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MSED: A Multi-Modal Sleep Event Detection
Model for Clinical Sleep Analysis
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Abstract—Clinical sleep analysis require manual analy-
sis of sleep patterns for correct diagnosis of sleep dis-
orders. However, several studies have shown significant
variability in manual scoring of clinically relevant discrete
sleep events, such as arousals, leg movements, and sleep
disordered breathing (apneas and hypopneas). We inves-
tigated whether an automatic method could be used for
event detection and if a model trained on all events (joint
model) performed better than corresponding event-specific
models (single-event models). We trained a deep neural
network event detection model on 1653 individual record-
ings and tested the optimized model on 1000 separate
hold-out recordings. F1 scores for the optimized joint de-
tection model were 0.70, 0.63, and 0.62 for arousals, leg
movements, and sleep disordered breathing, respectively,
compared to 0.65, 0.61, and 0.60 for the optimized single-
event models. Index values computed from detected events
correlated positively with manual annotations (r2 = 0.73,
r2 = 0.77, r2 = 0.78, respectively). We furthermore quanti-
fied model accuracy based on temporal difference metrics,
which improved overall by using the joint model compared
to single-event models. Our automatic model jointly detects
arousals, leg movements and sleep disordered breathing
events with high correlation with human annotations. Fi-
nally, we benchmark against previous state-of-the-art multi-
event detection models and found an overall increase in F1
score with our proposed model despite a 97.5% reduction
in model size.

Index Terms—Computational sleep science, object de-
tection, deep neural network.
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I. INTRODUCTION

C LINICAL sleep analysis is currently evaluated manu-
ally by experts based on guidelines from the American

Academy of Sleep Medicine (AASM) detailed in the AASM
Scoring Manual [1]. The guidelines detail both technical and
clinical best practices for setting up and recording polysomno-
graphiess (PSGs), which are overnight recordings of various
electrophysiological signals including electroencephalography
(EEG), electrooculography (EOG), chin and leg electromyog-
raphy (EMG), electrocardiography (ECG), respiratory induc-
tance plethysmography from the thorax and abdomen, oronasal
pressure, and blood oxygen levels. Based on these signals,
expert technicians score and analyse the PSGs for sleep stages
[wakefulness (W), rapid eye movement (REM) sleep, non-REM
stage 1 (N1), non-REM stage 2 (N2), and non-REM stage
3 (N3)], and sleep micro-events summarized by key metrics,
such as the number of apneas and hypopneas per hour of sleep
(apnea-hypopnea indices, AHIs), the number of (periodic) leg
movements per hour of sleep [(periodic) leg movement index,
(P)LMI], and the number of arousals per hour of sleep (arousal
indices, ArIs).

Arousals (Ars) are defined as abrupt shifts in EEG frequencies
towards alpha, theta, and beta rhythms for at least 3 s with a
preceding period of stable sleep of at least 10 s [2]. During
REM sleep, where the background EEG shows similar rhythms,
arousal scoring requires a concurrent increase in chin EMG
lasting at least 1 s [1].

Leg movements (LMs) should be scored when there is an
increase in amplitude of at least 8µV in the leg EMG channels
above baseline level with a duration between 0.5 s to 10 s [3]. A
PLM series is then defined as a sequence of 4 LMs, where the
time between LM onsets is between 5 min to 90 min [1], [4].

Apneas are generally scored when there is a complete (≥ 90%
of pre-event baseline) cessation of breathing activity. The un-
derlying cause can be either a physical obstruction (obstructive
apnea) or due to an underlying disruption in the central nervous
system control (central apnea) for at least 10 s [5]. When breath-
ing is only partially reduced (≥ 30% of pre-event baseline)
and the duration of the excursion is ≥ 10 s, the event is scored
as a hypopnea if there is either a ≥ 4% oxygen desaturation
or a ≥ 3% oxygen desaturation coupled with an arousal [1].
Sleep disordered breathing (SDB) here refers to the collective
of apneas and hypopneas.

Several studies have shown significant variability in the scor-
ing of both sleep stages [6], [7], [8], [9], [10], [11], [12] and
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Fig. 1. Example of MSED input and output predictions. Ten PSG channels comprising EEG, EOG, EMG, and breathing are visualized, which are
fed to the MSED model. The bottom shows the manually scored (darker shade) and model predicted (lighter shade) events associated with the
given recording segment. Sleep stages are shown at the top. W: wakefulness; N1: non-REM stage 1; N2: non-REM stage 2; N3: non-REM stage 3;
Ar: arousal; LM: leg movement; SDB: sleep disordered breathing.

sleep micro-events [5], [13], [14], [15], [16], [17], [18], [19].
This has prompted extensive research into automatic methods
for classifying sleep stages in large-scale studies [20], [21],
[22], [23], [24], [25], [26], [27], while the research in automatic
arousal [28], [29], [30] and LM [31] detection on a similar scale
is limited, but has attracted increased focus as evidenced by
the You Snooze You Win PhysioNet challenge from 2018 [32],
[33]. Biswal et al. recently proposed a multi-task CNN/RNN
combination model for the purpose of classifying sleep stages
and predicting apnea-hypopnea indices (AHIs) and leg move-
ment index (LMI) [24]. They trained their model on 9000 PSG
recordings from the Massachusetts General Hospital (MGH) and
evaluated their model on a held-out MGH dataset consisting of
1000 PSGs, and on 5804 PSGs studies from the Sleep Heart
Health Study (SHHS), yielding strong AHI/expert correlation
values (0.85 on MGH, 0.77 on SHHS) and LMI/expert correla-
tion (0.79 on MGH). Brink-Kjaer et al. published a CNN/RNN
model for combined arousal and sleep/wake detection yielding
an arousal detection F1 score of 0.79 on a test set of 1024
unique subjects [30], which was subsequently validated in two
separate patient groups [34], [35]. Similarly, Carvelli et al.
proposed a CNN/RNN model for LM detection reporting an
impressive F1 score of 0.77 on 348 PSGs from the MrOS sleep
study [31]. However, these models are all based on classifying
windows of sleep data with subsequent manual fine-tuning and
post-processing to combine events predicted in close-proximity
windows, which incurs a human-factor bias.

Recently, Chambon et al. proposed the Dreem One Shot
Event Detector (DOSED) algorithm for detecting sleep spindles

and K-complexes in the sleep EEG [36], which was further
developed for arousal and leg movement detection in subsequent
publications [28], [37]. The advantage of this kind of approach
is two-fold: first, the model is trained end-to-end to detect and
classify events of any type, since there is no reliance on manual
post-hoc processing of event predictions; and second, using a
grid of default event windows (discussed in Section III-B) allows
durations of different time scales. However, as these models were
only designed for either EEG-only events [36], [37], or did not
investigate joint detection of events occurring across multiple
modalities [28], there is still an unmet need for models capable of
predicting events of multiple classes from multiple sensor types.

In this study, we extend the previous work in [28], [36], [37]
and introduce the multi-modal sleep event detection (MSED)
model for joint detection of sleep micro-events. The model
combines multiple recording modalities from the PSG and recent
advances in machine learning to not only classify arousals,
LMs, and SDBs, but also annotate them in the temporal domain
without the need for post-hoc processing of predictions. An
example of model predictions for a segment of PSG data is
shown in Fig. 1, where the input signals are shown in the top
box and manually scored/predicted events in the bottom box.

Our contributions are as follows:
� We propose the MSED, which is a CNN/RNN based model

using disentangled feature extraction streams trained end-
to-end for for multi-modal sleep event detection. To our
knowledge, this is the first time this has been shown
for multiple event types with multiple modalities trained
simultaneously.
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TABLE I
MROS DEMOGRAPHICS BY SUBSET

� We report inceased F1 scores using MSED compared to
previous state-of-the-art in multi-event detection, despite
a 97.5% reduction in memory footprint as defined by the
number of model parameters.

� Clinically relevant endpoints as computed by MSED cor-
relate strongly with expert-scored values.

� Source code for training and testing models are available
at https://github.com/neergaard/msed.git.

II. DATA

We collected PSGs from the MrOS Sleep Study conducted be-
tween 2003 and 2005, an ancillary part of the larger Osteoporotic
Fractures in Men Study [38], [39], [40]. The main outcome of the
MrOS Sleep Study was to investigate and discover connections
between sleep disorders, skeletal fractures, and cardiovascular
disease and mortality in community-dwelling older (>65 years).
Of the original 5994 study participants, 3135 subjects were
enrolled at one of six sites in the USA for a comprehensive sleep
assessment, while 2909 of these underwent a first visit full-night
in-home PSG recording. The PSG studies were subsequently
scored by certified sleep technicians according to the prevailing
guidelines at the time. Sleep stages were scored into stages 1,
2, 3, 4, wakefulness, and REM according to Rechtschaffen and
Kales (R&K) scoring guidelines. For the purpose of this study,
sleep stages were converted into their AASM equivalents (stage
1 into N1, stage 2 into N2, and stages 3 and 4 into N3) [1].
Arousals were scored as abrupt increases in EEG frequencies
lasting at least 3 s according to older guidelines from the Amer-
ican Sleep Disorders Association [41]. Apneas were defined as
complete or near complete cessation of airflow lasting more
than 10 s with an associated 3% or greater SaO2 desaturation,
while hypopneas were based on a clear reduction in breathing of

more than 30% deviation from baseline breathing lasting more
than 10 s, and likewise assocated with a greater than 3% SaO2

desaturation. While the scoring criteria for scoring LMs are not
explicitly available for the MrOS Sleep Study, the prevailing
standard at the time of the study was to score LMs following
an increase in leg EMG amplitude of more than 8µV above
resting baseline levels for at least 0.5 s, but shorter than 10 s [42].
A subset of the 2909 subjects also participated in follow-up
sessions, although these studies did not include scoring of leg
movements.

A. Subset Demographics and Partitioning

We used all first visit PSG studies (n = 2853) available
from the National Sleep Research Resource (NSRR) [43], [44],
which we partitioned into a training set (Dtrain, ntrain = 1653), a
validation set (Deval, neval = 200), and a final testing set (Dtest,
ntest = 1000). Key demographics and PSGs-related variables for
each subset are shown as mean ± standard deviation with range
in parenthesis in Table I.

1) Signal and Events: For this study, we considered three
PSG events: Ars, LMs, and SDB events. These types of events
are based on a specific set of electrophysiological channels
from the PSG consisting of left and right central EEG (C3
and C4), left and right EOG, left and right chin EMG, left
and right leg EMG, nasal pressure, and respiratory inductance
plethysmography from the thorax and abdomen. EEG and EOG
channels were referenced to the contralateral mastoid process,
while a chin EMG was synthesized by subtracting the right chin
EMG from the left chin EMG.

Apart from the raw signal data, we also extracted onset time
relative to the study start time and duration times for each event
type in each PSG.

https://github.com/neergaard/msed.git


ZAHID et al.: MSED: A MULTI-MODAL SLEEP EVENT DETECTION MODEL FOR CLINICAL SLEEP ANALYSIS 2511

III. METHODS

A. Notation

We denote by [[a, b]] the set of integers {n ∈ N | a ≤ n ≤
b} with [[N ]] being shorthand for [[1, N ]], and by n ∈ [[N ]] the
nth sample in [[N ]]. A segment of PSG data is denoted by x ∈
RC×T , whereC is the number of channels and T is the duration
of the segment in samples. An event type is defined as εi =
(�i, δi, li) ∈ R2

+ × L, where �, δ, l is center point, duration, and
label of the event, and L = [[L]] is the event label space. The set
of Nt true events for a given PSG segment is denoted by εt =
{εti | i ∈ [[Nt]]}. By χ ∈ D∗ we denote a sample in either one of
the three subsets. In the description of the network architecture,
we have omitted the batch dimension from all calculations for
brevity.

B. Model Overview

Given an input set χ = {x, εt} ∈ RC×T × RNt×2
+ × L con-

taining PSG data with C channels and T time steps, and true
events ε, the goal of the model is to detect any possible events
in the segment, where, in this context, detection covers both
classification and localization of any event in the segment space.

The model generates a set of default event windows εd =
{εdj | j ∈ [[Nd]]} for the current segment, and matches each true
event to a default event window if their intersection-over-union
(IoU) is at least 0.5.

At test time, we generate predictions across the default event
windows and use a non-maximum suppression procedure to
select between the candidate predictions. For a given class k,
the procedure is as follows: First, the predictions are sorted
according to probability of the event, which is above a threshold
θk. Then, using the most probable prediction as an anchor,
we sequentially evaluate the IoU between the anchor and the
remaining candidate predictions, removing those with IoU larger
than 0.5.

The output of the model is thus the set of predicted events
εp = {p,y} containing the predicted class probabilities along
with the corresponding onsets and durations

C. Signal Conditioning

We resampled all signals to a common sampling frequency
of fs = 128Hz using a poly-phase filtering approach (Kaiser
window, β = 5.0). Based on recommended filter specifications
from the AASM, we designed Butterworth IIR filters for four
sets of signals [1]. EEG and EOG channels were filtered us-
ing a 2nd order filter with a 0.3Hz to 35Hz passband, while
chin and leg EMG channels were filtered using a 4th order
high-pass filter with a 10Hz cut-off frequency. Nasal pressure
channels was filtered using a 4th order high-pass filter with a
0.03Hz cut-off frequency, while thoracoabdominal channels
were filtered using a 2nd order filter with a 0.1Hz to 15Hz
passband. All filters were implemented using the zero-phase
method.

Filtered signals were subsequently standardized by subtract-
ing signal means and dividing by signal standard deviations for
each PSG.

D. Target Encoding

For each data segment, target event classes π ∈ RNm×K

were generated by one-hot encoding, and the target detection
variable containing the onset and duration times t ∈ RNm×2

was encoded as

ti =

(
�mi − �dj
δdj

, log
δmi
δdj

)
, i ∈ [[Nm]], j ∈ [[Nd]], (1)

where �mi is the center point of the true event matched to a
default event window �dj , and δmi and δdj are the corresponding
durations of the true and default events.

E. Data Sampling

As the total number of default event windows Nd in a data
segment most likely will be much higher than the number of
event windows matched to a true event, i. e. Nd � Nm, we
implemented a similar random data sampling strategy as in [28].
At training step t, a given PSGs record r has a certain number of
associated number of Ar, LM, and SDB events (nAr, nLM, nSDB,
respectively). We randomly sample a class k with equal prob-
ability pk = 1

K−1 , while disregarding the negative class since
this is most likely over-represented in the data segment in any
case. Given the class k, we randomly sample an event εk from
the PSG record r. We then randomly sample a C × T data
segment with start time in the range [ε̄k − T, ε̄k] where ε̄k is the
sample midpoint of the event εk. This ensures that a sampled
data segment will contain at least 50% of at least one event. We
found that this approach to sampling data segments with a large
ratio of negative to positive samples to be beneficial in all our
experiments when monitoring the loss on the validation set.

F. Network Architecture

Similar to the architecture described in [30], we designed a
splitstream network architecture, where each stream is respon-
sible for the bulk feature extraction for a specific event class. For
the given problem of detecting Ars, LMs, and SDBs, the network
contains three streams: the Ar stream takes as input the EEGs, the
EOGs, and the chin EMG signals for a total ofCAr = 5 channels;
the LM stream receives the CLM = 2 leg EMG signals; and the
SDB stream receives the nasal pressure and the thoracoabdomi-
nal signals for a total ofCSDB = 3 channels. An overview of the
network architecture is shown graphically in Fig. 2.

1) Stream Specifics: Each stream is comprised of two
components. First, a mixing module ϕmix : RC∗×T → RC∗×T

computes a non-linear mixing of the C channels using a set of
C single-strided 1-dimensional filters w ∈ RC×C and rectified
linear unit (ReLU) activation [45]. Second, the output activations
from ϕmix are used as input to a feature extraction module
ϕfeat : RC∗×T → Rf ′×T ′

, which transforms the input feature
maps to a f ′ × T ′ feature space with a temporal dimension
reduced by a factor of T

T ′ . The feature extraction module ϕfeat is
realized using kmax successive convolutions with an increasing
number of filters f ′ = f02

k−1, k ∈ [[kmax]], where f0 is a tunable
base filter number. Each feature map is normalized using batch
normalization [46] with subsequent ReLU activation.
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Fig. 2. MSED network architecture. Left column contains component names, while right column shows the output dimensions for each operation
as (number of filters[ x singleton] x time steps). Each stream in the middle (green) processes a separate set of input channels (blue, top), the results
of which are concatenated before the bGRU (yellow). Outputs from the additive attention layer (purple) are convolved in the final classification
and localization layers (red) to output the probabilities for each event class, and the predicted onset and duration of each event (blue, bottom).
Convolution layers (orange, green, red) are detailed as [number of feature maps x kernel size, stride]. Recurrent layer (yellow) shows the direction
and number of hidden units. Additive attention layer (purple) is described with the number of hidden and output units. GRU: gated recurrent unit;
Ar: arousal; LM: leg movement; SDB: sleep disordered breathing.

2) Feature Fusion for Sequential Processing: The out-
put vectors from each stream is concatenated into a combined
feature vector z = (zar, zlm, zsdb) ∈ R3f ′×T ′

. We introduce se-
quential modeling of the feature vectors via a recurrent module
ϕrec : R3f ′×T ′ → R2nh×T ′

realized with a bidirectional gated

recurrent unit (bGRU) [47]. The output of the bGRU for timestep
t is a vector ht = (hf

t,h
b
t ) ∈ R2nh containing the concatenated

outputs from the forward (f) and backward (b) directions.
3) Additive Attention: We implemented a simple additive

attention mechanism [48], which computes context-vectors c ∈
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R2nh×K for each event class as the weighted sum of the feature
vector outputs h ∈ R2nh×T ′

from the bGRU.
Formally, attention is computed as

c =

T ′∑
t

htα
ᵀ
t , (2)

where ht is the feature vector for time step t, and αt ∈ RK is
the attention weight computed as

αt =
exp(Wa tanh(Wuht))∑T ′
τ exp(Wa tanh(Wuhτ ))

. (3)

Here, Wu ∈ Rna×2nh and Wa ∈ RK×na are learnable linear
mappings of the feature vectors.

4) Detection: The final event classification and localiza-
tion is handled by two modules, ψclf : R2nh×K → RNd×K and
ψloc : R2nh×K → RNd×2, respectively. The classification mod-
ule ψclf : c 	→ p outputs a tensor p ∈ [0, 1]Nd×K

+ containing
predicted event class probabilities for each default event win-
dow. The localization module ψloc : c 	→ y outputs a tensor
y ∈ RNd×2 containing encoded relative onsets and durations
for a detected event for each default event window.

G. Training Objective

Similar to [37], we optimized the network parameters ac-
cording to a three-component loss function consisting of: i) a
localization loss 
loc, ii) a positive classification loss 
+, and iii)
a negative classification loss 
−, such that the total loss 
 was
defined by


 = 
loc + 
+ + 
−. (4)

The localization loss 
loc was calculated using a Huber function


loc =
1

N+

∑
i∈π+

f
(i)
H , (5)

fH =

{
0.5(y − t)2, if |y − t| < 1,

|y − t| − 0.5, otherwise,
(6)

where i ∈ π+ yields indices of event windows with positive
targets, i. e. event windows matched to an arousal, LM or SDB
target, andN+ is the number of positive targets in the given data
segment.

The positive classification loss component 
+ was calculated
using a simple cross-entropy over the event windows matched
to an arousal, LM, or SDB event:


+ =
1

N+

∑
i∈π+

∑
k∈[[K]]

π
(i)
k log p

(i)
k , (7)

p
(i)
k =

exp s
(i)
k∑

j exp s
(i)
j

, (8)

and π(i)
k , p(i)k , and s(i)k are the true class probability, predicted

class probability, and logit score for the ith event window con-
taining a positive sample.

Similar to [36], [49], the negative classification loss 
− was
calculated using a hard negative mining approach to balance

TABLE II
MSED PARAMETER SETTINGS

the number of positive and negative samples in a data segment
after matching default event windows to true events [50]. Specif-
ically, this is accomplished by calculating the probability for
the negative class (no event) for each unmatched default event
window, and then calculating the cross entropy loss using the
Z most probable samples. In our experiments, we set the ratio
of positive to negative samples as 1:3, such that the calcula-
tion of 
 involves Z = 3 times as many negative as positive
samples.

We also explored a focal loss objective function for computing

+ and 
− [51], however, we found that this approach severely
deteriorated the ability of the network to accurately detect LM
and SDB events compared to using worst negative mining.

H. Experimental Setups

In our experiments, we optimized the training objective using
adaptive moment estimation (Adam) [52], according to the loss
function described in Eq. (4). Exponential decay rates were fixed
at (β1, β2) = (0.9, 0.999), the learning rate at η = 10−3, and
ε = 10−8. The learning rate was decayed in a step-wise manner
by multiplying η with a factor of 0.1 after 3 consecutive epochs
with no improvement in loss value on the validation dataset.
Similarly, we employed an early stopping scheme by monitoring
the loss on the validation dataset and stopping the model training
after 10 epochs of no improvement on DEVAL.

We tested four types of models in two categories: the first
is a default split-stream model as shown in Fig. 2 with and
without weight decay (splitstream, splitstream-wd). The second
is a variation of the split-stream model, but where the ψclf and
ψloc modules are realized using depth-wise convolutions, such
that each attention group is used only for that type of event. The
second category is also tested with and without weight decay
(splitstream-dw, splitstream-dw-wd).

We benchmarked our proposed MSED model against DOSED
by comparing overall performance on Dtest after training on
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Fig. 3. Optimizing MSED architecture and model evaluation. (a) No significant differences in F1 were found between model architectures. (b)
Optimizing F1 performance on Deval as a function of detection threshold θ for joint (solid) and single-event (dashed) detection models. Blue and
orange dots correspond to optimal θ/F1 pair. (c) Analysing event recall and precision categorized by sleep stage origin on Dtest data. E.g. out of
19525 Ar events manually scored in REM, the optimal model correctly identifies 0.67%, while out of 10248 SDB events predicted in N1, 0.92% of
these are also manually scored. (d) Evaluating optimized joint and single-event detection models on Dtest given the respective detection threshold
θ from (b). For all three event types, the joint detection model outperforms the single-event models based on F1. Dashed lines in the violin plot
interior show the associated 25th, 50th, and 75th percentiles. ∗∗∗∗: p < 0.001. W: wakefulness; N1: non-REM stage 1; N2: non-REM stage 2; N3:
non-REM stage 3; REM: rapid eye movement; Ar: arousal; LM: leg movement; SDB: sleep disordered breathing.

ntrain = 200 subject PSGs. Each model was allowed 100 epochs
of training, and the optimal models were selected based on
lowest loss score onDeval across epochs. F1, precision, and recall
scores were obtained by evaluating optimized models on Dtest.

Various model parameters are shown in Table II.

I. Performance Evaluation

Performance was quantified using precision, recall, and F1
scores. Statistical significance in F1 score between groups was
assessed with Kruskall-Wallis H-tests. The performance of joint
vs. single-event detection models was tested with Wilcoxon
signed rank tests for matched samples. The relationships be-
tween true and predicted arousal indices (ArIs), AHIs, and LMI
were assessed using linear models and Pearson’s r2. Significance
was set at α = 0.05.

IV. RESULTS AND DISCUSSION

A. Model Architecture Evaluation

We found no significant differences in F1 performance for
either Ar (Kruskal-Wallis H = 0.96, p = 0.81), LM (H =
0.23, p = 0.97), or SDB detection (H = 2.84, p = 0.42), when

evaluating the model architectures on Deval (see Fig. 3(a)). Sub-
sequent results are thus reported based on the default splitstream
architecture.

B. Optimizing Threshold for Joint Vs. Single Event
Detection

For each event type, we evaluated the F1 score as a func-
tion of classification threshold θ on Deval for both the joint
detection model as well as the single-event models. It can be
observed in Fig. 3(b) that for all three events, the joint detection
model achieves higher F1 score, although the increase is not
as large for LM and SDB detection. This was also observed
when evaluating the joint and single detection models with
optimized thresholds on Dtest for both Ar (Wilcoxon W =
30440, p < 0.001), LM (W = 101103, p < 0.001), and SDB
detection (W = 125461, p < 0.001), see Fig. 3(d). Precision,
recall and F1 scores for optimized models evaluated on are
shown in Table IV. These findings provide evidence that the
presence of certain event types can modulate the detection of
other event types, and that this can be modeled using automatic
methods. This is in line with what previous studies have found
e. g. on event-by-event scoring agreement in arousals, which
improved significantly from 58.7 % to 90.5 %, when including
respiratory signals in the analysis [17].
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TABLE III
TEMPORAL DIFFERENCE METRICS ACROSS EVENT TYPES AND PSGS FOR JOINT AND SINGLE PREDICTION MODELS

TABLE IV
PERFORMANCE SCORES FOR OPTIMIZED MODELS EVALUATED ON DTEST

TABLE V
COMPARING MODEL PERFORMANCE AGAINST DOSED ON A REDUCED

DTRAIN

C. Comparison With State-of-The-Art Multi-Event
Detection

F1, recall, and precision scores for optimized DOSED and
MSED models evaluated on Dtest are shown in Table V. We
observed an overall MSED F1 score of 0.634 ± 0.124 against an
overall DOSED F1 score of 0.596± 0.140; and overall F1 scores

for Ar, LM, and SDB of 0.677± 0.107, 0.599± 0.127, and 0.626
± 0.125 for MSED, and 0.668 ± 0.115, 0.619 ± 0.125, and
0.503 ± 0.123 for DOSED. Factoring in the overall reduction
in model size from 385,489,502 to 9,435,606 parameters, these
results show the advantage of MSED compared to DOSED on
the same dataset.

Comparing with existing single-event arousal detection mod-
els, MSED does not perform on the level of previous state-
of-the-art proposed by Brink-Kjaer et al. [30]. Here, an
EEG+EOG+EMG combination model for combined sleep-wake
classification and arousal detection yielded an F1 score of 0.76,
although this was reported on a much smaller dataset. Similarly,
in the work by Carvelli et al. [31], a model combining two
leg EMG channels achieved an impressive F1 score of 0.77,
although this was also reported in a much smaller dataset.
We did not perform in-depth ablations in this study, so it is
possible that the MSED performance could be higher given
sufficient fine-tuning. However, it is also worth noting that both
of these models apply post-processing of the model outputs,
most notably the removal of arousals and leg movements scored
in wake, which is not performed in the current work, and fusion
of events within certain manually-set thresholds. It is possible
that this approach introduces a negative bias in our proposed
model, since it is evident from Fig. 3(c) that the precision for
all scored events is lower in W than in other sleep stages. In this
work we wished the predictions to be orthogonal to manual sleep
scoring, but future work should consider adding an automatic
sleep scoring module to the model architecture.

While literature on sleep apnea detection is extensive, it is
difficult to compare directly to the proposed approach, because
the majority of studies either focus on obstructive apnea alone,
do not report F1, precision, or recall scores, or only focus on the
prediction of AHIs alone [53].

However, one recent study compared the event-by-event de-
tection performance against a concensus score of five techni-
cians. They reported an average human performance quantified
by F1 of 0.55, and an F1 score from the automatic method of
0.57 [54]. Similarly, Nassi et al. [55] recently proposed their
WaveNet model for precisely annotating SDB events in 1 s
bins. Although their model also included post-processing of the
bins, they obtained a mean F1 score across events of 0.406. We
therefore see a marked improvement from the state of the art
event detectors compared to MSED.

These results also indicate the massive research potential in
terms of other ways to assess SDB; apart from AHI, which is
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Fig. 4. Pearson correlation plots for each event type index between
true and predicted values. The linear relationship is indicated with solid
blue with 95% confidence intervals in light blue. ArI: arousal index; AHI:
apnea-hypopnea index; LMI: leg movement index.

an average across the entire night, researchers and clinicians
could potentially benefit from taking a more fine-grained
approach. As illustrated by Chen et al. [56], patients with
the exact same AHI can exhibit wildly different activity
patterns (breathing disturbances), yet this is unaccounted for
in state-of-the-art apnea detection models, as the majority of
these are epoch-based [53]. Chen et al. propose “instantaneous
AHI” as a solution to this problem, although their results were
based on human annotation and not automatic detection as
proposed here. The integration of these two methods would be
an interesting approach for future research.

In addition, future work should explore novel methods for
object detection in the computer vision literature. Most notably,
the use of default event windows impose certain restrictions
on the temporal scale of detected events, and this could be
eliminated by using a Transformer-based detection model, such
as the one found in the Detection Transformer [57]. Here, pre-
dictions are generated using a number of object queries, which
are independent from the default event windows and thus not
restricting the temporal scale of the events.

D. Correlation Between Experts and Model

For each event type, we computed the correlation coefficient
between predicted and expert-annotated ArI, AHI, and LMI,
which is shown in Fig. 4. We found a large positive corre-
lation between true and predicted values for ArIs (r2 = 0.73,
p < 0.001), AHIs (r2 = 0.77, p < 0.001), and LMI (r2 = 0.78,
p < 0.001).

A similar study by Biswal et al. [24] using an automatic
method for automatic detection of SDB and LM events found
similar or higher correlations between automatic and manual
scoring (r2SDB = 0.85, and r2LM = 0.79, respectively), although
their findings were based on almost five times as much data.
Furthermore, obstructive, central, mixed and hypopneas with
an associated 4% desaturation were lumped together into a
single apnea class, which may have introduced unwanted bias
towards obstructive apneas and hypopneas in their findings,
since these are in general more prevalent than central and mixed
apneas.

E. Temporal Difference Metrics

We compared the temporal precision between manual and
MSED event scoring by looking at the errors in onset (Δonset),

offsets (Δ offset), and durations (Δduration) calculated as

Δ onset = onsetMSED − onsetmanual (9)

Δ offset = offsetMSED − offsetmanual (10)

Δ duration = durationMSED − durationmanual (11)

so that positive values of Δ onset,Δ offset corresponds to a
positive shift to the right (delayed prediction), and positive
values of Δ duration meaning an overestimation of the event
duration compared to manual scoring.

Described in Table III, the model overestimates the dura-
tion of Ar events by a couple of seconds, which is caused
by an earlier prediction of onset and delayed prediction of
termination. For LM events, the model underestimates the du-
ration by about half a second on average, which is due to
earlier prediction of termination. For SDB events, the model
overestimates the duration by about 25 seconds on average,
which is caused by an earlier prediction of onset and delayed
prediction of termination. These errors in predicted duration
reflect the temporal characteristics of these events; LMs are
shorter events (between 0.5 s to 10 s per definition), and it is thus
unlikely to be overestimated by several seconds, while SDBs
are longer events by one to two orders of magnitude, which
also increases the size of the errors. Arousals are intermediate in
length compared to LMs and SDBs, which is reflected in the error
distributions.

V. CONCLUSION

We have presented a novel method for detecting short and
long events present in polysomnogram recordings based on
deep neural networks. Our method was able to distinguish be-
tween arousals, limb movements, and sleep-disordered breath-
ing events with F1 scores of 0.70, 0.63, and 0.62, respectively,
and we furthermore found that jointly optimizing a model for
all three events performed better than the respective models
optimized for each specific event type.

We benchmarked our algorithm against previous state-of-the-
art and report an overall increase in F1 score from 0.60 to 0.63
despite a 97.5% reduction in memory footprint.

Furthermore, clinically relevant derivatives (ArIs, AHIs,
LMI) showed a high positive correlation with manually com-
puted values indicating a high degree of agreement between our
model and experts.

Future work should incorporate ides from the object detection
in computer vision literature and investigate more complex mod-
els with increased flexibility towards adding prediction capabil-
ities for additional event types. Additionally, the low precision
across all events observed during wakefulness could be remedied
by incorporating an automatic sleep stage classification model
which also merits further investigation.
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