialization
through population-based relationships, complemented by AI tools retrained with patient-specific data and sent to the adaptive controller.

system [43]. The identified FOIM can be then applied to the
clinical disturbance profiles evoked by surgical stimuli to obtain
a filtered noxious stimulation. Complementary to parametric
models, the AI online algorithm demonstrates the performance
to predict pain rise levels using the actual slope in NRS trends,
subject to a projection of this derivative in the future. This
forecasting is highly needed in the predictive mechanism for
control systems to titrate analgesics earlier than the detection by
feedback mechanisms.

The proposed algorithmic predictions of pain might be used as
part of a decision-making support system in automatic anesthe-
sia, as integrated into Fig. 11. Due to the limited and corrupted
dataset acquired from the patient, it is advisable to always
employ both parametric models and deep learning. They offer
complementary information to nociception assessment and in
due course may serve as a component of decision aids for the
analgesia component of anesthesia. The online setup aims to
minimize patient model and disturbance uncertainties, hence
analgesia could be directly linked to the effect of infused opioids.
The underlying rationale is that surgical stimulus, resulting in
nociception, will induce bio-electrical variability noticeable in
the recursive identified parameters, and complementarily de-
tectable by the online trained CNN procedure. Along with the
correlation of the FOIM parameters with pain evaluators in
PACU, the proposed model has also the potential to be calibrated
before anesthesia induction and afterward recursively identified
during maintenance, therefore denoting a relationship to opioid
intake. The obtained fast computation times allow real-time
executions (<3 minutes for offline training and 10 seconds for
online retraining).

D Limitations

There are aspects of the model that may potentially be im-
proved in future work, such as examining the time evolution of
the parametric sensitivity in order to determine how changes in
the model’s response are caused by variations in its parameters.
On the other hand, to identify the most influential parameters,
a bigger patient population is needed. For this study, a virtual
population could not be generated as a representation of the
diversity of patients because of the early development stage of
the model. In PACU, the surgical stimulus is absent, making
identification and training more effective and reliable. To apply
this in surgery, it is necessary to integrate the disturbance term in
the real process transfer function (Supplemental Text I.B) [43].

The synergy between hypnotics and opioids acts as a nonlinear
gain, which could be added after the FOIM model, leading to a
Wiener type model. Such interactions are accounted for in the
clinical pharmacokinetics-pharmacodynamic (PK-PD) surface
models, but are only linked to the effect of hypnosis, i.e., BIS
index [44]. Since the effect of opioids could also be assessed,
an interaction model is required by using specific hypnosis and
analgesia levels assessment.

The major limitation in extending the applicability of AI into
anesthesia is the necessity of a labeled dataset for training [45].
To this adds the requirement of manifold labeled online data for
achieving minimal training performance and accuracy. In this
view, we establish that AI tools may be interesting under certain
conditions, such as major surgeries (e.g., transplant, cardiac,
etc.) [46], which provide the minimum dataset variability for
online training to capture the patient specificity. Alternatively,
patients undergoing long recovery periods are ideal candidates to
deliver suitable data to fully explore and exploit the AI potential.

V. CONCLUSION

For objective pain estimation, this article investigated (i)
a FOIM online identification, and (ii) a spectrogram-based
deep-learning classification. A recursive parametric estimation
algorithm was proposed for the online identification of a FOIM
model on postoperative data acquired in awake patients with
posttrauma nociception. Compared to the self-reported NRS
trends, some estimated parameters show earlier than NRS the
changes in nociception. Moreover, the tissue heterogeneity in-
ferred from the FOIM parameters follows the NRS trends,
assuming the electrochemical reactions evoked by nociception.
Alternatively, this study reveals that employing AI is feasible to
enhance personalized pain evaluation compared to the subjective
NRS when trained on pain-related electrical images having time
and frequency components. We found that retraining in real-time
the network using the bioelectrical spectrograms of the patient
anticipates and objectifies the increase or decrease of pain levels
against the NRS reporting.

The clinical significance stems from the complementary use
of parametric identification and deep learning with a focus
on pain prediction than measurements only, and minimizing
over-dosing risk compared to NRS. From a CNN trained on
a population database, the retraining of the network using new
NRS-labeled spectrograms from the actual patient may enable
individualized objective pain prediction. Complementarily, the
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population modeling initialization using GA could emerge to-
wards personalized estimation when identified by moving aver-
aged window recursive least-squares algorithm.
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