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Abstract—Objective: Hemorrhagic stroke is a leading
threat to human’s health. The fast-developing microwave-
induced thermoacoustic tomography (MITAT) technique
holds potential to do brain imaging. However, transcranial
brain imaging based on MITAT is still challenging due to
the involved huge heterogeneity in speed of sound and
acoustic attenuation of human skull. This work aims to
address the adverse effect of the acoustic heterogeneity us-
ing a deep-learning-based MITAT (DL-MITAT) approach for
transcranial brain hemorrhage detection. Methods: We es-
tablish a new network structure, a residual attention U-Net
(ResAttU-Net), for the proposed DL-MITAT technique, which
exhibits improved performance as compared to some tradi-
tionally used networks. We use simulation method to build
training sets and take images obtained by traditional imag-
ing algorithms as the input of the network. Results: We
present ex-vivo transcranial brain hemorrhage detection as
a proof-of-concept validation. By using an 8.1-mm thick
bovine skull and porcine brain tissues to perform ex-vivo
experiments, we demonstrate that the trained ResAttU-Net
is capable of efficiently eliminating image artifacts and ac-
curately restoring the hemorrhage spot. It is proved that the
DL-MITAT method can reliably suppress false positive rate
and detect a hemorrhage spot as small as 3 mm. We also
study effects of several factors of the DL-MITAT technique
to further reveal its robustness and limitations. Conclu-
sion: The proposed ResAttU-Net-based DL-MITAT method
is promising for mitigating the acoustic inhomogeneity is-
sue and performing transcranial brain hemorrhage detec-
tion. Significance: This work provides a novel ResAttU-Net-
based DL-MITAT paradigm and paves a compelling route for
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transcranial brain hemorrhage detection as well as other
transcranial brain imaging applications.

Index Terms—Acoustic inhomogeneity, brain hemor-
rhage, deep learning (DL), microwave imaging, microwave-
induced thermoacoustic tomography, transcranial brain
imaging.

I. INTRODUCTION

M ICROWAVE-induced thermoacoustic tomography (MI-
TAT) has experienced remarkable progression and fos-

tered a broad research interest in biomedical applications since
its debut in 1981 [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], MITAT felicitously integrates several
intriguing features, such as excellent image resolution, rich
microwave absorption contrast, nonionizing irradiation, deep
penetration in tissues, and cost-effective implementation.

Brain stroke is a major threat to human’s health, which can
be classified into ischemic stroke and hemorrhagic stroke [16],
[17]. The former is featured by restricted/blocked blood flow
due to blood clots that results in decreased dielectric properties;
the latter is caused by rupture/burst brain vessel that results in
increased dielectric properties. According to literature, almost
80% of brain stroke cases are ischemic and the remaining are
hemorrhagic [17]. Although hemorrhagic stroke only accounts
for a minority of the total cases, it results in higher mortality rates
than ischemic stroke. This is because progression with bleeding
and expansion of hematoma of hemorrhagic stroke is associated
with worse outcomes [18].

Timely detection of hemorrhagic stroke is of paramount sig-
nificance to reduce the mortality and disability. Current brain
imaging techniques mainly include MRI and CT [19] However,
these techniques still suffer from some drawbacks. MRI systems
are costly and its availability is low in undeveloped regions.
CT utilizes ionizing radiation and is not suitable for long-time
imaging and monitoring. In addition, MRI and CT equipment
cannot be made portable to be carried by an ambulance to offer
timely detection.

In view of the unique merits, MITAT has been explored
as an emerging brain imaging modality [7], [20], [21], [22],
[23]. Huang et al. first studied the feasibility of MITAT for
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Fig. 1. Illustration of the adverse effects of a skull on the reconstructed
images by MITAT. The first subfigure is the schematic of the used
irregular-shaped skull with a round sample to be imaged. The rest
subfigures are DAS images with different skull configurations. Tskull

denotes the thickness variation range of the skull and αskull denotes
the attenuation coefficient of the skull.

hemorrhagic stroke imaging [24]. However, the major challenge
for transcranial brain hemorrhage detection is the big acoustic
inhomogeneity induced by the skull. To be specific, the speed
of sound (SOS) of soft human tissues (such as skin and brain
tissues) ranges from 1350 to 1700 m/s [25], while the SOS of
skulls can vary from 2500 to 2900 m/s [26]. The acoustic attenu-
ation in skulls ranges from 17 to 38 dB/MHz/cm [27], while the
attenuation of brain tissues is around 0.59 dB/MHz/cm. These
can cause strong refraction, phase distortion and attenuation in
thermoacoustic signals. Such signal deterioration renders the
conventional MITAT algorithms infeasible for transcranial brain
hemorrhage detection as illustrated in Fig. 1, including back-
projection [28], [29], delay-and-sum (DAS) [30], compressive
sensing [31], [32], etc. In addition, the shapes of human skulls
are irregular and the nonuniform thicknesses vary with age and
gender [33], which further complicates the problem.

Although some methods have been proposed to address the
acoustic inhomogeneity issue in MITAT, they still suffer from
some drawbacks. The techniques requiring the prior knowledge
of the skull shape [7], SOS and attenuation distributions are not
practical since such information is usually unknown in clinical
applications [20]. Even if it is possible to measure the SOS and
attenuation distributions in advance [27], [34], [35], it signifi-
cantly increases the system complexity and time consumption.
A new method based on SOS autofocus has been reported to
solve this problem without extra system cost [21]. However, it
is only applicable to samples with moderate variations in SOS
and not able to handle transcranial brain imaging. Therefore,
there is a pressing need in exploring novel methods to deal with
the high acoustic SOS and attenuation and enable transcranial
brain hemorrhage detection by MITAT.

In the past three years, successful implementations of deep
learning (DL) in diversified imaging and image processing re-
lated areas have been reported, including MRI [36], [37], CT
[38], [39], PET [40], photoacoustic imaging [41], [42], [43], and
microwave imaging [44], [45], [46]. In this work, we propose
a novel DL-enabled MITAT (DL-MITAT) technique based on a
new network structure to mitigate the adverse effects of acoustic

heterogeneities in transcranial brain hemorrhage detection. The
exercised network is a residual attention U-Net (ResAttU-Net),
which is an improved version of the conventional U-Net. We
provide detailed information of the training process of the net-
work and implementation of the DL-MITAT technique. We test
the network by two kinds of skull via ex-vivo experiments, a
3-D printed polymer skull and an 8.1-mm thick bovine skull,
both containing a porcine brain sample containing a hemorrhage
spot phantom. The obtained results corroborate that the images
offered by the trained network can reveal the hemorrhage spot
with high reliability even in the presence of the skull, which
are in great contrast to the severely distorted DAS images. The
DL-MITAT technique can suppress false positive rate and detect
a hemorrhage spot as small as 3 mm. We further compare the
image quality using different networks, evaluate the effect of
number of training sets, and study some cases with mismatched
training and testing sets. We also test the method by an ischemic
stroke sample and find that it is able to distinguish between the
hemorrhage and ischemia. This work provides a paradigm for the
novel DL-MITAT modality. It also paves the way for practical ap-
plications of transcranial brain hemorrhage detection (and hope-
fully brain ischemia) in a cost-effective and portable manner.

II. RATIONALE

A. Fundamentals of MITAT

Time-resolved thermoacoustic signal emanated from a sample
upon pulsed microwave irradiation is [15], [28]
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But for an inhomogeneous acoustic environment, the tradi-
tional methods inevitably incur artifacts as shown in Fig. 1.

B. Structure of Applied Network

U-Net is one of the most widely explored multi-stage cascaded
end-to-end fully convolutional networks that has performed
favorably in diversified imaging related disciplines [48]. Resid-
ual U-Net, a modified version of U-Net, establishes a skip
connection between the input and output data to render the
network with faster convergence and higher robustness [49].
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Fig. 2. (a) Structure of the proposed ResAttU-Net. (b) Schematic of the attention gate (AG).

ResU-Net has been successfully applied in imaging [50], [51],
and image segmentation [52].

For conventional U-Net, feature maps extracted at multiple
layers of encoder and decoder sections are directly concatenated
through skip connections, which aims to mitigate the loss in
information and resolution caused by the down-sampling opera-
tions in the encoder section. However, this leads to excessive and
redundant information of similar features repeatedly extracted.
To address this issue, attention gates (AG) have been proposed
to improve the performance by learning to focus on targeted
region automatically and suppress feature extraction in irrelevant
regions [53]. Attention-based methods have been implemented
successfully in semantic segmentation and segmentation of med-
ical images [54], [55].

In this work, we integrate AGs in ResU-Net to form a new
network structure named ResAttU-Net. AGs are used right
before the concatenation operation to filter and highlight the
salient features propagating through the skip connections as
shown in Fig. 2(a). To be specific, each AG block consists of
an attention gating signal (GS) taken from the feature map gd+1

in the deeper decoding path. Since gd+1 contains information of
the finest features in the layer of depth d compared to the output
of the upper encoder branches, it can help the AG block to focus
relevant features on a global scale. Up-sampling and padding of
gd+1 is performed to make its spatial dimension the same as the
other input feature xdi that taken from the upper encoder branch,
where i denotes spatial dimension. Then gd+1 passes through
a convolution operation (ωg) and rectified linear unit (ReLU)
function for spatial feature extraction. The resulting signal is
the GS as presented in (3) with bg as the bias.

GS = ReLU
(
ωg

(
gd+1

)
+bg

)
(3)

Both GS and xdi pass through a series of convolution layers
and ReLU activation function in the AG block to generate the
pre-attention coefficient λdi , which is given as

λdi = ωψ
(
ReLU

(
ωGS (GS) + ωx

(
xdi

)
+ bλ

)
+ bψ

)
(4)

The convolution layer ψ is used to reduce the dimensionality
for later weighting multiplication. An attention coefficient Λdi
(within the range of [0, 1]) is obtained after being filtered by the
Sigmoid activation function defined in (5), which is chosen to
normalize the attention coefficient so as to prevent the gradient
exploding problem from training.

Λdi = Sigmoid
(
λdi

)
(5)

Λdi is then multiplied by the original input featurexdi to weight
the final output of the AG block that is formulated as

AGout = x̂di = Λdi × xdi = Λdi · f
(
xd−1
i ,Φd−1

)
(6)

where f is the function characterized by trainable convolutional
parameters Φd that applied in convolution layer of depth d to
generate the feature map xdi . The attention coefficient Λdi can
suppress the irrelevant features and identify the salient features
of the task-oriented data, such as the location of the hemorrhage
spot in this work. This can help to improve the overall perfor-
mance of the network.

Finally, the output of the AG block is concatenated with
up-sampled feature maps in the decoder path. Benefited from
the AGs, convolutional parameters in shallower layers can be
updated largely based on the relevant region corresponding to
the given task. The attention coefficients affect the gradient
term during both the forward and backward passes. The update
mechanism for convolutional parameters in the layer of depth
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Fig. 3. Framework of the entire process of the proposed ResAttU-Net-based DL-MITAT technique for transcranial brain hemorrhage detection.
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C. Framework of DL-MITAT Method

Transcranial detection of brain hemorrhage in 2-D environ-
ment is investigated in this work as a proof-of-concept demon-
stration of the proposed DL-MITAT protocol. As can be seen
from Sections III and IV, simplifying the problems to 2-D
scenarios does not compromise the major innovation of this
work, i.e., using the DL technique to address the acoustic in-
homogeneity issue incurred by the skull. Accordingly, all the
involved simulations and experiments are performed in 2-D
conditions. We apply acoustic numerical simulations carried out
by k-Wave MATLAB Toolbox [56], to generate the training sets
including the ground truth and input data.

Fig. 3 provides the framework of the DL-MITAT technique
for transcranial brain hemorrhage detection, which consists of
training phase and testing phase. Detailed procedure of the
training phase is described as follows.

Step 1: We first need to configure the k-Wave acoustic sim-
ulation. The entire simulation region has a size of Sx × Sy,
as shown in Fig. 3(a). Three acoustic properties are needed in
the simulations, including SOS, acoustic attenuation and mass
density, each of which is set to be a 2-D distribution map with a
size of Sx × Sy. An initial 2-D pressure map with a size of Ix × Iy
serves as the source for acoustic waves, as shown in Fig. 3(a). We
deploy in total M transducers on a circle enclosing the sample
within the Ix × Iy region. We construct in total Nt distinct
2-D samples by varying some parameters of the samples to do
Nt sets of simulations. Specific simulation setups for different
investigated cases are detailed in Sections III and IV.

Step 2: We then conduct the Nt sets of k-Wave simulation. The
final simulation results are time-domain thermoacoustic signals

(having a dimension of M× L×Nt, with L denoting the number
of time points) captured by the transducers.

Step 3: We filter the simulated acoustic signal raw data and add
white Gaussian noises to it to improve the resemblance between
the simulated and experimental signals.

Step 4: We employ the conventional DAS algorithm to recon-
struct an image of the sample based on a homogeneous lossless
acoustic environment, which is treated as the input image. The
size of the input image is set to be the same as the initial pressure
map Ix × Iy, which is also named as the imaging region. It is
expected that the input image is unavoidably marred with lots
of artifacts.

Step 5: The input image serves as the input data for the
network to achieve an output image (with a size of Ix × Iy),
as shown in Fig. 3(b).

Step 6: In previously reported DL-MITAT approach [57], the
initial pressure map is also taken as the ground truth image or
artifact-free image. For the current work aiming at the detection
of brain hemorrhage, we define an image only bearing the hem-
orrhage spot as the ground truth image as depicted in Fig. 3(b).
By this manner, reliability of the detection can be enhanced. The
input image and ground truth image together form the training
set. Finally, we train the network by iteratively minimizing the
loss function given in (8).

MSE =
1

B

B∑
i=1

(yi − zi)
2 (8)

Here, yi and zi respectively denote the ground truth image
and output image, B = 40 denotes the batch size for each
training. Meanwhile, the training process continuously updates
the adapted parameters in the network. Table I gives the setup
of the training [58]. We use Python to implement the training
process, which is based on the PyTorch framework running on
a PC with a Tesla V100 32GB GPU. Sufficient training of the
ResAttU-Net network eventually renders an output image with
high resemblance to the ground truth image. Then we name the
final version as a trained ResAttU-Net network and its associated
output as a recovered image.
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TABLE I
SETUP OF NETWORK TRAINING

Fig. 4. Experimental setup of the ex-vivo testing using a 3D-printed
skull. (a) Photo of the printed skull. (b) Photo of the porcine brain
sample with a 10-mm-diameter hemorrhage spot. (c) Schematic of the
experimental system.

In the testing phase in Fig. 3(c), the testing data, i.e., the
time-resolved thermoacoustic pressure signals with a dimension
of M × L, can be established by either simulation or experiment.
We then use the testing data to generate a testing set image (with a
size of Ix × Iy) based on the DAS method. By feeding this image
to the trained network, we get the final output image (with a size
of Ix × Iy) and name it recovered image, in which the artifacts
are efficiently eliminated.

III. EX-VIVO TESTING USING A 3D-PRINTED SKULL

A. Sample Preparation and Experimental Setup

To verify the proposed ResAttU-Net-based DL-MITAT
method for mitigating the adverse effects caused by human
skull in transcranial brain hemorrhage detection, we first use
a 3D-printed ring as the skull to conduct ex-vivo experimental
testing. As shown in Fig. 4(a), its geometry is segmented from
a 3D numerical model of a realistic adult human skull and
scaled down by a factor of 2. Its outer diameter is from 105
to 113 mm and the thickness ranges from 2.6 to 6.1 mm, which
is comparable to the thickness of a child’s skull. Its height is
30 mm. The 3D printing material has an SOS of 2500 m/s,
which falls into the range of the SOS of human skulls. Because
the printing material is acoustically lossless, it cannot mimic the
severe acoustic attenuation in human skulls. But the study based
on such a lossless skull is still meaningful since it can show
the performance of the DL-MITAT technique when only SOS
inhomogeneity exists, which is the case for many application
scenarios. Furthermore, comparison of the results of this section
and Section IV employing a real bovine skull is also very
informative.

We apply porcine brain shown in Fig. 4(b) as the normal
brain samples. The two pieces of porcine brain samples are put

TABLE II
ACOUSTIC PARAMETERS OF BRAIN AND SKULL

TABLE III
DIELECTRIC PARAMETERS OF BRAIN TISSUE AND PHANTOM

adjacent to each other to mimic the two cerebral hemispheres
of a human brain. The dielectric constant εr and conductivity
σ of the porcine brain tissues are measured to be 50.2 and 1.62
S/m, respectively, at 2.45 GHz using a dielectric probe (N1501,
Keysight). We then insert a cylindrical-shaped phantom into the
porcine brain sample to mimic a brain hemorrhage spot, which
is made of 59.9% water, 29.9% glycerin and 10.2% gelatin by
weight. We fabricate two samples to do the ex-vivo testing, with
one having a 10-mm-diameter hemorrhage spot and the other
having a 5-mm-diameter hemorrhage spot.

Permittivity and conductivity of the used hemorrhage phan-
tom material are given in Table III. Numerical simulations using
CST software package reveals that the absorbed microwave
power (defined as σ|E|2 with E denoting the vector electric field)
in the hemorrhage spot is about 1.49 times higher than that in
the normal brain tissue, which means the contrast is 49%. The
contrast of experimental samples used in this work specifically
refers to the contrast in microwave power absorption. Although
both permittivity and conductivity can affect the contrast in
microwave absorption, conductivity plays a more important role.
To be more specific, the contrast is roughly proportional to
conductivity. As reported in [59], [60], the microwave contrast
of brain hemorrhage against normal brain tissues can range from
20% to 50%. The higher the blood contained in the hemorrhage
spot, the higher the contrast. Two contrast 49% and 28% (in
Section IV-A) are used in this work, which fall in the reported
range and can well test the robustness of the proposed technique
in dealing with different contrast.

Schematic of the experimental system is given in Fig. 4(c).
We put the brain sample in the printed skull and immerse both
of them in a tank filled with coupling oil with an SOS of 1470
m/s. We use a waveguide (WR430) antenna resided beneath the
tank to radiate microwave signals to the sample. The antenna
is fed through a coaxial cable by a microwave source pumping
2.45-GHz 0.5-μs-wide pulses with a duty cycle of 0.05% and



LI et al.: DEEP-LEARNING-ENABLED MITAT BASED ON RESATTU-NET FOR TRANSCRANIAL BRAIN HEMORRHAGE DETECTION 2355

peak power of 20 kW. We adopt a 2.25-MHz single-element flat
ultrasound transducer configured in the way shown in Fig. 4(c)
to detect the generated acoustic signals, which is controlled to do
circular scanning around the skull at 180 discrete locations with a
scanning radius of 63 mm. The acoustic signals are sequentially
amplified by 59 dB, recorded by a data acquisition card with
a sampling rate of 15 MHz (PXI-5922, National Instruments),
and processed by a personal computer.

B. Construction of Training Sets

We perform two groups of simulations via k-Wave toolbox,
each of which establishes 1500 training sets and 100 for val-
idation. The two groups respectively correspond to the two
fabricated samples with a 10-mm-diameter hemorrhage spot
and a 5-mm-diameter hemorrhage spot. Dimensions of the en-
tire k-Wave acoustic simulation region and imaging region are
respectively set to be 300 × 300 pixels (Sx = Sy = 300) and
120 × 120 pixels (Ix = Iy = 120) with a pixel size of 0.5 mm ×
0.5 mm. The initial pressure in the hemorrhage spot is set to be
1.5 times higher than that in the brain tissue, i.e., 50% contrast.
The applied SOS and mass density in different materials are
listed in Table II [61]. The entire region is set to be acoustically
lossless. 180 transducers are located on a 63-mm-radius circle
around the sample to record the simulated acoustic signals.

We vary some parameters to enrich the training sets. To
be specific, the thickness of the skull in each training set is
nonuniform to account for the nature of typical human skulls,
which is changed from 2 to 10.5 mm in a random manner. Size
of the brain sample is varied from 900 to 2025 mm2 and rotate
the entire sample, both in a random manner. Moreover, size
of the hemorrhage spot is adjusted in the range of 7 to 11 mm
for the first group of 1500 training sets and 3 to 7 mm for the
second group of 1500 training sets, respectively. We use two
irregular convex polygons, with one totally contained within the
other, to represent the inner and outer boundaries of the skull. We
randomly adjust the two polygons to vary the shape of the skull.
These operations greatly enhance the richness of the datasets.
We then add white Gaussian noises to the simulated raw signals
with a of 20 dB SNR. We finally use the DAS algorithm to yield
an input image.

In the ground truth image, pixels in the hemorrhage spot are
set to 1 and the rest pixels in the surrounding area are set to
0. Although the SOS distribution is not included in the ground
truth, it affects the input images to a great extent.

C. Ex-Vivo Testing Results

We perform two sets of ex-vivo experiments using the two
fabricated samples to get the experimental testing data. For
the first sample, the DAS image in Fig. 5(a) only partially
reveals a blurred boundary of the 10-mm-diameter hemorrhage
spot. The recovered image from the trained network is given in
Fig. 5(b). The image contrast is noticeably enhanced and the
artifacts are significantly suppressed, making the hemorrhage
spot clearly distinguishable. Its boundary, size, and shape are
all reconstructed with high fidelity. For the second sample, the
5-mm-diameter hemorrhage spot is barely seen in the DAS

Fig. 5. Printed-skull-based ex-vivo experimental testing results.
(a) and (b) are respectively the DAS and recovered images for the sam-
ple with a 10-mm-diameter hemorrhage spot. (c) and (d) are respectively
the DAS and recovered images for the sample with a 5-mm-diameter
hemorrhage spot.

Fig. 6. (a) Photo of the homemade bovine skull ring. (b) Photo of the
porcine brain sample with a 5-mm-diameter hemorrhage spot.

result in Fig. 5(c), but is reconstructed with high quality in the
recovered image in Fig. 5(d). Sizes of the images in Sections III
and IV are 60 mm × 60 mm unless otherwise specified.

IV. EX-VIVO TESTING USING A BOVINE SKULL

A. Sample Preparation

Realistic human skulls bear high acoustic attenuation [62],
[63], [64], which also complicates the acoustic signal prop-
agation. In order to make the proposed ResAttU-Net-based
DL-MITAT framework more convincing, we further perform
ex-vivo experimental testing exercising a buffalo bovine skull.
As displayed in Fig. 6(a), we cut three 30-mm-wide arc-shaped
pieces from the top of the bovine skull and connect them end to
end to form a ring using hot-melt adhesive. The thickness of the
bovine skull ring is ranged from 2.2 to 8.1 mm and the largest
outer diameter is about 155 mm.

The hemorrhage-mimicking phantom used here is made of
73% water, 14.6% glycerin and 12.4% gelatin [65]. This leads
to a contrast of 28% that is around the lower limit of the reported
contrast range of brain hemorrhage [59]. Because a target with
a low contrast is generally hard to be differentiated by MITAT
[14], [66] and ultrasonography [67], it is very meaningful to
investigate such a challenging case. This is also helpful to eval-
uate the capability of the DL-MITAT technique in dealing with
different practical scenarios. For the bovine skull based ex-vivo
experiments, we prepare two samples, with one containing a
10-mm hemorrhage spot and the other only having normal
brain tissues. The scanning radius is increased to 85 mm. Other
experimental setups used in this section are the same as those
described in Section III-A.
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Fig. 7. Bovine-skull-based ex-vivo experimental testing results. (a) and
(b) are respectively the DAS and recovered images for the 10-mm-
hemorrhage sample. (c) and (d) are respectively the DAS and recovered
images for a normal brain sample. (e) and (f) are respectively the recov-
ered images for the 5-mm- hemorrhage and 3-mm-hemorrhage sample.
Sizes of (a)–(d) are 175 mm × 175 mm. Sizes of (e) and (f) are 60 mm ×
60 mm.

B. Construction of Training Sets

For this more complicated case, we establish in total 4000
training sets together with 200 sets for validation. The acoustic
simulation region and imaging region are respectively defined
as 350 × 350 pixels (Sx = Sy = 350) and 120 × 120 pixels (Ix =
Iy = 120) with a pixel size of 0.5 mm × 0.5 mm. The initial
pressure in the hemorrhage spot is set to be 1.2 times higher
than that in the brain tissue, i.e., 20% contrast. Configurations
of the acoustic properties are identical to those in Section III-B
unless otherwise specified.

We take several measures to guarantee the data richness of
the training sets. First, we vary the area of brain tissue from
1600 to 7225 mm2, the thickness of the skull from 2 mm to
8.5 mm, and the location of the hemorrhage spot in the brain
tissue (details can be found in the supplementary material),
which are all done in a random manner. Second, we sweep the
diameter of the hemorrhage spot from 7 to 11 mm. Third, in light
of the fact that the acoustic properties of human skulls have big
variation ranges, it is imperative to vary them in a reasonable
range in the training sets, as summarized in Table II [62], [63],
[64]. These data enriching measures can considerably increase
the practicability of the DL-MITAT mechanism for diversified
realistic scenarios.

After the simulations are done, we add Gaussian noises with
a SNR of 15 dB to the simulated raw signals. We then acquire
an input image via the conventional DAS method and initiate
the training process of the network.

C. Detection of Samples With and Without a
Hemorrhage Spot

We conduct two ex-vivo experiments respectively making use
of the bovine skull with the two samples. For the first sample, its
recovered image in Fig. 7(b) unambiguously reveals the 10-mm
hemorrhage spot with very high fidelity in terms of shape,
location and dimension. For the second sample, its recovered
image in Fig. 7(d) does not show any white spot indicative

of the occurrence of hemorrhage, which can be considered
as a normal case, i.e., without a hemorrhage spot. It is worth
mentioning that the training sets for this normal case are identical
to those Section IV-B. In other words, even if no normal case is
included in the training sets, the sample without a hemorrhage
spot can still be faithfully reconstructed. Thus, it is proved
that the proposed DL-MITAT methodology is able to reliably
distinguish hemorrhage from normal cases. This is crucial for
reducing false positive rate in potential clinical applications. On
the contrary, the DAS images shown in Fig. 7(a) and (c) exhibit
lots of streak-shaped artifacts and fail to discriminate between
the hemorrhage and normal cases.

For each of these two cases, we implement one more ultra-
sound pulse echo experiment to recover the outer boundary of the
bovine skull, which are displayed as the white irregular-shaped
rings in Fig. 7(b) and (d). By this manner, we can accurately
locate the detected hemorrhage spot inside the brain, which is
of great practical value for the diagnosis and treatment of brain
hemorrhage.

D. Detection of Smaller Hemorrhage Spots

To gain further insight of the proposed DL-MITAT approach,
we perform systematic studies of the capability and limitations
of the ResAttU-Net starting from this subsection.

We first fabricate and examine two new samples with smaller
hemorrhage spots, i.e., 5-mm and 3-mm diameter. We rebuild
4000 training sets together with 200 sets for validation, in which
the diameter of the hemorrhage spot is swept from 3 to 7 mm. The
image given in Fig. 7(e) exhibits a well recovered hemorrhage
spot with a size of 5 mm.

We find that the 3-mm hemorrhage spot with a 28% contrast
cannot be handled by the trained network. This is probably
because a small hemorrhage spot with low contrast generates
low-SNR acoustic signals (about 4 dB lower than that of a 3-mm
49%-contrast hemorrhage spot). The network is trained using
input images obtained by acoustic signals having good SNR. If
the measured SNR is not high enough, the input image of the
testing phase can be very noisy and the trained network may fail
to generate a good recovered image. Therefore, we make another
sample containing a 3-mm hemorrhage spot bearing an enhanced
contrast of 49%, which is the same as that used in Section III-A.
The imaging result showcased in Fig. 7(f) noticeably manifests
the hemorrhage spot at correct location with an accurate size.
So, diagnosing a hemorrhage spot of 3 mm with a relatively
high contrast is within the capability of the proposed technique.
This finding is very meaningful since the smallest detectable
hemorrhage spot by the commonly exercised clinical approaches
is about 3 mm [68].

E. Comparison of Different Networks

We then compare the performance of the ResAttU-Net
with another three networks, including original U-Net, ResU-
Net, and AttU-Net without residual skip connection. As sug-
gested by Fig. 8, the designed ResAttU-Net outperforms the
other networks in terms of image quality for all the four
experimental cases. The quantitative comparison based on
NRMSE, defined in (9), labeled in the images also supports
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Fig. 8. Bovine-skull-based ex-vivo experimental testing results comparing the performance of different networks using different samples.

Fig. 9. Bovine-skull-based ex-vivo experimental testing results studying the effect of number of training sets using different samples.

this conclusion. In addition, the AttU-Net compares favorably
to the ResU-Net as expected according to the description in
Section II-B.

NRMSE =

√∑M−1
m=0

∑N−1
n=0 |Y [m,n]−X [m,n]|2∑M−1

m=0

∑N−1
n=0 |X [m,n]|2 (9)

In (9), X and Y are respectively the ground truth image and
recovered image.

F. Number of Training Sets

Next, we investigate the effect of number of training sets
on the imaging quality. By maintaining the network structure,

we reduce the number of training sets to 3000 and 2000. The
recovered images of four tested cases are presented in Fig. 9
with the NRMSE results labeled. It is straightforward to see
that the image quality becomes worse as the number of training
sets and available information decreases. Moreover, the 5-mm
28%-contrast 3000-training-sets case results in almost the same
NRMSE as the 5-mm 49%-contrast 2000-training-sets case.
This fact implies that a higher contrast can efficiently reduce the
demanded number of training sets to render a recovered image
of the same quality. Furthermore, comparison with the results
in Section III reveals that a more complicated scenario needs
more training sets to train the network and achieve acceptable
performance.
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Fig. 10. Bovine-skull-based simulation testing results for mismatched conditions.

G. Mismatch Between Training Sets and Testing Data

Finally, we investigate some conditions using testing data that
does not fall into the range of the training sets, which are named
as mismatched cases [69]. We study four kinds of mismatches.
Since some testing data involves samples that are difficult to
realize in experiments, we apply the simulation method for
this study. In total 200 testing sets are built for each case and
the NRMSE is calculated for the corresponding 200 recovered
images. For each case, one of the 200 recovered images is given
in Fig. 10 as an example.

The first case has mismatch in the size of the hemorrhage
spot. We try two kinds of mismatches for this case. The first kind
utilizes 7-11 mm spots in the training sets and 3-7 mm spots in
the testing sets. The second kind is featured by 3-7 mm spots in
the training sets and 7-11 mm spots in the testing sets. Fig. 10
shows that the first kind recovers a hemorrhage spot bigger than
its actual size, while the second kind recovers a hemorrhage spot
smaller than its actual size.

The second and third cases respectively pertain to mismatched
SOS and attenuation coefficient of the skull. Similarly, we test
two kinds of mismatches. In the first kind, the acoustic parameter
in the testing sets is lower than that in the training sets. In
the second kind, the acoustic parameter in the testing sets is
higher than that in the training sets. The quality of the recovered
images for these mismatched cases in Fig. 10 is obviously
degraded compared to the matched counterparts. The results
of the first three kinds of mismatches undoubtedly indicate

that performance of the applied network is unfavorable in the
presence of mismatched parameters in the training and testing
sets. This is a general limitation for supervised learning.

The fourth case evaluates the effect of mismatched contrast
by two different settings. The first uses 20% contrast for training
while 50% contrast for testing. The resulting recovered image is
a little worse than the matched case that employs 50% contrast
in both data sets. The second defines 50% contrast in training
while 20% contrast in testing. The image is much worse than the
matched case that utilizes 20% contrast in both data sets. This
finding tells that if the contrast in the testing set is higher than that
in the training sets, an acceptable recovered image can still be
secured. However, if the contrast in the testing set is lower than
that in the training sets, the image quality is severely reduced.
This is probably because of the lower SNR in the testing set than
that in the training sets. This finding is also the reason why we
fabricate samples with a contrast a little higher than that in the
training sets.

H. Detection of an Irregular-Shaped Hemorrhage Spot

Beside the circular hemorrhage spot, we also test an irregular-
shaped hemorrhage spot (49% contrast) as shown in Fig. 11,
which is about 15 mm long and 7 mm wide. The training sets
are the same as the first mismatched contrast case in Fig. 10
using 50% contrast, which use rounded hemorrhage spots. The
recovered image given in Fig. 11 show reliably reconstructed
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Fig. 11. Bovine-skull-based ex-vivo experimental testing result for
an irregular-shaped hemorrhage phantom. (a) Photo of the sample.
(b) Recovered image.

Fig. 12. Bovine-skull-based ex-vivo experimental testing results to
distinguish among (a) Hemorrhagic stroke, (b) Ischemic stroke and
(c) Normal case.

shape and dimension of the irregular-shaped hemorrhage spot,
demonstrating the good generalization of the proposed DL-
MITAT approach.

I. Distinguish Between Hemorrhagic and Ischemic
Stroke

For potential clinical applications, it is meaningful to test if
the proposed method can distinguish between hemorrhagic and
ischemic stroke [70].We make a new sample by embedding a 10-
mm ischemia-mimicking phantom into porcine brain tissue. The
contrast of the ischemia spot is−37% (within the reported range
of ischemic stroke [60]), which means the microwave absorption
in the spot is 37% lower than that in the porcine brain tissue. We
rebuild 4000 training sets for this subsection. The first 2000
sets are for hemorrhagic stroke that follow the same setup as
those in Section IV-H. The second 2000 sets are for ischemic
stroke and adopt the same parameter variation ranges as the
first 2000 sets for hemorrhagic stroke except using a −50%
contrast. In the ground truth for the ischemic stroke, the ischemia
spot is set to 0 and the background region is set to 1. We then
use three testing sets to test this trained network, including a
hemorrhagic sample with 49% contrast, an ischemic sample with
−37% contrast, and a normal sample. The recovered images
presented in Fig. 12 exhibit very good quality and preliminarily
prove that the proposed technique is able to classify hemorrhagic
stroke, ischemic stroke and normal case. Many other aspects of
the transcranial ischemia detection need to be further researched,
which is our ongoing work.

J. Discussions

Although we only demonstrate 2-D conditions in this work,
the proposed ResAttU-Net-based DL-MITAT methodology is
applicable to 3-D scenarios, which is simply because the basic
procedure is not limited by the dimensions of applications. The

training sets can also be established by 3-D k-Wave simulations.
It is worth mentioning that there are two possible challenges
for the potential 3-D applications. The first one is the greatly
increased computational burden for obtaining the training sets
and training the network as compared to the 2-D case. The
second one is that a deeper embedded hemorrhage spot de-
mands higher input microwave energy to maintain the SNR
of thermoacoustic signals and quality of the recovered image.
This may increase the system cost and cause over heating in
the scalp. A newly reported focused microwave mechanism
may be used to reduce the demanded microwave power to
get a desired SNR for a deeply embedded hemorrhage spot
[71], [72]. The proposed method also holds the potential to be
realized by a handheld system that is more suitable for clinical
usage [73].

For the applied ResAttU-Net that is a kind of supervised
learning method, plenty of training sets are demanded to train
the network. Although experiments are usually conducted to
get training sets for DL-based photoacoustic imaging [41], the
adopted simulation method in this work bears two distinct ad-
vantages. First, in view of the large amount of required training
sets, the simulation method is considerably more time- and
cost-efficient than the experimental counterpart. Second, the
experimental method is infeasible for some scenarios since
desired samples exhibiting accurate microwave and acoustic
properties are impossible to be realized. For example, each
training set in Section IV-F uses a skull with specific SOS,
density and attenuation coefficient. However, it is impossible to
obtain so many different materials with exact predefined acoustic
parameters to do experiments. The simulation approach used in
this work is evidenced to be efficient and robust for DL-MITAT.
This mechanism can potentially be used in a variety of DL-based
applications.

Because the major purpose of this work is to detect brain
hemorrhage, the only target of interest is the hemorrhage spot.
This means recovering the background normal brain tissues in
the image is of less importance for the current task. For locating
the hemorrhage spot inside the brain, we can reconstruct the
boundary of the skull using the ultrasound pulse echo technique,
which can assist clinical diagnosis and treatment of brain hem-
orrhage. By ignoring the normal brain tissues in the ground truth
image, the network is able to mainly extract features in the region
with the hemorrhage spot while largely suppress the features in
the background region. This can also facilitate the calculation
the attention coefficient (in (5)) in the attention gate block, which
is because the attention coefficient is used to enhance the weight
of the target and decrease the weight of other irrelevant features
in the background region.

To save the computational cost, we use a 60 mm × 60 mm
limited reconstruction region. We also try a 120 mm × 120 mm
reconstruction area covering the entire region in the bovine
skull and show the imaging results in Fig. 8. It is seen that
the recovered hemorrhage spots still bear high quality and the
artifacts in the background region does not affect the conclusion
of a successful detection.

In the simulation setup of the training sets, we use 180
transducers located on a circle enclosing the entire brain sam-
ple. This means we collect time-domain acoustic signal at 180
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locations to do the image processing. In the experiments, we
scan a single-element transducer along a circle with a step of 2°
to obtain the required 180 measurements, which is essentially
equivalent to using a circular transducer array.

In the k-Wave simulations, the 180 transducers are set to point
transducers, which has an ideal uniform receiving pattern as
used by previous work [57]. Thus, the point transducer does
not induce any scattering or reflection of the acoustic waves.
The applied single-element transducer in the experiments is
designed to have very good impedance matching performance,
which means the surface of the transducer almost does not reflect
acoustic waves when it is listening. Even if some acoustic waves
are reflected by the transducer, which are then reflected back by
the skull and finally received by the transducer, such signals
can be easily filtered and will not affect the performance of the
proposed method. Accordingly, there is no need to compensate
for the wave scattering. Instead, we did compensation for the
simulated time-domain acoustic signals. To be specific, we
add 15-dB Gaussian noise to the simulated signals and filter
them using a filtering function obtained from experimentally
measured signals to increase the resemblance to the measured
ones.

This protocol can be directly applied in scenarios with larger
and thicker skulls simply by reestablishing the training sets. We
perform simulations to test a 6∼11.5 mm thick skull that can
mimic an adult human skull [23]. Good imaging results in Fig. 10
can still be obtained so long as the skull thickness variation range
in the testing data matches with that in the training sets.

We also investigate the microwave power penetration depth
in the brain and safety issues of this technique in the supplemen-
tary material, along with other topics such as irregular-shaped
hemorrhage and ischemic stroke.

V. CONCLUSION

In this work, we present the DL-MITAT modality to ad-
dress the acoustic inhomogeneity issue and demonstrate its
effectiveness in transcranial brain hemorrhage detection. We
propose a new network structure ResAttU-Net to implement the
DL-MITAT technique. We use the simulation method to build
training sets, which is much more time-efficient and feasible
than the experiment-based method. We demonstrate the validity
of the technique by ex-vivo experiments using a lossless printed
skull and an 8.1-mm thick bovine skull. The obtained results
provide preliminary verification of the ability of the DL-MITAT
method in eliminating the adverse effects of acoustic inhomo-
geneity and conducting transcranial hemorrhage detection. It
is also able to discriminate the hemorrhage from ischemia and
normal cases and detect a hemorrhage spot as small as 3-mm
large. In addition, we show that the ResAttU-Net outperforms
other networks for the current application, more training sets
or a higher contrast can render a better image, and mismatched
conditions cannot be handled by the DL-MITAT technique. This
work not only opens a compelling avenue for transcranial brain
hemorrhage detection in a cost-effective, time-efficient, accurate
and noninvasive manner, but also establishes a novel modality
for various promising applications of MITAT including other
transcranial brain imaging applications. It is also helpful for

dealing with the acoustic inhomogeneity problems in ultrasound
imaging modality.
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