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Deep Learning for Multiple Sclerosis
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and Manuel E. Hernandez

Abstract—Objective: Multiple sclerosis (MS) is a chronic
neurological condition of the central nervous system lead-
ing to various physical, mental and psychiatric complex-
ities. Mobility limitations are amongst the most frequent
and early markers of MS. We evaluated the effectiveness
of a DeepMS2G (deep learning (DL) for MS differentiation
using multi-stride dynamics in gait) framework, which is a
DL-based methodology to classify multi-stride sequences
of persons with MS (PwMS) from healthy controls (HC),
in order to generalize over newer walking tasks and sub-
jects. Methods: We collected single-task Walking and dual-
task Walking-while-Talking gait data using an instrumented
treadmill from a balanced collection of 20 HC and 20 PwMS.
We utilized domain knowledge-based spatiotemporal and
kinetic gait features along with two normalization schemes,
namely standard size-based and multiple regression nor-
malization strategies. To differentiate between multi-stride
sequences of HC and PwMS, we compared 16 traditional
machine learning and DL algorithms. Further, we studied
the interpretability of our highest-performing models; and
discussed the association between the lower extremity
function of participants and our model predictions. Re-
sults: We observed that residual neural network (ResNet)
based models with regression-based normalization were
the top performers across both task and subject generaliza-
tion classification designs. Considering regression-based
normalization, a multi-scale ResNet attained a subject clas-
sification accuracy and F1-score of 1.0 when generaliz-
ing from single-task Walking to dual-task Walking-while-
Talking; and a ResNet resulted in the top subject-wise accu-
racy and F1 of 0.83 and 0.81 (resp.), when generalizing over
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unseen participants. Conclusion: We used advanced DL
and dynamics across domain knowledge-based spatiotem-
poral and kinetic gait parameters to successfully classify
MS gait across distinct walking trials and unseen partic-
ipants. Significance: Our proposed DL algorithms might
contribute to efforts to automate MS diagnoses.

Index Terms—Deep learning, gait, multiple sclerosis.

I. INTRODUCTION

MULTIPLE sclerosis (MS) is an immune-mediated, neu-
rodegenerative disease that affects approximately 1 mil-

lion people in the United States and more than 2.5 million
globally [1], [2], with a shift in peak prevalence to adults 55–64
years of age [3]. MS can be immensely heterogeneous; persons
with MS (PwMS) may suffer from extremely mild to severe mus-
cle immobility, speech and vision complications, and memory
issues [4]. Gait and balance dysfunction are common symptoms
in PwMS, with nearly 85% of PwMS describing gait disorders
as a major complication [5] and roughly 50% of patients needing
walking assistance within 15 years of MS onset [6]. Gait per-
formance declines have been observed in PwMS, particularly as
disability increases [7], [8], [9], [10]. Past studies have found
reduced gait speed, shorter steps, extended stride time, wider
base of support, reduced single support phase, and a prolonged
double support phase in PwMS compared to controls [7], [8].
However, most gait-based methods for identifying MS have
relied upon traditional statistical techniques to examine differ-
ences in spatiotemporal features and correlations with disability.
Compared to statistical testing that analyze features individually,
machine learning (ML) models are capable of utilizing linear
and nonlinear combinations of spatiotemporal and kinetic gait
features to potentially improve MS gait identification.

Given the increased access to objective gait data from
wearable technologies or traditional gait labs, supervised ML
methodologies have been increasingly used in human gait anal-
ysis across neurological populations, including MS [11], [12],
[13]. In particular, ML methods like random forest and artifi-
cial neural networks have been used to identify gait changes
in Parkinson’s disease in [11], [12], whereas [13] focused on
MS-related changes. With the increasing successes of deep
learning (DL) across domains, recent works [14], [15] compared
several ML models with the long short-term memory (LSTM)
DL approach to distinguish between low and high fall risk in
neurological gait. The LSTM model outperformed all traditional
ML methods (classification accuracy: 0.94 (LSTM) vs. 0.88 (top
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ML model) in [14] and 0.86 (LSTM) vs. 0.73 (top ML model)
in [15]), showcasing the potential of DL in human gait analysis.
See [16], [17] for a more detailed comparison of ML and DL
approaches in gait analysis.

This work attempts to examine MS related changes in spa-
tiotemporal and kinetic gait features across multiple strides;
and evaluate the effectiveness of deep learning for MS dif-
ferentiation using multi-stride dynamics in gait (DeepMS2G).
Specifically, we propose a DL-based methodology to classify
multi-stride sequences of PwMS from healthy controls (HC),
so as to generalize across different walking tasks and subjects.
Building upon prior work examining MS classification using
traditional ML frameworks on individual strides [13], we cate-
gorized PwMS using the following 2 classification designs:

a) Task generalization demonstrating the generalization
over different tasks. Specifically, we train binary (healthy
vs. MS) supervised classifiers on Walking (W) trials and
test them on Walking-while-Talking (WT) trials, to exam-
ine how findings from data collected in a clinic or lab may
generalize to more realistic gait tasks.

b) Subject generalization establishing the generality over
newer subjects. Specifically, we train binary classifiers
on some subjects and apply them to an independent set
of withheld test subjects.

Concretely, our contributions are as follows:
� We presented a DL approach to differentiate MS related

changes from controls using multi-stride dynamics in spa-
tiotemporal and kinetic gait features. Of particular novelty
is our focus on MS.

� We utilized multi-stride dynamics from 21 extracted kine-
matic and kinetic gait features.

� We benchmark the comparative performance of 16 diverse
ML and DL models for MS differentiation across two
classification frameworks, i.e. task and subject general-
ization and two feature scaling strategies, i.e., body size-
and multiple regression-based normalization.

� We investigated the explainability of our top-performing
algorithms via ablation study on gait features and feature
importance. Moreover, we discussed the association be-
tween the lower extremity function of participants and our
model predictions. This post hoc analysis of DL models
was absent in previous analogous studies.

II. RELATED WORKS

Neurological gait disorders like MS are characterized by
reduced mobility, abnormal gait mechanics, poor balance and
muscle weakness, as well as cognitive and autonomic dys-
function [18], [19]. These symptoms typically lead to fatigue
and physical inactivity and consequently increase the risk of
development of secondary diseases. Several works on move-
ment analysis have utilized wearable inertial measurement unit
sensors [20], electromyography (EMG) [21], and motion capture
systems [22] to predict neuromuscular changes in neurological
gait. Past studies on gait-based methods for identifying MS
have relied upon statistical significance tests such as t-test, and
ANOVA (analysis of variance) to examine differences in aver-
age and variability of spatiotemporal features, and correlations
with neurological impairment assessed by Kurtzke’s Expanded
Disability Status Scale [9], [23], [24], [25]. Compared to the
statistical tests that analyze features individually, ML and DL

models are capable of determining multivariate discriminants by
taking into account multiple features. Further, these algorithms
can also produce non-linear decision boundaries, potentially
leading to superior accuracies. Recently, several studies have
focused on traditional ML to classify gait patterns in PwMS [13],
[26]. Additionally, authors in [15] used a long short-term mem-
ory model to distinguish between low and high fall risk in
PwMS via accelerometer sensors. We utilized data driven DL
for classification of multi-stride sequences of PwMS from HC
utilizing domain knowledge-based spatiotemporal and kinetic
gait features. Note that in comparison to [15], we studied a
different classification task and used a separate cohort.

In this paper, we utilized spatiotemporal and kinetic gait
parameters as input features, which contain valuable domain
knowledge with the potential to improve classification perfor-
mance. Further, since the effect of gait normalization is seem-
ingly unexplored in the existing MS literature, we compared
the classification ability of all models with standard size-based
and multiple regression normalization schemes, first explored
in [12], [27], across both the studied task- and subject general-
ization model designs. Moreover, we explored the explainability
of our top-performing algorithms; and discussed the association
between the lower extremity function of participants and our
model predictions.

III. DESIGN OF EXPERIMENTS: SUBJECTS AND SETUP

A. Study Participants

The sample consisted of 40 subjects; 20 PwMS (age: 61.05±
6.87 years [49−75 years], male/female: 5/15) and 20 age,
weight, height and gender-matched HC (age: 61.2± 5.87 years
[48−68 years], male/female: 5/15) from the local community.
Our inclusion criteria ensured all participants were medically
stable, i.e., a score of above 18 on the telephone interview for
cognitive status [28], with no recent lower limb injury; further,
subjects were right-side dominant and had corrected to normal
vision. All included PwMS were relapse-free for the past month,
had mild to moderate disability, i.e., 4.3± 1.62 [1.0−6.0] on the
Kurtzke’s Expanded Disability Status Scale (EDSS) [29], and
had no other cognitive disorder that may additionally influence
their body balance. Note that 2 HC and 3 PwMS were excluded
for holding the handrails while walking on the treadmill and thus
biasing their force readings. Also, we separately reserved a group
of 30 additional HC (age: 67.6± 10.34 years [50−87 years],
male/female: 9/21) to normalize our extracted gait features (see
IV-B for further details). All participants signed an informed
consent (Protocol No. 15674) prior to experimental trials.

B. Experimental Paradigm

We used a C-Mill, Motekforce Link instrumented treadmill
for participants to walk at their self-paced speed during all
experimental trials. The treadmill had a built-in force plate
supporting kinetic data acquisition, specifically, allowing for
vertical ground reaction forces to be collected. Each participant
completed a 75 seconds trial at their self-selected pace under
2 configurations, i.e., single-task paradigm W and dual-task
condition WT; participants recited alternate letters of the al-
phabet while walking for WT trials. All participants were in-
structed to equally prioritize their attention between gait motion
and the cognitive exercise during WT trials. Past studies have
demonstrated differentiation between the single- and dual-task
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Fig. 1. Workflow pipeline. The proposed DeepMS2G (deep learning for MS differentiation using multi-stride dynamics in gait) framework.

Fig. 2. Gait features. Left: Spatial features, namely stride width, length and foot progression angles, Middle: Temporal features, namely stride,
stance, swing, single support (SS) and double support (DS) times, Right: Kinetic features, namely butterfly diagram-based variability and forces.
GC is gait cycle, AP is anterior-posterior, and CoP is center of pressure. See [13] for detailed definitions of features.

designs, where WT (in comparison to W) illustrated more resem-
blance to real life daily gait in middle-aged to older adults [30].
Throughout each walk, the built-in treadmill software recorded
1) position coordinates and time stamps for each gait event, such
as left and right heel strike, using a single force plate, 2) ground
reaction forces, 3) treadmill speed, and 4) center of pressure
position coordinates at 500 Hz.

IV. GAIT FEATURE EXTRACTION AND DESIGNS

Our gait data analysis pipeline is illustrated in Fig. 1.

A. Gait Terminology and Feature Extraction

A stride or gait cycle has the following phases (in order), HSR:
heel strike right, TOL: toe-off left, MidSSR: midstance right,
HSL: heel strike left, TOR: toe-off right, MidSSL: midstance
left, and subsequent HSR beginning the next stride. We extracted
21 characteristic spatiotemporal and kinetic features across
strides from the raw gait data to comprehend distinguishing
patterns between HC and PwMS gait. See Fig. 2. The extracted
features can be organized in following 4 categories:

� Spatial: 4 spatial gait features, i.e., stride width, stride
length and the left and right foot progression angles [31],
were extracted for each stride. Fig. 2 (left) diagrammat-
ically summarizes the definition for these features on an
overground view of the gait patterns. See [13] for detailed
definitions of features.

� Temporal: 7 temporal features, i.e., swing time, stance
time, stride time, supporting (right single, initial double
and terminal double) times and cadence, were extracted
for each stride. Fig. 2 (middle) illustrates these features
on a sagittal plane view of a stride starting at HSL.

� Spatiotemporal: 2 spatiotemporal markers, i.e., 1) stride
speed defined as the ratio of stride length and stride time,
and 2) walk ratio defined as the ratio of stride length to the
count of strides covered in a minute, were extracted for
each stride.

� Kinetic: 8 kinetic features, i.e., 6 forces, at each of the
6 gait events, and 2 butterfly diagram-based features,
were extracted for each stride. A butterfly diagram [32]
defines the recurrent center of pressure trajectory for
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TABLE I
BODY SIZE-BASED NORMALIZATION

several strides throughout a participant’s walking trial. We
extracted 2 characteristic gait features from the butterfly
diagram, namely, 1) lateral shift in the intersection point
of the center of pressure trajectory, and 2) lateral squared
deviation from the average intersection point for a trial.
See Fig. 2 (right).

After eliminating nonconsecutive strides and those with
missing or invalid gait events, we obtained 1654 (HC/PwMS:
905/749) and 1576 (HC/PwMS: 878/698) strides from W and
WT trials (resp.), across 18 HC and 17 PwMS. Deriving these
multiple samples per subject’s walk significantly augmented as
well as introduced variations to our data.

B. Data Normalization

Similar to prior work on PwMS [13] and other neurological
disorders [12], [27], we compared the following 2 normalization
approaches to reduce the intrinsic bias of our extracted gait
features on the demographics of the subject and thus improve
the MS gait identification accuracy:

� Body size-based normalization (Size-N): Gait features
were normalized to dimensionless quantities via division
by their corresponding dimension-matched body size-
based scaling factors [33]. Denoting the body weight
(in kg), height (m), shoe size (m) and acceleration of
gravity (9.81 m/s2) by w, h, Ssize and g (resp.), Table I
summarizes the size-normalized or size-N gait features.

� Multiple regression-based normalization (Regress-N): We
regressed the gait features of normative walking data from
30 additional HC (age: 67.6± 10.34 years [50−87 years],
male/female: 9/21) on multiple demographic characteris-
tics and used these as baselines to normalize our extracted
gait features. We derived the same 21 gait features from a
total of 3923 valid strides obtained from our 30 additional
HC. A regression model, which minimized the Tukey
biweight loss of standard Gaussian residual errors, was
fitted to each gait feature. In this regression, independent
variables were the demographics (weight, height, gender
and age); and dependent variables were subject-wise av-
eraged gait feature values (as defined earlier in Section
IV-A). Note that we only used these 30 additional HC

that were not part of the main study (Section III-A). Gait
features from both trials (W, and WT) of the main study
subjects were then normalized to dimensionless quanti-
ties, where their predicted values were obtained via their
corresponding fit and subject demographics.

C. Stride Augmentation

Building upon past work on fall risk assessment [14], we
followed the moving window method to assemble the extracted
gait features from 5 time-consecutive strides, creating a 5× 21-
dimensional sequence (data sample) with 21 features (time
series) over 5 temporally ordered strides (time steps). Subse-
quently, we moved our window by 2 strides to devise the next
5-stride data sample. Thus we derived numerous multi-stride
samples per subject, each capturing the gait variability and
dynamics across 5 heterogeneous strides. This way, we sub-
stantially augmented and introduced variations to our original
subject-level data in Section III-A. This data augmentation ap-
proach might assist in the generality and training process of our
complex DL models. Overall, we formed 736 (HC: 416, PwMS:
320) and 700 (HC: 399, PwMS: 301) 5-stride sequences from
W and WT trials (resp.), across 35 subjects.

D. Feature Designs

Next, we used our derived 5× 21-dimensional samples to
design 1D aggregated gait features vector and 2D sequential
data, suited for our traditional ML- and DL-classifiers (resp.).

� Aggregated features: We used mean and standard devia-
tion to aggregate our 5× 21, i.e., 2D, sequences along the
time dimension and construct a 1D feature vector of length
42, which is the expected input for any classical ML model
like decision tree, etc. Thus we compiled a dataset of 1436
data samples across W and WT trials with 42 average- and
deviation-based features per sample.

� Sequential features: We directly used the extracted 2D-
sequences (5× 21) as the input for all our convolutional
as well as recurrent DL models. This 2D data encompasses
both domain-knowledge along with temporal variations in
subject’s gait and further, did not risk losing information
during aggregation. Overall, our input for DL models was
1436 samples, each consisting of a 21-channel sequence,
with spatiotemporal and kinetic gait parameters, over 5
consecutive time steps, capturing possible dynamics in the
gait data.

V. CLASSIFICATION AND EVALUATION

We examined binary classification to differentiate between
5-stride sequences of HC and PwMS across task- and subject
generalization frameworks. Overall, we compared 16 models
(see Section V-A); in particular, 9 traditional ML algorithms,
4 convolutional and 3 recurrent DL architectures, across both
classification frameworks, with corresponding model training
and evaluation details in Sections V-B and V-C (resp.). For
task generalization, all models were trained on 736 5-stride
sequences across 35 subjects in W trials and tested to categorize
700 sequences of the same subjects in WT trials. Given a limited
dataset with 35 subjects, we used 5-fold cross-validation for
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Fig. 3. Convolutional architectures. Top left: Basic block, Bottom left: Bottleneck block, Top right: ResNet, Bottom right: MSResNet. Note: ⊕
denotes element-wise addition in the basic and bottleneck residual blocks.

subject generalization design. Further, all models were com-
pared across both size-N and regress-N normalized features. All
features were Z-score normalized before inputting them to the
model.

A. Classification Models

Firstly, we examined 9 traditional ML algorithms: logistic
regression (LR), support vector machine with linear (LSVM)
and radial basis function (RBF SVM) kernels, decision tree
(DT), random forest (RF), adaptive boosting (AdaBoost), eX-
treme gradient boosting (XGBoost), gradient boosting machine
(GBM) and multilayer perceptron (MLP) [34]. We used the ag-
gregated gait features as input for these classical ML algorithms.
Next, we compared the following 4 convolutional DL models
(see Sections V-A1 to V-A4) and 3 recurrent models (Sections
V-A5 to V-A7); for these algorithms, a sequence of 5 consecutive
strides was used directly as the model’s input. These algorithms
have been previously used for vision-based gait analysis in our
past work [35].

1) 1D Convolutional Neural Network (CNN): Our CNN
architecture consisted of multiple convolutional blocks where
each block was composed of a 1D convolutional layer succeeded
by a batch normalization layer, non-linear activation function,
dropout layer [36] and a pooling layer. The convolution func-
tion hierarchically extracted low-level features from the input
data in the initial few convolutional layers to more complex
high-level characteristics as subsequent layers are applied in

the architecture. We experimented with several activation func-
tions to introduce non-linearity into our convolutional layer
output neurons, including a rectified linear unit (ReLU). We
also explored dropout layers to randomly disable neurons and
their corresponding connections to avoid over-fitting during the
training process. The output was then passed through multiple
feed forward layers and finally, our final linear layer yielded a
vector of length 2.

In contrast to recurrent DL models with an inherent sense
of sequential processing for temporal data, CNNs (where the
entire sequence is fed at once) may not necessarily handle strides
within a multi-stride sequence relative to their positional order.
Consequently, we used the sinusoidal positional encoding [37]
to explicitly add this information to the input.

2) Residual Neural Network (ResNet): ResNets learn
residual functions relative to the layer inputs and thereby, as-
sist in the training of deeper models [38]. The fundamental
units for our ResNet architecture were 2 types of residual
blocks, namely, basic and bottleneck blocks. A basic (or bot-
tleneck) block consist of 2 (or 3) 1D convolutional layers,
batch normalization and ReLU non-linearity; the last layer’s
activation function was used following the addition of the learnt
residual mapping with the input. Similar to Section V-A1, we
also experimented with using a sine-cosine positional encod-
ing to augment order information to our input. Fig. 3 shows
a sample ResNet architecture (top right) along with the de-
signs for basic (top left) and bottleneck (bottom left) residual
blocks.
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Fig. 4. TCN architecture. Left: A dilated causal convolution with dilation factors d = 1, 2, 4, 8 and convolution kernel size of 3, convolution stride
of 1, where Z(1), . . . , Z(t) being the input and Z∗(1), . . . , Z∗(t) being the output; Middle: A single TCN residual block, with x(i−1) being the input
and x(i) as the output of the i-th TCN block; Right: A TCN of 10 blocks, connected with a fully connected end layer with softmax activation function,
to generate the classification probabilities.

Fig. 5. Recurrent architectures. Top: A single RNN (left), LSTM (middle) and GRU (right) cell with input xt, hidden state ht, cell internal state ct,
and output yt. Bottom: A cascade of layers of RNN (left), LSTM (middle) and GRU (right) cells, connected with a linear end layer, with softmax
activation function, to generate the classification probabilities. LSTM cell: Forget gate ft determines the information to discard from the cell state
ct−1 by looking at the current input xt and prior hidden state ht−1. Input gate it decides the values to update and the corresponding update to cell
state is given by c̃t. Finally, output gate ot decides the portions of cell state to output. GRU cell: Update gate zt selects the information to add and
discard in the hidden state, and reset gate rt determines on how much prior information to forget based on the current input xt and past hidden
state ht−1. The updated hidden state is given by ht.

3) Multi-Scale Residual Neural Network (MSResNet):
Often, utilizing a fixed single-scale convolutional kernel size to
extract features from only one scale may not be optimal. Con-
sequently, we experimented with the multi-scale kernel-based
ResNet architecture [39] to derive features from multiple scales.
The extracted features from the initial convolutional block were
sent through 2 branches of 3 basic blocks with {64, 128, 256}
filters, where convolutional kernels in the 2 branches were fixed
to be 3 and 5 (resp.). Next, these CNN-extracted multi-scale
features were concatenated to a single vector. This vector was
fed as input to a dense network with 2 output neurons (one
for each class: HC and PwMS). Fig. 3 depicts our MSResNet
architecture (bottom right).

4) Temporal Convolutional Network (TCN): TCN [40] uti-
lizes residual connections as well as dilated causal convolutions,
where dilations enable the model to look quite far back in the

past while making predictions and causality ensures no future
data leaks to the past. Fig. 4 visually details the TCN architecture
consisting of 10 (hyperparameter) TCN residual blocks on the
right, with the corresponding structure of a single TCN block in
the middle and dilated causal convolution framework on the left.
Note that each TCN block consists of a weight normalization
layer (see [41] for details).

5) Vanilla Recurrent Neural Network (RNN): RNNs in-
trinsically integrate the sequential order of strides as internal
memory in their backbone architecture. Fig. 5 schematically
details a single RNN cell at the top left with input (xt), hidden
(ht) and output (yt) states and a sample RNN architecture at the
bottom left.

6) Long Short-Term Memory (LSTM): LSTM [42] re-
solves the vanishing gradient problem that is existent in vanilla
RNNs when dealing with longer sequences, given its feedback



KAUR et al.: DEEP LEARNING FOR MULTIPLE SCLEROSIS DIFFERENTIATION USING MULTI-STRIDE DYNAMICS IN GAIT 2187

loop structure. A single LSTM unit, as depicted in Fig. 5, utilizes
a cell state and input, forget and output gates, to either include
or eliminate data to the cell state. We experimented with both
uni- and bi-directional LSTM layers.

7) Gated Recurrent Unit (GRU): Similar to LSTM,
GRU [43] also utilizes 2 gates, namely, reset and update gates to
handle the vanishing gradient problem in recurrent networks.
Our GRU model was a stack of n (hyperparameter) uni- or
bi-directional GRU layers, where each layer i output a sequence
of hidden size si (hyperparameter) features. The features from
the n-th layer at the last time step were followed with a dense
network to output class probabilities (Fig. 5).

B. Model Training

To prevent information leakage, we ensured that no single
subject had its multi-stride sequences split between training
and validation folds. All computations were implemented on
an NVIDIA GPU (12 GB Tesla P100) using PyTorch v1.7.0 DL
platform in Python 3.6. In all classifiers, we set a fixed random
seed for reproducible results. We processed our data in batches
of 128 samples each and randomly shuffled training samples
at every epoch to reduce bias. We tried several optimization
algorithms, namely, stochastic gradient descent with and without
momentum, root mean square propagation (RMSprop), adaptive
moment estimation (Adam), and Adam with decoupled weight
decay (AdamW), each with different learning rate schedules
as well as weight decay [44]. In addition to weight decay and
early stopping (with patience (hyperparameter) epochs), using
dropout between network layers also helped prevent over-fitting
in our models. To manage the possible disparity in scales of
the processed model features, we tried layer normalization [45]
to normalize each feature to zero mean and unit variance. A
thorough experimental hyperparameter search was performed
on the validation set to determine optimal framework for each
learning classifier.

C. Evaluation Details

For evaluating our task generalization classifiers, we used the
test set metrics, namely, precision (P), recall (R), accuracy (A),
F1 score (F1) and area under receiver operating characteristic
curve (AUC); for subject generalization, we used the mean and
standard deviation in cross-validation metrics. All models were
evaluated at 2 categorizations, namely, 5-stride sequence- and
subject-level; majority voting was used to classify subjects as
HC or PwMS. Thus a correctly classified subject’s walk had
a majority of multi-stride sequences accurately detected as of
the appropriate cohort. We denote the sequence and subject-
level evaluation metrics with seq (i.e. Pseq , Rseq , Aseq , F1seq ,
AUCseq) and sub (i.e. Psub, Rsub, Asub, F1sub, AUCsub) in the
sub script (resp.). Further, for all DL models, we monitored
learning curves for convergence of training accuracy and cross
entropy loss metrics across epochs.

VI. EXPERIMENTAL RESULTS

In general, MS subjects had a broader stride width and a
shortened stride length; and additionally, a reduced cadence,
speed and single support time along with a prolonged double
support, stance and stride times. Fig. 6 shows the averaged
gait cycle waveforms for HC and PwMS in the W trial. A
similar pattern was observed in trial WT as well. We notice no

Fig. 6. Averaged gait cycle waveforms for healthy controls and per-
sons with multiple sclerosis in the walking trial. Error bars to the aver-
aged solid plot line represent standard deviation in the waveforms.

statistically significant differences between the waveforms of
the two groups; this significant overlap between the waveforms
of healthy and MS groups depicts the challenges of classifying
between the healthy and MS gait. Further, the spatiotemporal
differences seen in the plot are potentially driven by the changes
in the step length, i.e., we see a bigger peak with a longer step or
in other words, steps drive the peaks for the gait cycle waveforms.
These observations are indeed aligned with the past findings
regarding gait changes in PwMS. However, no single feature
demonstrated a clear distinction between PwMS and HC; and
thereby, a supervised learning approach is meaningful for this
domain.

A. Statistical Analysis

Considering trial W, statistically significant differences be-
tween means were observed in body size-normalized terminal
double support, force on TOL, left foot progression angle, and
butterfly diagram-derived lateral shift and squared deviation.
When normalized using the regression technique, significant
differences were noted in terminal double support, lateral shift
and squared deviation. Considering WT, statistically significant
differences between means were observed in size-N and regress-
N terminal double support, lateral shift and squared deviation.

B. Prediction Models

In order to classify sequences and subjects between HC and
PwMS for task- (VI-B1) and subject generalization (VI-B2)
designs, 16 diverse traditional machine and DL algorithms were
compared with size-N and regress-N data. These sequences were
fairly balanced across both classes in our data.

1) Task Generalization: Table II summarizes the sequence-
and subject-wise evaluation metrics for the top-3 ML and DL
task generalization classifiers on categorizing the test set se-
quences of trial WT. Majority voting evidently upgraded all the
sequence-wise performance metrics within each algorithm, such
as from 82.3% to 88.6% accuracy on MSResNet with size-N
data. The results further improved across all metrics for DL
algorithms with regress-N data in contrast to when using size-N
data. The top-3 DL algorithms, that is, MSResNet, GRU and
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TABLE II
TASK GENERALIZATION: COMPARING SEQUENCE- AND SUBJECT-WISE TEST SET PERFORMANCE ACROSS TOP-3 ML AND DL ALGORITHMS

TABLE III
SUBJECT GENERALIZATION: COMPARING SEQUENCE- AND SUBJECT-WISE CROSS-VALIDATION PERFORMANCE ACROSS TOP-3 ML AND DL ALGORITHMS

RNN (in order), had a sequence-wise accuracy, Aseq , of 91.7%,
88% and 87.3% (resp.), with the regression normalized data. Fur-
ther, majority voting gave a perfect subject-level classification
accuracy, Asub, across the 3 top DL algorithms. In contrast, these
DL models had an Aseq of less than 85% and the maximum Asub

of 97.1% when using the size-N data. Similarly, the highest se-
quence classification AUC (AUCseq) was 0.97 using MSResNet,
followed by 0.95 and 0.94 using GRU and RNN (resp.), with the
regress-N data, while the maximal AUCseq was 0.92 with size-N
data using the vanilla RNN architecture. The top-3 ML models,
namely, DT, XGBoost and MLP, all had an Asub of less than
92% vs. a perfect Asub with DL models using regress-N data.
MSResNet with regress-N data was an overall top-performer
for task generalization with an accuracy, F1 and AUC of 91.7%,
0.91 and 0.97 (resp.), at a sequence-level, followed by GRU and
RNN with a matching perfect subject-level classification. This
top MSResNet architecture, illustrated in Fig. 3, was trained
for 45 epochs (as decided by the early stopping paradigm with
patience 20) with a batch size of 100, and Adam optimizer along
with a learning rate of 0.005; with nearly 2.1 million model
parameters, this model took 15 minutes to train and 1.5 seconds
to evaluate on a GPU. MSResNet utilizes both multi-scaled and

residual learning frameworks to discover robust dynamics in gait
motion.

2) Subject Generalization: Table III illustrates the mean
and standard deviation of 5-fold cross-validation evaluation met-
rics for the top-3 ML and DL subject generalization classifier.
Not surprisingly, the subject-wise metrics were superior to the
sequence-wise performance measures. Overall, ResNet was the
highest-performing classifier across all DL and traditional ML
algorithms. All algorithms performed better with the regress-N
data in contrast to the standard size-N data. The top subject
generalization algorithm was ResNet with regress-N data at-
taining the mean accuracy, F1 and AUC of 72.8%, 0.63 and
0.70 (resp.), at sequence-level; and 82.9%, 0.81 and 0.81 (resp.),
at subject-level classification. However, the top-3 ML models,
namely, LR, LSVM and DT, all ended up with a mean Asub,
F1sub and AUCsub of less than 75%, 0.73 and 0.74 (resp.). The
top-performing ResNet architecture used a positional encoding
layer followed by an initial convolutional block and 4 bottleneck
blocks with {64, 128, 256, 512} filters (resp.); each bottleneck
residual block had 3 convolutional layers with kernel sizes {3,
5, 1} (resp.). It was trained for 5 epochs with a batch size of 128
and AdamW optimizer (learning rate: 0.01, weight decay: 0.01);
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TABLE IV
ABLATION STUDY FOR TASK AND SUBJECT GENERALIZATION FRAMEWORKS

with nearly 433 K trainable parameters, training took around
1.5 minutes on GPU. AdamW typically helps models to train
faster and generalize better. See Fig. 3 for an illustrative ResNet
architecture.

This diverse performance across model frameworks and nor-
malization schemes by different classifiers is attributed to the no
free lunch theorem for supervised algorithms, stating there is no
universally accurate algorithm across all datasets and evaluation
metrics [46]. For further post hoc analysis in Sections VI-C to
VI-E, we used regress-N data and top-performing DL algorithms
as they revealed better performance over both task- and subject
generalization frameworks.

C. Ablation Study on Gait Features

Next, we perform an ablation study in an attempt to compar-
atively evaluate the importance of various feature subcategories
for classification, particularly 7 temporal, 4 spatial, 13 spa-
tiotemporal, 8 kinetic, 15 temporal-kinetic and 12 spatial-kinetic
features relative to all 21 features. All subject-wise evaluation
metrics for the top model per data subset are presented in Ta-
ble IV across both the task- and subject generalization schemes.
Note that we train and tune all ML and DL architectures entirely
from scratch on these feature subsets as part of our post hoc
analysis. DL, especially all recurrent architectures along with
ResNet and MSResNet, exceeded the performance of traditional
ML algorithms over all feature subsets and both generalization
frameworks. It is interesting to note that there is an overlap
between top architectures in Section VI-B and Table IV. The
optimal task generalization metrics were observed by utilizing
the entire 21-dimensional feature set with MSResNet (Asub:
1.0, F1sub: 1.0), closely followed by spatiotemporal subset with
LSTM (Asub: 0.97, F1sub: 0.97), and then by spatial-kinetic
parameters again with MSResNet (Asub: 0.94, F1sub: 0.94).
Analogously for subject generalization, employing all features
with ResNet resulted in top mean cross-validation performance
(Asub: 0.83, F1sub: 0.81), followed by spatiotemporal (Asub:
0.80, F1sub: 0.69) and spatial-kinetic (Asub: 0.77, F1sub: 0.71)
feature subsets, both also with ResNet. Across all feature designs
for both model frameworks, CNN and TCN were never the
top performers. Note that task generalization had a distinct
variety of models that were top performers for each feature
stream, whereas ResNet was the only top performer for subject
generalization across all subsets, except for temporal-kinetic
features where RNN was better. Within both task- and sub-
ject generalization designs, results when utilizing the complete
feature set surpassed all other examined subset combinations;

moreover, we observed that the spatiotemporal subset presents
superior performance to any other composition with kinetic
features. Further, comparing these results in Table IV with the
performance in [13], we infer that using DL with multiple strides
outweighs single-stride performance across both model designs
and all data subgroups. Overall, this analysis backs our use of
all spatiotemporal and kinetic features for MS classification.

D. Feature Importance

In this section, we attempted to demonstrate the interpretabil-
ity of our DL models by means of 1) permutation feature
importance (VI-D1) that defined the most and least informative
features in our gait classification models, and 2) visualizing
the neural network’s inner feature maps at the penultimate
layer (VI-D2) that gave insights about model’s complex internal
processing.

1) Permutation Feature Importance: Having fixed the
regress-N normalization scheme, we permuted each of the 21
gait features, one at a time, and assessed the reduction in eval-
uation metrics for our top performing models, i.e., MSResNet
for task generalization and ResNet for subject generalization.
The inherent randomness in shuffling might bias our findings,
thus this procedure was repeated 20 times for the test set and the
corresponding metrics over these reiterations were averaged out
for relatively robust results. This shuffling procedure broke the
relationship between the shuffled feature and the corresponding
target, and thus the drop in model performance after feature
permutation was indicative of how much the model depended
on the feature. Therefore, a reduced model performance after
permuting a feature signified higher dependence of our model
on the associated feature for classification and consequently, a
greater importance of the respective feature. For task general-
ization, force at MidSSR followed by right single support and
right foot progression angle (in order) were the most informative
features; however, walk ratio was the least predictive of labels.
For subject generalization, the most informative features with
the least accuracy after permutation were stride time and lateral
shift followed by stride length. A few features, namely, cadence
and lateral deviation, had very little effect on model performance
for subject generalization.

2) Visualizing Penultimate Layer Feature Vectors: Given
a DL model’s involved architecture comprising of several layers
with numerous neurons and correspondingly large number of
learnt parameters, we visualize our top DL network’s feature
vectors at the penultimate step, in an attempt to comprehend
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Fig. 7. 2D t-SNE visualization for task generalization. Two natural
clusters, shown in green and red, grouping the 5-stride sequences of
HC and PwMS (resp.), are identified in last layer embedding for the top
task generalization model. Mild, mild-to-moderate and moderate severity
subgroups within PwMS are marked in yellow triangles, pink squares
and orange circles (resp.).

its complex processing to some extent. Considering high di-
mensional feature space at our model’s last layer, we firstly
used a non-linear dimensionality reduction technique, namely,
t-distributed stochastic neighbor embedding (t-SNE) [47], to
collapse the multidimensional feature maps into a 2D t-SNE
embedding space and subsequently visualize it. Primarily, t-SNE
is an iterative optimization algorithm to assign multidimensional
data points to a lower dimensional space such that closer points in
the higher dimensions still stay close and likewise, farther points
remain distant in the reduced space as well. More formally,
t-SNE minimizes the difference, as statistically measured by the
Kullback-Leibler (KL) divergence, between the two probability
distributions measuring the pairwise similarities of the original
data points and the corresponding points in the low-dimensional
t-SNE embedding (resp.). Our ultimate objective is to visualize
any natural clusters of data points that may emerge in the
penultimate space. Fig. 7 visualizes the 2D t-SNE of the 512-
dimensional last layer embedding for the top task generalization
model (MSResNet). Clearly, two inherent clusters, green and
red, categorizing the HC and PwMS 5-stride sequences (resp.),
originate in the penultimate layer; further, there appears to
be a progression among sequences of mild, mild-to-moderate
and moderate severity subgroups within PwMS. These native
arrangements demonstrate the robustness of our predictions and
in fact validate that our feature space is well optimized by
backpropagation to classify sequences in HC and PwMS. In
conclusion, these results verify that our model extracted nec-
essary information from the data that enabled t-SNE to clearly
identify two distinct classes of sequences.

E. Association of Predictions With Lower Extremity
Function

We examined a possible correspondence between the lower
extremity physical function in middle-aged to older adults and

Fig. 8. Visualizing the predictions of subject generalization model w.r.t
the corresponding subject’s lower extremity function. Green-edged cir-
cles and red-edged squares represent actual HC and PwMS (resp.),
where marker’s face color shade denotes the corresponding prediction
probability for class HC. Horizontal axis displays the overall SPPB score
and background stripe’s color depicts the prediction surface, where
markers on green (or red) stripe are predicted as HC (or PwMS) by
the model.

our top DL model’s prediction probabilities. We used the short
physical performance battery (SPPB) assessment [48] to mea-
sure the physical performance of middle-aged to older adults
on a scale of 0 (worst) to 12 (best). SPPB examined 3 areas
that emulate day-to-day tasks essential for independent living,
namely, static balance, gait speed and getting in and out of a
chair. A higher summary score on SPPB signified none to mild
mobility limitations and a lower score implied severe limitations.
Our dataset had subjects with frailty ranging from minimal to
moderate, i.e. SPPB: 10.37± 1.85 [6−12]. Fig. 8 depicts the
predictions made by the top-performing subject generalization
model, ResNet, w.r.t the corresponding subject’s SPPB. The
markers, i.e. green-edged circles and red-edged squares, rep-
resent actual HC and PwMS (resp.), where marker face-color
denotes the corresponding prediction probability for class HC.
Horizontal axis displays the overall SPPB score and background
stripe color depicts the predicted class by the model, i.e., markers
on green and red stripes are predicted as HC and PwMS (resp.).
Note that markers in each SPPB and prediction stripe are sorted
in order of prediction probability of their true class. For instance,
one true PwMS with SPPB of 10 was misclassified as healthy
with a particularly high HC confidence probability and no true
HCs were misclassified at SPPB 10. Fig. 8 depicts that PwMS
with a higher SPPB, i.e. better physical performance, had ma-
jority of 5-stride sequences incorrectly predicted as belonging to
the healthy cohort; this was quite likely as gait characteristics of
PwMS with none to mild mobility limitations could be difficult
to discern from healthy gait. In summary, SPPB seemed to
have some correspondence with our model predictions, but, no
significant correlations were observed.

VII. DISCUSSION

We studied a DeepMS2G framework employing data driven
DL on 21 multi-stride spatiotemporal and kinetic gait features
to classify middle-aged to older adults with and without MS.
Our workflow is end-to-end open source, available at https:
//github.com/kaurrachneet6/DeepMS2G.git. Our proposed sys-
tem offered an automated, accurate and remote monitoring
mechanism for neurological gait classification and was quicker,
utilizing only 5-stride sequence or a brief gait length than most

https://github.com/kaurrachneet6/DeepMS2G.git
https://github.com/kaurrachneet6/DeepMS2G.git
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typical clinical gait assessments. Past works [14], [15] have
explored DL with domain knowledge-based gait features for
low vs. high fall risk assessment. However, compared to our
exhaustive experimental comparison with 16 diverse models
across 2 different designs, namely, task- and subject general-
ization, these past works have only examined LSTM and 4
traditional ML classifiers for subject generalization. Further,
these studies focused on 4 kinematics-based gait parameters,
whereas we utilized dynamics from 21 kinematic as well as
kinetic features. Additionally, we comprehensively investigated
the explainability of our top-performing algorithms via post
hoc analysis (Sections VI-C to VI-E), which was absent in
previous analogous studies. Although our prior research [13]
using traditional ML frameworks on individual strides provided
utility in the identification of MS-related changes in gait, our
current approach employing DL with multi-stride data provided
a tool to extract additional information from gait dynamics and
variations across temporally ordered strides. Moreover, using
DL and multi-stride dynamics for MS classification exceeded the
subject-wise performance metrics presented in [13] across both
task- and subject generalization designs. A few additional past
works have explored using classical ML to classify MS based on
gait data [26], [49], however, to the best of our knowledge, ours
is the first study extensively examining modern DL algorithms
on multi-stride spatiotemporal and kinetic gait features for MS
classification.

In contrast to prior work using wearable inertial measure-
ment unit sensors [15], [20], [26], [50], [51] electromyography
(EMG) [21], [52], and motion capture systems [22] to pre-
dict neuromuscular changes in neurological gait, our approach
requires no sensors to be placed on the participant, which
simplifies data collection. However, there is the need for an
instrumented treadmill, which limits usability in smaller or rural
medicine practices. Further, depth cameras capturing 3D move-
ment patterns have been explored for gait assessment [53], [54],
but these systems are relatively costlier, have some limitations
when used outdoors and are constrained by the camera to object
distance. Most studies explored either an end-to-end DL frame-
work that demanded larger datasets or a traditional ML approach
on hand engineered features that more suited smaller datasets.
We studied a hybrid approach utilizing our domain-knowledge
based spatiotemporal and kinetic feature space with advanced
DL methods in an effort to overcome the challenges of limited
clinical data, which exist in most medical scenarios.

The advantages of using regression normalized gait features
were apparent when regress-N improved the accuracy of identi-
fying pathological gait than the standard size-N strategy in both
task and subject generalization frameworks. ResNet-based mod-
els, namely MSResNet for task generalization and ResNet for
subject generalization, were top-performers across both model
designs, which might guide model selection in future studies
on neurological gait classification. Also, using a 5-stride data
sample allowed for frequent conclusions, which might assist
in the deployment of future clinical applications based on this
work. Moreover, our analysis in Sections VI-C to VI-E helped
establish the interpretability of our top DL algorithms, which
might facilitate gait practitioners to comprehend and trust the
findings from our proposed system. An ablation study on the
set of features in Section VI-C supported using all the extracted
gait features for better predictability in both task and subject
generalization model designs. Moreover, we observed that the
spatiotemporal subset presents superior performance to any

other composition with kinetic features. When only including a
subset of features to examine the most relevant features driving
the DL performance, we found that stride and single support
times, force at midstance, and butterfly diagram-based lateral
shift were the most valuable features across both classification
frameworks. Further, we observed that PwMS with none to
mild mobility limitations had the majority of 5-stride sequences
incorrectly predicted as belonging to the healthy cohort. This
is in line with observations in some past studies on MS, where
gait parameters were noticed to worsen for severely affected MS
patient groups compared to the control group and are not seen
in PwMS with mild disability [55].

A larger study would allow better understanding of the de-
pendence of the regression function on demographics, and also
better understanding of confidence intervals. A broader sam-
ple of neurological disability levels in PwMS and subtypes
might assist in making more generalized predictions for the
heterogeneous MS community. Assessing gait in additional
concurrent cognitive settings in future works might provide
increased sensitivity to distinguish between MS related changes.
Recently, transformer-based DL models have achieved outstand-
ing performance on several vision and language tasks [56],
[57]. Given higher model complexity in transformers and our
relatively smaller dataset for classification, we did not con-
sider transformer-based models for this work. Future work
might involve evaluating the performance of transformers for
neurological gait classification. Lastly, clinical applications of
gait-based data to determine MS related changes might benefit
from further examination using wearable gait-related data in
real-world environments.

VIII. CONCLUSION

We proposed a DeepMS2G pipeline for classification of
PwMS using DL and multi-stride dynamics across domain
knowledge-based spatiotemporal and kinetic gait features. We
evaluated DeepMS2G to generalize over distinct walking trials
and new participants. We observed that ResNet-based mod-
els with regression-based normalization were top performers
across both task and subject generalization designs. With no
known cure and clinically unpredictable disease progression,
our proposed framework might augment findings from standard
clinical tests and aid clinicians in defining effective medication
strategies.
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