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A Deep Denoising Sound Coding Strategy
for Cochlear Implants

Tom Gajecki , Yichi Zhang, and Waldo Nogueira

Abstract—Cochlear implants (CIs) have proven to be
successful at restoring the sensation of hearing in peo-
ple who suffer from profound sensorineural hearing loss.
CI users generally achieve good speech understanding in
quiet acoustic conditions. However, their ability to under-
stand speech degrades drastically when background in-
terfering noise is present. To address this problem, cur-
rent CI systems are delivered with front-end speech en-
hancement modules that can aid the listener in noisy en-
vironments. However, these only perform well under cer-
tain noisy conditions, leaving quite some room for im-
provement in more challenging circumstances. In this work,
we propose replacing the CI sound coding strategy with
a deep neural network (DNN) that performs end-to-end
speech denoising by taking the raw audio as input and
providing a denoised electrodogram, i.e., the electrical
stimulation patterns applied to the electrodes across time.
We specifically introduce a DNN that emulates a common
CI sound coding strategy, the advanced combination en-
coder (ACE). We refer to the proposed algorithm as ‘Deep
ACE’. Deep ACE is designed not only to accurately code
the acoustic signals in the same way that ACE would but
also to automatically remove unwanted interfering noises,
without sacrificing processing latency. The model was opti-
mized using a CI-specific loss function and evaluated using
objective measures as well as listening tests in CI partic-
ipants. Results show that, based on objective measures,
the proposed model achieved higher scores when com-
pared to the baseline algorithms. Also, the proposed deep
learning-based sound coding strategy gave eight CI users
the highest speech intelligibility scores.

Index Terms—Cochlear implants, sound coding strategy,
deep neural networks, end-to-end, speech enhancement.

I. INTRODUCTION

ACOCHLEAR implant (CI) is a surgically implanted neu-
roprosthetic device that restores the sensation of hearing

in people who suffer from profound sensorineural hearing loss.
The CI sound coding strategy is responsible for computing the
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electric stimulation current levels from the audio captured by
the CI sound processors’ microphone. There are several CI
sound coding strategies used in the industry [1]. Out of these, a
widely used sound coding strategy is the continuous interleaved
sampling (CIS) [2]. CIS decomposes the incoming sound into
multiple different frequency bands, which are used to modulate
electric pulses that stimulate the auditory nerve. The set of
pulses is sent to all available active electrodes to stimulate the
auditory nerve across time in an interleaved way. Other strategies
perform band selection by picking the most perceptually relevant
channels for stimulation.

Band selection has the advantage of reducing power consump-
tion without compromising speech intelligibility, which is the
reason why it is widely used in the CI industry. Some common
criteria to select relevant bands are based on magnitude, used
in the advanced combination encoder (ACE) [3], or on psy-
choacoustic masking, used in the PACE/MP3000 sound coding
strategy [4]. When these CI sound coding strategies are used,
the electrodes located near the base of the cochlea represent
higher frequencies, whereas those located in the most apical
region transmit low-frequency information. In this work, we
focus specifically on the ACE sound coding strategy. However,
the presented approach could be generalized to any available
sound coding strategy, as all of them generate electrodograms
(i.e., the normalized amplitudes that are subsequently mapped to
the current levels that each electrode will deliver to the auditory
nerve over time).

In general, a CI together with its corresponding sound coding
strategy allows the user to understand speech in quiet conditions,
however, it fails to do so when loud interfering signals (i.e., at low
signal-to-noise ratios; SNRs), such as noise or other talkers, are
present [5]. In order to overcome the limitations that CI users face
in noisy conditions, many speech enhancement techniques have
been proposed to improve speech intelligibility, such as spectral
contrast enhancement [6], [7], spectral subtraction [8], Wiener
filtering [9] and time-frequency masking [10]. Although these
techniques work reasonably well, recently the signal processing
community has been leaning towards more modern data-driven
approaches to perform single-channel speech enhancement,
such as deep learning models [11], [12], [13], [14].

Modern approaches to source separation and speech enhance-
ment typically utilize time-frequency representations of the in-
put signals for extracting features, which can lead to highly effec-
tive results [15], [16]. However, these do not exploit potentially
rich sources of information, such as the phase, limiting speech
separation quality. To overcome this problem, end-to-end deep
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learning-based approaches that directly work in the time domain
have been recently proposed. For example, [17] proposed a
fully-convolutional time-domain audio separation network
(Conv-TasNet), a deep learning framework for end-to-end time-
domain speech separation. This model addresses the short-
comings of separation in the frequency domain, achieves
state-of-the-art performance, and is suitable for low-latency
applications. Thus, approaches that perform end-to-end pro-
cessing are getting more attention in the community, making
them an attractive potential solution to the CI ‘cocktail party’
problem [18]. A front-end approach, however, may not fully
exploit the CI processing characteristics.

In order to optimize speech enhancement for CIs, it may be
beneficial to design algorithms that consider the CI processing
scheme. Hence, there has been some work done specifically for
CIs, where DNNs are included in the CI signal path [14], [19],
[20], [21], [22]. These approaches reduce noise, for example,
by directly applying masks in the filter bank used by the CI
sound coding strategy. Recently, inspired by the aforementioned
Conv-TasNet, [23] proposed a deep learning-based end-to-end
CI sound coding strategy, referred to as ‘Deep ACE’.

Deep ACE replaces the clinical ACE sound coding method
and automatically performs speech enhancement by estimat-
ing denoised electrodograms directly from raw audio. It lever-
ages audio-to-electrodogram domain transformation to improve
noise reduction for CIs. Although phase information is not
necessary for the synthesis of the electrodograms, using it may
help generate a proper input signal encoding, and ergo, a better
latent representation. Deep ACE is intended to take advantage
of such signal representation in order to extract global patterns
from its characteristics, identifying which ones are more likely
to be embedding speech content.

This study extensively examines Deep ACE [23], introduc-
ing a novel and improved topology, along with an optimized
hyperparameter configuration that enhances the model’s gener-
alization capabilities. The model was trained on a large dataset
and optimized through a loss function tailored for CI listening
that discourages the activation of irrelevant bands, with the aim
of improving speech comprehension for CI users. The study
evaluates the proposed model and compares it with baseline
algorithms using objective measures and listening tests with
CI users to determine if Deep ACE can outperform the tested
baselines and the existing clinical ACE sound coding strategy.

II. METHODS & MATERIALS

A. Advanced Combination Encoder (ACE)

The ACE sound coding strategy processes the acoustic signal
captured by the microphone, by first sampling it at 16 kHz. Then,
a filter bank implemented as a 128-point fast Fourier transform
(FFT), commonly with a 32-point hop size, is applied, introduc-
ing a 2 ms algorithmic latency (this will depend on the channel
stimulation rate; CSR). Next, an estimation of the desired en-
velope is calculated for each spectral band Ek, (k = 1, . . .,M).
Each spectral band is mapped to an electrode and represents one
channel. M denotes the total number of channels/electrodes. In
this study, the band selection block sets N = 8 out of M = 22

Fig. 1. Block diagrams of the four different signal processing systems.
In c) and d) L refers to the length of the filters used to encode the
input signal (and to decode it in the case of TasNet+ACE) and M to
the number of available CI spectral bands. White circles at the output
represent the CI external coil.

envelopes by selecting the ones with the largest amplitudes,
which are then non-linearly compressed by a loudness growth
function (LGF) given by:

pk=ln(1 + ρ · ((Ek − s)/(m− s))/ ln(1 + ρ)), s ≤ Ek ≤ m.
(1)

The output of the LGF at band k (pk) represents the normal-
ized stimulation amplitude used to stimulate the auditory nerve
using electrode k. The stimulation patterns across electrodes
obtained from the LGF output over time constitute the elec-
trodogram see Fig. 2. For values of Ek below base level s, pk is
set to zero, and for values of Ek above saturation level m, pk is
set to one. We used ρ = 416.2, s = 4/256, and m = 150/256
in our experiments.

Finally, the last stage of the sound coding strategy maps every
pk into the subject’s dynamic range between threshold levels
and most comfortable levels for electrical stimulation. The N
selected electrodes are stimulated sequentially for each audio
frame, representing one stimulation cycle. The number of cycles
per second thus determines the CSR. A block diagram showing
the described processes is shown in Fig. 1(a); ACE.

B. Speech Enhancement Algorithms

1) Wiener Filter (Baseline #1): Here, we use a classic
front-end signal processing method based on Wiener filtering,
a widely used technique for speech denoising that relies on a
priori SNR estimation [24] (Figure 1 b; Wiener+ACE). Different
variations of this algorithm are used in commercially available
single-channel noise reduction systems included in CIs [25],
[26]. Therefore, this classic algorithm is an appropriate baseline
to use when developing new speech enhancement methods in
the context of CIs [19].

2) Conv-TasNet (Baseline #2): The front-end DNN-based
baseline system used in this study is the well-known conv-
TasNet (which we will refer to as TasNet for simplicity) [17].
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Fig. 2. Electodograms after the band selection and mapping processing blocks for the clean, noisy, and processed noisy speech signals processed
by the different algorithms. Electrode numbers increase as the mapped frequencies decrease.

This system performs end-to-end audio speech enhancement
and feeds the denoised signal to ACE, where further processing
is performed to obtain the electrodograms (Fig. 1(c); TasNet
+ ACE). The TasNet structure has proven to be highly suc-
cessful for single-speaker speech enhancement tasks, improving
state-of-the-art algorithms, and obtaining the highest gains with
modulated noise sources [27].

3) Deep ACE (Proposed Method): This architecture builds
upon the previously developed deep denoising sound coding
strategy described in [23]. Deep ACE is designed to estimate the
output of the LGF by taking in raw audio input and predicting
the denoised electrodograms. This approach is independent of
individual CI fitting parameters and maintains the standard ACE
strategy’s 2 ms total algorithmic delay. The enhancer module in
the here presented Deep ACE contains three main differences
when compared to the one in TasNet+ACE (Fig. 1(d); Deep
ACE). The previous version of the model presented in [23]
shared two of these dissimilarities with the current version.
These were the use of a trainable antirectifier unit as the ac-
tivation function in the encoder and the output dimensionalities
at the decoder. For details, refer to [23].

The primary architectural innovations in the here presented
Deep ACE, are the inclusion of a deep envelope detector (DED)
positioned in the skipping path of the original Deep ACE
model [23], and the improvement of hyperparameter configu-
ration. The DED replaces the envelope detection block in the
original ACE (see the ‘DED’ block in Fig. 1(d)). This module
performs dimensionality reduction between the encoder and the
decoder modules to match the number of bands to be stimulated

and to extract other essential features from the encoded signal.
This process is necessary for implementation purposes, specif-
ically for the employed loss function (refer to Section II-B5,
(5)), and it involves three consecutive 1-D convolution layers
that are stacked together. The code for training and evaluating
Deep ACE can be found online1.

4) Model Training Setup: The deep learning models were
trained using batches of two audio segments, each lasting for a
duration of 4 seconds, and were trained for a maximum of 100
epochs. In order to achieve optimal results, the initial learning
rate was set to 1e-3, which was subsequently reduced by half
if the validation set’s accuracy did not show any improvement
during three consecutive epochs. To further regularize training,
early stopping with 5-epoch patience was applied. Finally, only
the best-performing model was saved after the training session.

To optimize the different models, we used the Adam first-
order gradient-based optimization algorithm for stochastic ob-
jective functions [28]. The utilized range of hyperparameters
is presented in detail in Table I. Note that the hyperparameters
used in this work have been adjusted through empirical testing
to improve the overall models’ performance when compared to
the ones used in [23]. For a comprehensive description of the
various parameters, interested readers can refer to [17].

5) Model Training Objectives: In the case of the Tas-
Net+ACE algorithm, the optimizer was used to maximize the
scale-invariant (SI) SNR [29] at the output of the TasNet, before
being processed by the ACE sound coding strategy (see Fig.

1https://github.com/APGDHZ/DeepACE2.0

https://github.com/APGDHZ/DeepACE2.0
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TABLE I
HYPERPARAMETERS USED TO TRAIN THE DEEP LEARNING MODELS

1(c)). The SI-SNR between a given signal with T samples,
x ∈ R

1×T and its estimate x̂ ∈ R
1×T is defined in (2).

SI–SNR(x, x̂) = 10 · log10
(

||γ · x||2
||γ · x− x̂||2

)
, γ =

x̂�x
||x||2 .

(2)
In the Deep ACE model, the decoder module is developed

to predict the output at the LGF of ACE to be fed into the band
selection process. Therefore, the cost function employed to train
it will be based on the mean-squared error, denoted by Lε. The
Lε between an M -channel and F -frame target LGF output, p ∈
R

M×F and its estimate p̂ ∈ R
M×F , is defined as:

Lε =
1

M
·

M∑
k=1

(pk − p̂k)
2. (3)

In this work, Deep ACE is optimized by minimizing a variant
of the loss function used in [23] (i.e., Lε). Specifically, we
combine the loss function defined in (3) with a punishment term
that aims at removing CI stimulation in unwanted channels.
To penalize the selection of irrelevant channels we introduce
a second loss term that is measured by means of the binary
cross entropy between the ideal target mask µ ∈ R

M×F and the
estimated mask µ̂ ∈ R

M×F (at the output of the separator). We
will denote this function byLμ, and its value computed in NATS
is given by:

Lμ = − 1

M · F ·
M∑
k=1

F∑
f=1

μkf · ln(P (μ̂kf ))

+ (1− μkf ) · ln(1− P (μ̂kf )), (4)

where μkf is equal to one if channel k at frame f contains
speech, and to zero otherwise (also known as an ideal binary
mask). P (μ̂kf ) is the predicted probability that channel k in
frame f contains speech. The cost function used to optimize
Deep ACE is denoted as Lδ , and was constructed by linearly
combining Lp and Lμ as follows:

Lδ = wε · Lε + wμ · Lμ. (5)

Empirical testing was used to determine the values for the
multiplicative weighting factors wε and wμ, which were then
established as 15 and 1, respectively. The basis for this cost
function is rooted in prior research [30], which demonstrated
that individuals using CIs can withstand significant distortions in

speech segments provided that the selection of frequency bands
is accurate.

It is important to note that the second loss term is applied
at the separator output, which means that the estimated mask
must have the same dimensions as the LGF output. To achieve
this, Deep ACE utilizes a DED module (described in II-B3)
in the skipping path to decrease the channel dimension of the
encoded input and enable the masking operation (see Fig. 1(d)).
In addition, the motivation for developing this module is linked
to the fact that it is also a component within the ACE sound
coding strategy. In a similar manner, it is responsible for min-
imizing the dimensionality between the filter bank (FFT) and
the band selection block (as depicted in Fig. 1(a)). Specifically,
the envelope detector in ACE consolidates the frequency bins
obtained from the spectral transformation into the number of
available electrodes (M ).

C. Audio Material

In this work, we used a total of three different speech datasets
and three noise types to assess the models’ performance and
generalization abilities. All these audio sets will be described
in this section. As a preprocessing stage, all audio material
was set to mono and re-sampled at 16 kHz. The corresponding
electrodograms were obtained by processing all audio data with
the ACE sound coding strategy at an output channel stimulation
rate of 1,000 pulses per second CSR.

1) Speech Data:
a) LibriVox corpus [31]: This speech data was origi-

nally designed for end-to-end speech translation, however, in
this study, we mix the speech material with noise to train
our models for speech denoising. The speech data contained
in this corpus consists of fluent spoken sentences with a to-
tal duration of 18 hours. The quality of audio and sentence
alignments was checked by a manual evaluation, showing that
speech alignment is in general very high. In fact, the sentence
alignment quality is comparable to well-used parallel translation
data.

b) TIMIT corpus [32]: This corpus contains broadband
recordings of 630 people speaking the eight major dialects of
American English, each reading ten phonetically-rich sentences.
In this work, files from 112 male and 56 female speakers in the
test set were selected.

c) HSM corpus [33]: Speech intelligibility in quiet and
in noise was measured by means of the Hochmair, Schulz, Moser
(HSM) sentence test, based on a dataset composed of 30 lists
with 20 everyday sentences each (106 words per list).

2) Noise Data:
a) Environmental noises; DEMAND [34]: The environ-

mental noises recorded to create this dataset are split into six
categories; four are indoor noises and the other two are out-
door recordings. The indoor environments are further divided
into domestic, office, public, and transportation; the open-air
environments are divided into streets and nature. There are 3
environment recordings per category.

b) Synthetic noises; SSN [35] and ICRA7 [36]: To
evaluate the different algorithms, in this work we also
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TABLE II
DATASETS USED TO TRAIN, VALIDATE AND TEST THE MODELS

use stationary speech-shaped noise (SSN) and non-stationary
modulated seven-speaker babble noise (ICRA7) as synthetic
interferers.

3) Training, Evaluation and Testing Data: The training set
was composed of speech from the LibriVox corpus and noise
from the DEMAND dataset. Specifically, 30 male (M) and
female (F) speakers were randomly selected from the speech
corpus, and two environments were randomly selected from
each of the noise categories. For validation, 20% of the training
data was used. The noise and speech subsets used for training
will be referred to as EN1 and LibriVox1, respectively. For
testing, the remaining audio data was used (the testing subsets
from the DEMAND and LibriVox corpora are referred to as
EN2 and LibriVox2, respectively). A description of the dataset
distribution for the experiments is shown in Table II.

Speech and noise signals were mixed at SNR values ranging
uniformly from -5 to 10 dB. The processed clean speech signals
were also included in the listening experiments to assess whether
the proposed model introduced perceptually relevant distortions.

D. Evaluation

1) Objective Evaluation: To assess the objective perfor-
mance of each of the tested algorithms we compute the amount of
noise reduction achieved, electrode-wise correlation coefficients
between the denoised and clean signals, and a speech intelligibil-
ity score based on the short-time objective intelligibility (STOI)
index [37]. Note that in this work we investigate end-to-end CI
processing, so the latter objective measure is computed from
the synthesized electrodograms (p) obtained using a vocoder,
resulting in the STOI version used in this work, the vocoder
STOI (VSTOI; [38], [39]).

a) SNRi: To assess the amount of noise reduction per-
formed by each of the tested algorithms we compute the SNR
improvement (SNRi). This measure is calculated in the elec-
trodogram domain and compares the original input SNR to the
one obtained after denoising, and is given by:

SNRi = 10 · log10
(∑M

k=1 ||pn
k − pc

k||2∑M
k=1 ||pd

k − pc
k||2

)
, (6)

where pk represents the LGF output of band k and the su-
perscripts n, c, and d are used to denote the noisy, clean, and
denoised electrodograms, respectively.

b) LCC: To characterize potential distortions and arti-
facts introduced by the tested algorithms, the linear correlation
coefficients (LCCs) between the clean ACE electrodograms
(pc) and the denoised electrodograms (pd) were computed.
The LCCs were computed channel-wise (i.e., one correlation
coefficient was computed for each of the 22 channels) to assess

TABLE III
CI PARTICIPANT INFORMATION AND EXPERIMENT SETTINGS

channel output degradation caused by the denoising process. The
LCCk for band k is computed based on the Pearson correlation
coefficient [40] as follows:

LCCk =
cov

(
pc
k,p

d
k

)
σpc

k
· σpd

k

, (7)

where cov(X,Y ) is the covariance between X and Y , and σpk

is the standard deviation of the values in the corresponding
electrodogram pk.

c) VSTOI: To estimate the speech intelligibility perfor-
mance expected from each of the algorithms, the VSTOI
score [37], [38], [39] was used. This metric relies directly on
STOI [37], which is modeled based on normal hearing speech
performance. However, VSTOI has proven to be useful in CI
studies in order to compare relative expected speech intelligibil-
ity outcomes [39]. Specifically, the purpose of this metric is to
evaluate the potential relative variations in speech performance
that could be achieved in behavioral experiments, rather than
providing an exact estimation of an individual’s CI performance.
The VSTOI score ranges from 0 to 1, where the higher score
represents a predicted higher speech performance.

In this work, speech recognition performance was estimated
using the clean unprocessed speech as a reference and the
vocoded denoised speech as the processed signal. The vocoded
speech was obtained from the electrodograms (pk) by expanding
the amplitudes contained in the electrodogram signals through
the inverse LGF operation. Next, the expanded amplitudes con-
tained in each band were used to amplitude-modulate band-pass
filtered noise channels. The center frequencies of the band-pass
filters used to obtain the modulated noise bands correspond to the
ones mapped to each of the CI electrodes. Finally, by summing
up all amplitude-modulated noise bands the vocoded signal is
obtained.

2) Behavioral Evaluation:
a) Participant demographics: Eight postlingually deaf-

ened CI users participated in the listening tests. All participants
were native German speakers and had been implanted for sev-
eral years. They were invited to participate in a 3-hour test at
the German Hearing Center of the Hannover Medical School
(MHH), for which the travel costs were covered. The experiment
was granted ethical approval by the MHH ethics commission. A
synopsis of the patient-related data is shown in Table III.

b) Experimental setup: The testing material was pro-
cessed to obtain electrodograms, which were then delivered
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to the cochlear implant (CI) located in the participants’ self-
reported best-performing hearing side (as indicated in Table III)
through direct stimulation using the RF GeneratorXS inter-
face (Cochlear Ltd.), controlled by MATLAB and the Nucleus
Implant Communicator V.3 (Cochlear Ltd.). The experiments
were conducted on a personal computer with custom-made
software written in MATLAB. Prior to the commencement
of experiments, a hardware security check was conducted by
analyzing the generated signals by the research interface with
an oscilloscope.

During the experiment, the CI participant was accompanied
by two observers in the laboratory. One observer operated the
software, while the other counted the number of correctly iden-
tified words by marking them on a corresponding printed list.
Each listening condition was evaluated twice, using different
randomly selected lists of HSM sentences. The final score
was computed by averaging the number of correctly identified
words for each condition, resulting in the word recognition
score (WRS). The test SNR was adjusted to a level where
the participant could understand between 20% and 80% of the
presented words using the unprocessed ACE noisy condition
and was assessed for the two different types of noise (as shown
in Table III).

III. RESULTS

Fig. 2 shows exemplary clean, unprocessed, and denoised
electrograms obtained with each of the algorithms. All results
presented in this section will be based on the electrodograms
extracted from the HSM speech dataset with SSN and ICRA7
background noises.

1) Objective Instrumental Results:
a) SNRi: Fig. 3 illustrates the SNRi obtained with each

of the algorithms. The Deep ACE model demonstrated superior
performance over TasNet+ACE and Wiener+ACE in all condi-
tions, particularly at low SNRs. This finding suggests that the
Deep ACE sound coding approach presented here represents
an improvement over the model introduced in [23], where no
improvement in SNR was observed compared to the competing
front-end deep-learning baseline (TasNet). Moreover, although
the SNRi values for the TIMIT and LibriVox2 speech datasets
were analyzed, they are not reported in this study, but similar
patterns were identified under all testing noise conditions. In
general, these observations demonstrate a substantial improve-
ment with respect to the previous version of the model presented
in [23].

b) LCC: Here we assess the similarity between the origi-
nal clean and denoised electrodograms produced by the different
algorithms. Fig. 4 shows the obtained LCCs as a function of
the CI electrode numbers. It can be seen that the Wiener+ACE
condition shows the lowest correlation for the lower frequency
bands and that Deep ACE shows, in general, the highest LCCs.
The results suggest that denoising mid-low frequencies is more
challenging, while denoising higher frequencies is easier. This
may be due to the predominance of lower-frequency noise
signals and the relative scarcity of higher-frequency signals in
the target. Specifically, note how LCCs were lower for the SSN

Fig. 3. Box plots showing the SNRi scores in dB for the tested algo-
rithms in SSN and ICRA7 noises for the different SNRs using the HSM
speech dataset. All pair-wise differences were statistically significant.
The black horizontal bars within each box represent the median for each
condition, the circle-shaped marks indicate the mean improvement,
and the top and bottom extremes of the boxes indicate the Q3 = 75%
and Q1 = 25% quartiles, respectively. The box length is given by the
interquartile range (IQR), used to define the whiskers that show the
variability of the data above the upper and lower quartiles (the upper
whisker is given by Q3 + 1.5·IQR and the lower whisker is given by
Q1 − 1.5·IQR [41]). Black dots indicate observations that fall beyond the
whisker range (outliers).

Fig. 4. Polynomial regressions showing the channel-wise LCCs
between processed and clean electrodograms for the different algo-
rithms and noises using the HSM dataset. Shaded areas represent the
95% confidence level interval [41]. Higher electrode numbers represent
lower frequencies.

noise kind, where low-frequencies are dominant when compared
to the ICRA7 noise condition.

c) VSTOI: Fig. 5 illustrates the VSTOI scores obtained
by the evaluated algorithms in different speech and noise con-
ditions. In general, the VSTOI scores obtained with the pro-
posed Deep ACE model are higher and agree with the obtained
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Fig. 5. Box plots showing the VSTOI scores for the tested algorithms
in SSN and ICRA7 noises for the different SNRs using the HSM speech
dataset. All pair-wise differences were statistically significant. The black
horizontal bars within each box represent the median for each con-
dition, the circle-shaped marks indicate the mean improvement, and
the top and bottom extremes of the boxes indicate the Q3 = 75% and
Q1 = 25% quartiles, respectively. The box length is given by the in-
terquartile range (IQR), used to define the whiskers that show the
variability of the data above the upper and lower quartiles (the upper
whisker is given by Q3 + 1.5·IQR and the lower whisker is given by
Q1 − 1.5·IQR [41]). Black dots indicate observations that fall beyond the
whisker range (outliers).

SNRi. These results also represent a substantial improvement
compared to the model presented in [23].

In quiet, the obtained mean VSTOI scores obtained by ACE,
TasNet+ACE, and Deep ACE were 0.807, 0.789, and 0.803,
respectively.

2) Behavioral Results: Fig. 7 shows the WRS measured in
quiet for eight CI subjects. We evaluated ACE and Deep ACE
without background noise to test whether the latter introduced
any artifacts that compromised the intelligibility of the clean
speech signals. A Wilcoxon signed-rank test [42] showed no
significant differences between the mean WRS measured using
ACE and Deep ACE (p = 0.85), confirming that our method
coded the clean speech accurately.

Fig. 6 shows the WRS in noise measured using the different
algorithms for the different noises. The normally distributed
mean WRS values were evaluated using two 1-way repeated
measures analyses of variance (ANOVA; [43]) for each noise
condition, with the tested algorithm as the factor. Any ANOVA
that revealed a significant effect was followed up by the required
post-hoc tests, for which type I error was corrected based on the
Holm-Bonferroni method [44].

The ANOVAs revealed a significant effect of algorithm
in the measured mean WRS when using SSN background
noise [F (3, 21) = 3.61, p = 0.02] and under ICRA7 back-
ground noise [F (3, 21) = 2.99, p = 0.03]. The ANOVAS were
followed up by the corresponding post-hoc tests based on
dependent-sample t-tests. These revealed that all algorithms out-
performed the ACE sound coding strategy in both background

noise types. Specifically, for the SSN background noise, ACE
obtained a WRS = 40.3%. Wiener+ACE gave a higher benefit
in WRS when compared to ACE (M = 54.7%, p = 0.04), Tas-
Net+ACE also gave higher scores than ACE (M = 54.9%, p =
0.04), and Deep ACE also outperformed ACE (M = 63.1%,
p = 0.002). For the ICRA7 background noise, ACE obtained
WRS = 42.9%. The WRS obtained by ACE was lower than
the one measured for Wiener+ACE (M = 54.3%, p = 0.04),
TasNet+ACE (M = 56.2%, p = 0.03), and Deep ACE (M =
64.1%, p = 0.007).

In order to assess the WRS benefit obtained with each of
the three algorithms, the improvement in WRS with respect to
ACE was computed (ΔWRS = WRSdenoised. − WRSACE). Fig.
8 shows the benefit in speech understanding (ΔWRS) provided
by the different algorithms for the two noise types. All data were
normally distributed so two 1-way repeated measures ANOVA
were conducted (one per noise condition) to determine whether
the tested algorithms had an impact on the WRS improve-
ment. The ANOVAs yielded a significant effect of algorithm
for both SSN background noise [F (2, 14) = 3.89, p = 0.04]
and ICRA7 background noise [F (2, 14) = 4.3, p = 0.02]. The
post-hoc t-tests revealed that the highest improvement was given
by Deep ACE for both noise conditions. Deep ACE outper-
formed Wiener+ACE in SSN (ΔWRS = 22.8%, p = 0.02), and
in ICRA7 noise (ΔWRS = 21.2%, p = 0.005), and it was also
superior to TasNet+ACE in SSN (p = 0.02), and in ICRA7 noise
(p = 0.04).

IV. DISCUSSION

In this work, we propose an end-to-end speech coding and de-
noising strategy for CIs; Deep ACE. The vast majority of speech
enhancement algorithms for CIs rely on front-end processing
that discards potentially rich sources of information, for this
reason, here we investigate an end-to-end deep learning model
that merges the denoising preprocessing stage with the CI sound
coding strategy. This approach leverages the simplicity of the
output signal to be estimated, the electrodogram, which does not
require any phase information to be reconstructed, potentially
facilitating CI noise reduction.

Combining the noise reduction algorithm with the CI sound
coding strategy has the added advantage of reducing processing
latency when compared to other front-end methods. For instance,
using a front-end TasNet denoising block would result in a
latency of 4 ms, whereas the Deep ACE model presented here
only introduces 2 ms of latency. This is particularly crucial for
devices like CIs that need to transmit signals with minimal
latency delays. For example, in the case of single-sided deaf
individuals (i.e., CI in one ear and normal hearing in the other),
CI processing latency is of utmost importance as these users
are exposed to relative sound delay values between the CI and
normal hearing ear of 10-12 ms [45]. Here, the goal is to reduce
CI processing time to align with the natural delay caused by the
traveling wave inside the cochlea, which ranges from 1-9 ms,
being longer at lower frequencies [46]. This is desirable because
relative delay differences between the CI and acoustic listening
sides can disrupt spatial hearing for single-sided CI users [45].



GAJECKI et al.: DEEP DENOISING SOUND CODING STRATEGY FOR COCHLEAR IMPLANTS 2707

Fig. 6. Bar plots showing the mean individual and group mean percentage of correctly understood words by subject for the HSM sentence test in
noise for SSN (left panel) and ICRA7 (right panel) noises for all tested conditions. Error bars indicate the standard deviation. Asterisks on top of the
significance bar indicate the significance level (* p < 0.05, ** p < 0.01, *** p < 0.001).

Fig. 7. Bar plots showing the mean individual and group mean per-
centage of correctly understood words by subject for the HSM sentence
test in quiet. Error bars indicate the standard deviation.

Additionally, lowering latency is important to address any issues
with unsynchronization between the speech being spoken and
the speech being perceived, and other problems related to au-
diovisual mismatch that could negatively impact the advantages
of lip reading.

This work builds on a previous study [23] which introduced
Deep ACE for the first time. Here, we have optimized the
architecture and introduced a new CI-specific loss function, aim-
ing at improved speech enhancement performance and greater
generalization power. The results indicate that the presented end-
to-end CI speech enhancement model outperforms the front-end
baseline algorithms in terms of SNRi and predicted speech in-
telligibility. Additionally, these findings indicate that the model
has strong generalization capabilities, performing well with new,

Fig. 8. Violin plots showing the WRS improvement by processing the
noisy signals with the different algorithms compared to ACE. The black
horizontal bars within each of the boxes represent the median for each
condition, the diamond-shaped marks indicate the mean improvement,
and the top and bottom extremes of the boxes indicate the Q3=75%
and Q1 = 25% quartiles, respectively. The box length is given by the
interquartile range (IQR), used to define the whiskers that show the
variability of the data above the upper and lower quartiles (the upper
whisker is given by Q3 + 1.5·IQR, and the lower whisker is given by
Q1 - 1.5·IQR [41]). Asterisks on top of the significance bar indicate
the significance level (* p < 0.05, ** p < 0.01, *** p < 0.001). Black dots
indicate observations that fall beyond the whisker range (outliers).

unfamiliar data and exhibiting resilience to various types of noise
and speech signals, representing a notable advancement over the
model featured in [23], which utilized some of the same test
materials as those used in the training phase.

The behavioral speech tests with no background noise showed
that the proposed end-to-end deep learning coding strategy
‘Deep ACE’ can be used to accurately code the clean speech
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captured by the CI microphone. Specifically, speech tests in
quiet revealed no significant differences in speech understanding
between the clinical ACE sound coding strategy and the pro-
posed Deep ACE (see Fig. 7). Furthermore, word recognition
scores measured in noise showed a benefit of using all the
speech-denoising methods, obtaining a statistically significant
improvement relative to the baseline ACE condition, as seen in
Fig. 6. Note that the here observed improvement obtained by the
Wiener+ACE using ICRA7 background noise was not observed
in [23], however, it is consistent with other studies [9]. This result
may be explained by the fact that, in this work, this condition
was mostly tested at positive SNRs (see Table III). Finally, when
comparing the WRS improvement with respect to ACE obtained
by the three tested speech-denoising algorithms, Deep ACE
outperformed the other two, obtaining the highest WRS benefit
(see Fig. 8), this benefit of Deep ACE was also not observed in
the listening tests performed in [23]. Although not statistically
significant, the TasNet+ACE condition demonstrated a higher
WRS improvement score compared to the Wiener+ACE condi-
tion when tested with ICRA7 background noise. This outcome
is consistent with the objective measures that indicate a greater
improvement in SNR and VSTOI scores, as shown in the right
panels of Figs. 3 and 5.

V. CONCLUSION

In this study, we present Deep ACE, a speech coding and
denoising sound coding strategy for CIs that utilizes end-to-end
deep learning processing. This method aims to provide precise
acoustic signal coding like ACE while effectively removing
background noise without introducing processing latency. We
assessed the performance of the proposed model through both
objective measures and listening tests with eight CI users, com-
paring its performance to the standard ACE and two front-end
baseline models, namely the Wiener filter and TasNet. Our
results indicated that Deep ACE effectively codes speech signals
and outperforms the baseline models in both objective measures
and listening tests. These findings suggest that Deep ACE has
the potential to replace the current clinical ACE sound coding
strategy and improve speech comprehension for CI users in noisy
environments.
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