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Automatic Optimization of Multichannel
Electrode Configurations for Robust Fetal Heart
Rate Detection by Blind Source Separation

Alessandra Galli
and Massimo Mischi

Abstract—Objective. Fetal heart rate (fHR) evaluation is
fundamental to guarantee timely medical intervention in
case of pregnancy complications. Due to the limitations
of traditional cardiotocography, multichannel electrophys-
iological recording was proposed as a viable alternative,
which requires Blind Source Separation (BSS) techniques.
Yet effective and reliable separation of the fetal ECG re-
mains challenging due to multiple noise sources and the ef-
fects of varying fetal position. In this work, we demonstrate
that the adopted electrode configuration plays a key role in
the effectiveness of BSS and propose guidelines for opti-
mal electrode positioning. Moreover, a model is proposed
to automatically predict the most suited configuration for
accurate BSS-based fHR estimation with a minimal num-
ber of leads, to facilitate practical implementation. Meth-
ods. We compared fHR estimation accuracy with different
electrode configurations on in-silico data, identifying the
optimal configuration for a recent BSS method. Based on
features extracted from raw signals, we proposed a support
vector regression model to automatically identify the best
electrode configuration in terms of fHR estimation accuracy
and to dynamically adjust it to varying fetal presentation.
Evaluation was performed on real and synthetic data. Re-
sults. Guidelines for the optimal electrode configuration
are proposed by using 4 leads. Prediction of configura-
tion quality shows 80.9% accuracy; the optimal configurat-
ion is recognized in 92.2% of the subjects. Conclusion.
The proposed method successfully predicts the quality of
the configurations, demonstrating the impact of the elec-
trode configuration on the BSS performance. Significance.
The method holds potential for long-term fetal monitoring,
by dynamically choosing the optimal configuration.

Index Terms—Automatic quality assessment, blind
source separation, electrode configuration, electrode
placement, fetal heart rate, fetal position, multi-channel
measurements, prediction, support vector regression.
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[. INTRODUCTION

OWADAYS, about 20% of pregnancies are compli-
N cated [1]. The fetal heart rate (fHR) is considered one of
the most important parameters for assessment of the fetal con-
dition during pregnancy and delivery, enabling early detection
of complications and subsequent timely intervention. However,
current monitoring techniques preclude long-term monitoring
of fetal well-being throughout pregnancy. Typically, fetal mon-
itoring during pregnancy is performed by cardiotocography
(CTG), which uses Doppler ultrasound to determine the fHR [2].
Doppler ultrasound measurements are unsuitable for long-term,
extramural monitoring, since they need frequent repositioning
of the ultrasound probe by specialized staff to overcome signal
loss [3].

Despite some limitations due to the formation of the vernix
caseosa, an electrically isolating layer surrounding the fetus,
fetal electrocardiography (fECG) has been introduced as a valid
alternative to overcome the CTG limitations [4], [5]. The fECG
signal can be non-invasively acquired with electrodes positioned
on the maternal abdomen. However, the signals acquired by
the electrodes are a mixture of components such as the fECG,
which is the one of interest, and others, such as the maternal
ECG (mECG) signal, the abdominal electromyogram (EMG),
the electrohysterogram (EHG), motion artifacts, and power-line
interference. In order to detect the fHR, identification and isola-
tion of the components corresponding to the electrical activity of
the fetal heart is needed. The most suitable and widely employed
approaches for this type of problem are based on Blind Source
Separation (BSS) techniques, which are considered the most
promising in terms of robustness and performance for fHR de-
tection [6]. They exploit the spatial correlation of multi-channel
recordings to separate the source signals from a set of mixed
signals by assuming the mixing is linear and stationary [7].
The signal characteristics are influenced by the spatial position
where the signals are acquired; therefore, one of the critical
issues of fECG is the choice of the electrode configuration, i.e.,
the selection of electrode number, position and the choice of the
leads. Indeed, the electrode configuration has a crucial influence
on the quality of the electrophysiological signals, as it can result
in enhanced features of interest [8] or, on the contrary, it may
enhance artifacts and reduce the sensitivity to fECG abnormali-
ties [9]. The position of the fetus should also be considered when
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defining the electrode configuration [10]. Indeed, the position
of the fetus affects the pathways along which the biopotentials
in the fetal heart are conducted to the abdominal surface [11].
Accurate determination of the fetal position requires ultrasound
imaging.

A further requirement for electrode configurations in long-
term monitoring is to minimize the number of electrodes, to
increase patient comfort and ease the positioning procedure.
Less electrodes are also associated with reduced electronics and
power consumption for signal conditioning [12].

In the literature, numerous electrode configurations have been
proposed to enhance the fECG signal quality, which is com-
monly assessed by the signal-to-noise ratio (SNR) [13]. For
instance, in [8] the influence of the electrode positions of six
bipolar leads on the SNR is investigated in the last phases of
pregnancy, demonstrating a significant influence of bipolar lead
orientation and inter-electrode distance on maternal and fetal
ECG measurement quality. The setup selected in [14] consists of
five bipolar leads and reduces common mode signals, resulting in
the attenuation of the contribution of the mECG to the recordings
and the enhancement of the relative contribution of the fECG.
As a result, the SNR increases. In [15], the adopted electrode
position is basically consistent with the fetal cardiac axis.

However, all the approaches presented in the literature have
two limitations. First, the signals with the highest SNR do
not necessarily correspond to the optimal choice to extract the
fHR. In fact, the optimal operating conditions for Independent
Component Analysis (ICA), a special case of BSS, are reached
by minimizing the statistical independence between components
related to different sources [16].

The second limitation relates to the fetal position. Previous
studies defined a-priori the optimal electrode configuration on
the basis of prior knowledge on the fetal presentation (i.e.,
cephalic vs. breech) [8]. Such an approach is limited by the
need for prior knowledge of the fetal position, and is only
suitable for monitoring the final stages of pregnancy, when fetal
movements are limited. Dynamic changes of the fetal position
as well as inter-pregnancy differences might play a major role
in determining the optimal configuration [17].

To overcome such limitations, the aim of this work is to pro-
pose a method to automatically determine the optimal electrode
configuration for the fHR estimation, without prior knowledge
of the fetal position. To achieve this objective, the signal analysis
chain for fHR estimation, based on BSS, is taken into account.

Therefore, we consider a strategy based on Independent Com-
ponent Analysis (ICA), as recently proposed by our group [18].
This strategy improves upon the algorithm proposed by Varanini
etal. [19], reflecting without loss of generality the analysis chain
which is mostly adopted for fHR estimation.

Our contributions are schematically presented in Fig. 1. By
investigating the signal characteristics obtained with different
configurations on both in-vivo and in-silico data, we first provide
guidelines about the optimal electrode configuration for fHR
estimation. The rationale behind our guidelines resides in the
relationship between the number of independent signal sources
captured by a certain electrode configuration compared to the
number of available independent components, which are avail-
able for effective signal decomposition and fECG extraction.
Indeed, the minimization of the number of independent compo-
nents describing each source, so as not to spread each source
signal over multiple components, helps reduce the number of
electrodes and improve the SNR of the signals, including the
fECG. Reducing the number of electrodes is crucial in long-term
monitoring applications because it limits the computational
complexity of the processing algorithms, prolonging battery life.

The method proposed to automatically select the optimal
configuration uses a Support Vector Regression (SVR) model to
predict the reliability of the resulting fHR estimation prior to its
estimation, based on the acquired raw signals only. The method
employs global statistical features of the raw multichannel mea-
surements to predict the quality of the fHR estimation, assessed
by a combination of F-score and root mean square error (RMSE).
Such evaluation is more suitable for long-term monitoring since
itavoids additional computational costs for multiple assessments
of the fHR resulting from different electrode configurations.

In recent years, to make the long-term monitoring more
comfortable, dry or capacitive textile electrodes embedded in
garments have been proposed. For instance, Manna et al. [20]
employ electrodes made of fabric to acquire the fECG signals
for a home monitoring system; Signorini et al. [21] proposed
a wearable system based on textile electrodes intertwined in
garments to monitor fetal well-being in the last phase of preg-
nancy. Textile non-obtrusive and comfortable electrodes allow
increasing the number of electrodes over the traditional wet
electrodes. In this scenario, the proposed method can also be
used to dynamically select an optimal subset of electrodes
and their optimal configuration, coping with changes in the
fetal position during the acquisition. Training and evaluation
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of the proposed method were performed on in-silico data able to
replicate a wide variety of possible conditions while providing
a reliable ground-truth reference. Since the proposed method
is the first in the literature to automatically select the optimal
electrode configuration, comparison with other approaches is
not yet feasible.

The paper is organized as follows: the background theory of
the BSS techniques, which is fundamental to the rationale behind
our approach, is reported in Section II-A. Sections II-B1 and
II-C discuss the data and metrics used to design and evaluate the
proposed guidelines and the automatic detection method. Sec-
tions II-D, II-E, and II-F are the core of this paper, and their main
contributions are summarized in Fig. 1: Section II-D investigates
whether the proposed configuration, namely the reference con-
figuration, outperforms those employed in the literature, referred
to as normal. In Section II-E, we describe the optimization of
the reference configuration in terms of the number of leads, the
shape of the configuration, the distance between the electrodes,
and the influence of the fetal position. This optimization allows
defining some guidelines for optimal electrode placement. In
Section II-F, our proposed method for automatic detection of
the optimal configuration is explained. Finally, Sections III and
IV present the results and their discussion, respectively.

Il. MATERIALS AND METHODS

A. Blind Source Separation Techniques for fHR
Estimation.

This approach considers a set of n individual components
S = [s1,82,...,8,]7 € R™¥; with s = [s(T%),...,s(Q-
T)]T € R™9; k =1,...,n; n being the number of compo-
nents needed to describe all the present sources (i.e., mECG,
fECG, artifacts, noise, etc.) and () the length of the segment;
Ts = %, with fs being the sampling frequency. S is mixed
using a matrix A = [a,i] € R™™ as:

X =A-S. (1)

Producing a set of observed mixed signals X =
[x1,X2,...,%,]T € R™C with  x; = [2(T}),...,2(Q -
T,)]T € R™¥; j =1,...,m; m being the number of leads.
The objective of the BSS approach is to recover an approxima-
tion of the original signals S, indicated as S, by the determination
of an unmixing matrix B = [by;] € R™*™ such that:
S=B-X. )
Several approaches have been proposed in the literature to
separate the components enhancing the fECG signal, each based
on different assumptions on the characteristics of the sources.
Among the standard BSS methods, Principal Component Anal-
ysis seeks source components that are minimally correlated.
However, the components related to the heart activity (e.g.,
maternal or fetal) are strongly correlated to each other, making
PCA unsuitable for this work. A few exploratory studies on other
BSS methods, such as singular value decomposition and non-
negative matrix factorization were also reported in literature,
but a large consensus is reached on the use of ICA [22]. Indeed,
ICA exploits the assumptions that the source components are

non-Gaussian and statistically independent, enabling us to ob-
tain accurate fHR estimations with low sensitivity to noise and
artifacts [23]. For this reason, ICA was our choice in [18].

In this work, the unmixing matrix B is obtained by applying
the fastICA approach with deflationary orthogonalization [24].
This method calculates the vectors by, = [bg1, bia, . . ., bkm]T S
R*™ adaptively and sequentially by minimizing the mutual
information between the independent components s;. As the
preferred contrast function, which is defined as the (statistical)
function capable of separating independent sources from a linear
mixture [25], we selected the hyperbolic cosine, as it produces
the most robust estimations [19].

The bioelectrical activity of the maternal heart can be rep-
resented by a three-dimensional current dipole [26], which is
fixed in position but variable in magnitude and orientation [27].
Therefore, the mECG is generally formed by the combination
of three independent components. Instead, the number of inde-
pendent components representing the fECG is not necessarily
equal to three as it depends on the fetal position; as a result,
the amplitude of the fECG signal may also change. In fact, the
position of the fetal heart is subject to changes during pregnancy
due to fetal movements [28] and the greater the distance of the
fetal heart from the electrode the lower the fECG amplitude.

The main limitation of the ICA approach is related to un-
derdetermination, which occurs when n > m [29], making the
extraction of the fECG signal often unfeasible. Indeed, BSS
methods can identify a number of independent components that
is at most equal to the number of mixed signals (m), which
is often insufficient to identify all the signal components. This
condition is often insufficient to identify all the signal sources.
In a long-term monitoring scenario, such constraint is critical as
a limited number of leads is required to minimize obtrusiveness,
while a high number of noise and artifact sources can affect the
signal.

To tackle such limitations, we designed the electrode con-
figuration that enhances the performance of the BSS technique
by reducing the number of independent components needed to
describe a specific source. In fact, a previous study suggested
that the spatial location of the electrodes in the maternal ab-
domen influences the performance of the fHR estimation [30].
In particular, we propose to select the electrode configuration
that guarantees the best trade-off between the reduction of the
variability between the components related to the same source
(intra-source), and the enhancement of the variability between
the components related to different sources (inter-sources vari-
ability), needed to provide effective sources separation [31].
This results in an improvement in the ability of ICA to isolate
the source of interest as the difference between the number of
sources and the number of mixed signals is reduced [32].

As suggested by Fig. 2, this optimal trade-off is obtained
by considering bipolar measurement leads with an electrode in
common (reference electrode) and with the seconds close to
each other (active electrodes). Such configuration is referred to
as the reference configuration and it was employed in previous
works based on BSS [33], [34] without reporting theoretical
details on such a choice. For example, in [33] three bipolar
leads were obtained by positioning the active electrodes in the
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Fig. 2. mECG signals recorded by bipolar measurements in the refer-
ence configuration. The electrodes are placed on the maternal abdomen
and the leads are defined by the arrows.

upper part of the belly and the reference one in the lower part.
In [34], periodic component analysis (7CA) was applied to
signals obtained by five abdominal electrodes with common
reference, active ground, and one chest electrode.

Alternative to the reference configuration, the normal config-
uration is usually employed in studies oriented to SNR optimiza-
tion and aims at maximizing the variance between the bipolar
measurements [35]. There is no univocal definition of the normal
configuration, and several versions have been presented in the
literature. In this work, we consider those illustrated in Fig. 3.

B. Dataset

1) In-Silico Dataset: Simulated data has been obtained with
an online simulator [36]. For each 5-minute simulated recording,
the position of the fetal hearts randomly changes, enabling the
simulation of different fetal positions and the introduction of
high variability between different subjects. Accordingly, differ-
ent healthy fECG and mECG were generated and the fECG
amplitude was randomly selected for each acquisition in order to
simulate different gestational ages. As suggested by the literature
[46], the maximum amplitude of the fECG signal is 20 pV.
mECG and fECG signals were corrupted by different sources
of noise, such as acquisition noise, baseline wander, muscular
noise. Five different levels of additive noise were included (0,
3,6,9, and 12 dB) [36]. Taking into account a wide range of
SNR values and different types of noise allows evaluating the
proposed work in a wide range of scenarios that can replicate the
real environment. 200 different pregnant women were simulated
to be part of the training dataset, and 50 for the testing set. The
latter was employed only for testing the regression model. The
simulated subjects are the same for the analysis conducted in
Sections II-D, II-E, and II-F.

2) In-Vivo Dataset: Two real datasets have been included.
The Seban dataset contains five abdominal measurements of
20 min each on pregnant women at full gestation (39 weeks and
4 days £ 12 days). More detailed information about the dataset
acquisition can be found in [8]. The IHDB-fIHDB dataset has a
total length of 9.5 h and comprises 20 abdominal measurements
from eight women during labor at full term (40 weeks and 3 days

=+ 13 days). The dataset is fully described in [37]. The electrode
positions are reported in Figs. 3(c) and 3(d), respectively. For
both datasets, the reference fHR is defined by the fECG acquired
through a scalp electrode.

C. fHR Quality Metrics

The accuracy of the fHR estimation was quantified using the
reference (simulated fECG in the in-silico dataset and scalp
fECG in the in-vivo dataset). Each beat was classified as True
Positive (TP) or False Negative (FN) if the actual R peak was
detected or missed, respectively. Instead, False Positive (FP)
were points that were falsely identified as R peak. An R peak was
considered correctly identified if the estimated position differed
less than 50 ms from the reference annotation, according to the
guidelines reported in [38]. The F-score index was employed to
evaluate the overall performance of the algorithm in correctly
detecting R peaks:

F-score = 2-1P 3)

2-TP+ FN + FP

The F-score ranges from O to 1, where 1 is when the detection
is always correct. The accuracy and the reliability of the fHR
estimation can also be evaluated with the Root Mean Square
Error (RMSE), which measures the difference between the true
fetal HR (fHR) and the estimation provided by the algorithm
(fHR):

R 2
n (FHR, — fHR, )
Ngr

RMSE =

“

where [ is the index of the the [-th heartbeat and N g is the number
of heartbeats in the recording. RMSE measurement unit is ms.
The smaller the RMSE, the more accurate is the fHR estimation.
Low values of this metric lead to a reliable assessment of the
heart rate variability (HRV), which is an important index for
fetal well-being evaluation.

F-score and RMSE metrics were employed to perform quan-
titative comparison of the results obtained by following the
analysis described in Sections II-D, II-E, and II-F. Furthermore,
after verifying the normality of the result distribution with the
Kolmogorov-Smirnov test [39], the Wilcoxon rank or paired
t-test were used to test statistically significant differences (p-
values< 0.05).

D. Identification of the Optimal Configuration Type

To determine the most suitable configuration to estimate the
fHR with BSS techniques, a comparison between reference
and normal configurations was performed on both the in-vivo
(Seban, IHDB-fIHDB) and in-silico datasets. For each set of
signals obtained with the different configurations, the algorithm
described in [18] was applied to estimate the fHR. The position
of the electrodes for the reference and normal configurations
are reported in Fig. 3 for both the in-vivo and in-silico datasets.
The arrows indicate the bipolar leads. For what concerns the
in-silico dataset, two configurations have been evaluated: the
first is formed by eight leads and the second by four. In-vivo
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Fig. 3. Electrode configurations for in-silico and in-vivo data. For each dataset, the reference (left) and the normal (right) configuration are depicted.

a) In-silico dataset - eight leads configuration. b) In-silico dataset - four leads configuration. c) In-vivo Seban dataset. d) In-vivo IHDB-flIHDB dataset.

reference reference
electrode electrode
active active
electrodes electrodes
LINE CIRCLE

Fig. 4. Active electrode placed on a line or on a semi-circle.

Seban datasets have five electrodes, i.e., four bipolar leads, while
the recordings from the IHDB-fIHDB datasets are composed by
four electrodes only. The fetal position is cephalic for all the
in-vivo acquisitions, while it is unknown for the in-silico dataset.

E. Optimization of the Reference Electrode
Configuration to Define Guidelines

After establishing the superiority of the reference configura-
tion over the normal configuration (as detailed in Section III),
we optimized in silico its characteristics in terms of number
of leads, position of electrodes, distance between electrodes.
For this analysis, the position of the fetus is random and un-
known. Finally, the orientation over the maternal abdomen is
also evaluated according to the position of the fetus. The elec-
trode configuration that provided the most accurate estimation
of the fHR with the selected BSS technique [18] was then
determined.

1) Minimum Number of Leads: in this study, we simulated
a scenario where the acquired signals are composed of fECG,
mECG, and superposed noise only. We determined the minimum
number of electrodes as the value after which there are no
more significant improvements in the estimation accuracy by
increasing the number of leads.

2) Position of the Active Electrodes: we considered two
different scenarios: with the active electrodes on the same line,
and with the active electrodes over a semi-circle, as shown in
Fig. 4. In this work, we called active electrodes those opposite
to the reference electrode, marked in black in Fig. 4.

3) Distance Between Electrodes: as previously discussed,
the distance between the electrodes plays a fundamental role in
the ability of ICA to separate the components. If the electrodes

24 cm
O 15em O 0 O |420cm
16 cm
O 12cm O O O 12 em
Oe6em O 0] 0] 8cm o
Os cm O O O I
02ch ©o Active electrodes
(a) ()

Fig. 5. a) Active electrodes position. The proximity levels are: 15 cm;
12 cm; 6 cm; 3 cm; 2 cm. b) Reference electrodes position. The distance
levels are: 24 cm; 20 cm; 16 cm; 12 cm; 8 cm.

N—— N——

l !

REF-UP REF-DOWN

Fig. 6. Electrode configuration REF-UP and REF-DOWN.

are too close, the variability between the leads is too low, which
makes the separation of the sources challenging. We evaluated
both the distance between the active electrodes (proximity mea-
surement) and between the active electrodes and the reference
one (distance measurements). We considered the five proximity
levels shown in Fig. 5(a). To evaluate the optimal proximity
level, we chose a fixed distance of 16 cm between the reference
and the active electrode.

The five evaluated distance levels are reported in Fig. 5(b).
To perform such evaluation, we chose a fixed distance of 8 cm
between the actives electrodes.

4) Influence of the Fetal Position: we compared, through
F-score and RMSE metrics, a reference configuration with ref-
erence electrode on the upper part of the belly (the REF-UP)
and with the reference electrode on the lower part of the belly
(REF-DOWN) for breech and cephalic positions considered
separately. The considered configurations are shown in Fig. 6.
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Fig. 7. The electrode configurations considered. The distance be-
tween horizontal and vertical positions is equal to 8 cm.

F. Automatic Selection of the Optimal Electrode
Configuration With Unknown Fetal Position

Following the analysis described in Section II-E, we estab-
lished the guidelines, to optimally position the electrodes over
the maternal belly. Such optimal configuration was used in the
following analysis.

A final aspect to be taken into account in order to obtain
the best fHR estimation is the automatic selection of the best
electrode configuration, which depends on both the quality of
the acquired signals and the fetal position. Our proposed system
can automatically assess the quality of a configuration without
requiring any knowledge about the fetal position. In this way, it is
possible to dynamically determine the best electrode positions,
even if the position of the fetus is unknown and the quality of
the signals changes due to motion artifacts or loss of contact
between the electrode and the skin.

To that end, we considered the in-silico dataset and we simu-
lated the signals coming from a grid of 16 electrodes positioned
on the maternal abdomen. The inter-electrode distance in such
a grid is defined following the recommendations derived from
the results obtained with the tests in Sections II-D and II-E.
Four optimal reference configurations were selected, as shown
in Fig. 7, with each one being the optimal configuration for one
of the most common fetal presentations (1 - breech, 2- cephalic,
3 - side right, 4 - side left).

We quantified the quality of each configuration in terms of
fHR estimation by means of a hybrid index (HI) obtained by
combining RMSE and F-score metrics according to:

_ RMSE

HI =
F-score

(&)

This index is strongly related to the RMSE value; however,
by taking into account F-score values, we can improve the
discrimination between the configurations providing accurate
and non-accurate estimation of the fHR. Lower HI indicates
fHR estimations that are closer to the real fHR; in particular, we
considered HI< 25 to indicate a good fHR estimation. Such

threshold was established to obtain an RMSE for the fHR
estimation lower than 25 ms.

1) Feature Extraction From Raw Data: for each configu-
ration, we considered eleven global statistical features obtained
on four 10-s raw bipolar measurements. The features can be
subdivided into two groups. In the first group, the features
are extracted for each single lead independently: Kurtosis (K),
Skewness (SK), Mean (M), Variance (V), Approximate Entropy
(ApEn), Sample Entropy (SampEn). Therefore, the correspond-
ing feature related to the configuration is computed by averaging
the values obtained for each lead. In the second group, the
features are obtained considering two different leads: Pearson
Correlation coefficient (PCC), CrossEntropy (CrossEn), Mutual
Information (MI), Coherence (CH), CrossCorrelation (CC). In
this case, the configuration feature is computed by averaging the
features related to all the possible pairs obtained by combining
the four leads.In total, 11 features are extracted. For more details
on the features, we remand to the references [39], [40].

2) Support Vector Regression (SVR): to predict the HI
by means of the features extracted from the raw data, a Support
Vector Regression (SVR) model was employed. This way, we
implicitly assumed the value of HI, which is the dependent
variable, to be described by a non-linear combination of the
statistical features, i.e., the independent variables (x). SVR is
a non-parametric technique which finds the model that fits the
data guaranteeing an approximation error lower than. SVR maps
the input vector into a feature space of higher dimension and
identifies the hyperplane f(x) = w’ - x — b = 0 that deviates
the observations (HI) by a value not larger than for each training
point X, and that at the same time is as flat as possible. It is
possible that no function f(x) exists to satisfy the error con-
straint for all the observations. To deal with otherwise infeasible
constraints, slack variables & and £* are introduced for each
point [41]. This approach is similar to the soft margin concept
in Support Vector Machine (SVM) classification as the slack
variables allow regression errors to exist up to the value of &,
and while still satisfying the required conditions. The related
objective function is given as

1 - .
min §||W||2 + C’Z({L - &) (6)

=1
subject to:
HI, —wix; +b<e+&,i=1,...,N
(wix; +b) —HI; <e+&,i=1,....N
§i,& =20 @)

The constant C' is a regularization hyper-parameter that con-
trols the penalty imposed on observations that lie outside the
margin and helps to prevent over-fitting. N is the number of
subjects considered in the training phase.

If the data are not linearly separable, like in the problem under
consideration, a kernel trick can be applied for mapping the data
to a higher-dimensional space, achieving more effective data
separation [42]. In this work, we used a Radial Basis Function
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(RBF) kernel defined as:
K (x,x) = (®(x) - @ (x)) =exp (—[x = x?), (¥

~ is RBF kernel parameter and & is the map.

3) SVR Optimization: In this section, the optimization of
the SVR is described in terms of the selection of the most
significant features and the optimal values of the model hyper-
parameters (i.e., C, -, and €) according to the schematic repre-
sentation presented in Fig. 8. The optimization was performed
on the training set, which includes 80% of the subjects from the
entire in-silico dataset, randomly selected.

a) Feature Sorting: We divided the training-set in ten
different subsets, each one including 50% of the training-set
data through random selection. On each subset, 5-fold cross-
validation forward feature sorting was performed to obtain the
sorted feature set: starting from an empty feature set, at each
iteration the feature contributing to the best improvement in per-
formance was added to the selected feature set. The performance
was assessed in terms of Mean Square Error (MSE):

. 2
SN (HIi - HIZ->
N

MSE = C))
where (HI) is the prediction of the real value (HI) provided by
the SVR model.

The iterations were repeated until no more features were
available. Such procedure was repeated for each of the 10
training subsets to improve the result generalizability. Indeed,

we obtained the final sorting of the 11 features from the most
to the least significant [f1, f2,. .., f11] by sorting the averaged
feature ranking for the 10 subsets.

b) Hyper-parameter optimization: The values of the
hyper-parameters (C, v and €) were optimized for each feature
set formed by an increasing number of features based on the
final averaged sorting (i.e., [f1], [f1, f2], ..., [f1, f2,..., f11])
as shown in Fig. 8. The hyper-parameter optimization was
performed by means of a full grid search embedded in a
5-fold cross-validation over the full training set (80% of
the subjects). The adopted ranges for the grid search were
the exponentially growing sequences [1072,1072,...,103]] for
the constant C, [273,272 ... 23] for the kernel parameter
and [1074,1073,...,10?] for e. In this way, we obtained 11
different regression models, each referring to a different set
of features (i.e., [f1],[f1, f2],...,[f1, f2,..., f11] with the
related optimized hyperparameters. The performance of such
regression models was again defined according to the MSE (9).

c) Feature selection: The dimension of the optimal fea-
ture set and the related optimized hyper-parameters were se-
lected according to the overall minimization of the MSE. Feature
selection enables selecting a subset of relevant features by disre-
garding features that are either redundant or irrelevant, without
incurring in significant loss of information. The selection has
several advantages, such as reducing of the model complexity,
which facilitates its interpretation; increasing the prediction
accuracy, if the selected subset is robust; mitigating over-fitting
problems; reducing the model training time [4].

4) Assessment of Prediction Quality: The proposed ap-
proach was evaluated on the test set, which consist of 50 simu-
lated pregnant women (20% of the entire in-silico dataset) that
were not employed for the optimization of the configuration
characteristics and the training of the SVR model. The aim of
the regression model is to predict, for each configuration, the
HI value. Configurations showing HI< 25 are considered good
while the others are considered bad configurations. According to
this threshold, each configuration can be classified as True Good
(TG) or False Bad (FB), if a good configuration is recognized
or missed, respectively. False Good (FG) and True Bad (TB) are
the bad configurations that are wrongly or correctly identified,
respectively. Therefore, the performance of the regression model
can be assessed in terms of classification performance according
to the following metrics:

® Accuracy (AC):

TG
AC = -1 1
¢ TG + FG + TB + FB 00 (10)
e Sensitivity (SE):
TG
E=———-1 11
S TG + FB 00 (i
e Specificity (SP):
TB
SP=—"—"-—"-1 12
FG +TB 00 (12)

Finally, to evaluate the performance of the regression model
in identifying the configuration leading to the best HI index, the
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Fig. 10. a) Performance analysis according to the number of leads for F-score (down) and RMSE (top) metrics. b) Boxplots showing the

performance analysis for both F-score (left) and RMSE (right) metrics according to the position of the active electrodes (circle or line). c-d)
Performance analysis for F-score (down) and RMSE (top) metrics, according to c) the distance between the active electrodes and d) the
distance between reference and active electrodes. e-f) Performance analysis (mean and standard deviation) according to REF-UP and REF-DOWN
configuration placement and the fetus position, i.e., cephalic (e) and breech (f), for F-score (right) and RMSE (left) metrics. * Statistically significant
difference (p < 0.05) between the REF and NORM configurations with the Wilcoxon signed rank test.

Percentage of Correct identification (PC) was computed as:

CI
PC=—.
N

where, CI quantifies the amount of correct identifications and NV
is the total number of evaluated subjects.

100 (13)

Fig. 9 shows the comparison of the fHR estimation perfor-
mance, both in terms of F-score and RMSE, between the refer-
ence and normal configurations. The comparison is performed
both on in-silico data, Figs. 9(a) and 9(b), and in-vivo data,
Figs. 9(c) (Seban) and 9(d) (IHDB-fTHDB).

RESULTS

Fig. 10(a) shows the performance changes for increasing
number of leads. Significant improvements are obtained in terms
of increase of the F-score and decrease of the RMSE until the
number of leads is equal to four. After this value, increasing the
number of leads does not introduce any significant improvement.

Fig. 10(b) reports the comparison between positioning the
active electrodes on a semi-circle or on a line. The evaluation
was performed in silico. Electrodes placed on a line enable to
obtain significantly better performance in terms of both RMSE
and F-score.

Figs. 10(c) and 10(d) investigate the influence on the fHR esti-
mation of the distance between the active electrodes (proximity
measurement) and between the reference and active electrodes
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a) Average ranking of the features in the feature set. The feature set is sorted increasingly according to the average rank as follows:

Cross-Correlation (CC), Skewness (SK), Variance (VA), Pearson Correlation Coefficient (PCC), Mutual Information (MI), Approximate Entropy
(ApEn), Kurtosis (K), Coherence (CO), Sample Entropy (SampEn), Cross-Entropy (CrossEn), Mean (M). The features in red are those selected
as the best feature set. b) MSE obtained for the generalized feature set and the optimal hyper-parameters selection. The red circle indicates the
minimum value obtained with the best features set of six elements. c) Mean Square Error (MSE) as function of v and ¢, with C' = 0.1, for the optimal

feature set.

TABLE |
EVALUATION METRICS, BOTH IN TERMS OF PREDICTION ACCURACY (MSE) AND CLASSIFICATION PERFORMANCE, |.E., ACCURACY (AC), SENSITIVITY (SE),
SPECIFICITY (SP), FOR INCREASING ELEMENTS OF THE SORTED FEATURE SET. THE PERFORMANCE IS COMPUTED CONSIDERING THE OPTIMAL VALUES OF
THE HYPER-PARAMETERS AND IS ASSESSED ON THE TRAINING SET

Num. Features | Feature Set

| MSE | AC [%] | SP[%] | SE [%]

cc
CC - SK

CC-SK-V

CC - SK - V - PCC

CC - SK - V - PCC - MI

CC - SK - V - PCC - MI - ApEn

CC - SK - V - PCC - MI - ApEn - K

CC - SK - V - PCC - MI - ApEn - K - CO

e R Sl S

CC-SK -V -PCC - MI - ApEn - K - CO - SampEn
CC-SK -V -PCC - MI - ApEn - K - CO - SampEn - CrossEn
CC -SK -V -PCC - MI - ApEn - K - CO - SampEn - CrossEn - M

1.02e4 71.1 80.7 70.9
0.9e4 80.5 89.6 64.8
0.97e4 81.2 94.0 59.4
0.97e4 81.1 94.4 58.4
0.98e4 81.0 93.8 59.1
0.95e4 82.1 89.3 66.5
0.97e4 80.6 90.1 64.5
0.96e4 81.7 86.5 73.6
0.97e4 80.9 87.7 69.3
0.97e4 80.7 87.9 68.6
0.97e4 79.9 88.1 65.9

(distance measurement), respectively. A significant improve-
ment in fHR performance is obtained only by increasing the
distance between active electrodes from 3 to 6 cm. Instead, no
significant improvement in terms of both F-score and RMSE
metrics is achieved by varying the distance between the actives
and reference electrodes.

The results obtained in Figs. 10(a), 10(b), 10(c), and 10(d)
have been obtained without knowing the position of the fetus.
On the contrary, the position of fetus is known in Figs. 10(e)
and 10(f) and the results highlight that placing the reference
electrode on the upper or lower part of the mother’s abdomen
influences the estimation performance in terms of both F-score
and RMSE. In fact, placing the active electrodes close to the head
of the fetus, i.e., REF-UP for cephalic presentation (Fig. 10(e))
and REF-DOWN for breech presentation (Fig. 10(f)) enables
significantly better performance.

Since the fetal position is unknown for most of the pregnancy,
in Section II-F an SVR for automatic prediction of the optimal
configuration according to the optimization of a quality index
is proposed. The optimization of the SVR prediction model
involves the determination of the optimal number of features
and the values of the SVR hyper-parameters that enable the

minimization of the difference between (ﬁl) and HI. Fig. 11
reports the results, based on the training dataset, used to achieve
this purpose. In particular, Fig. 11(a) shows the average ranking
(with standard deviation) of all the features, which is employed
to sort the features from the most to the least significant.

Fig. 11(b) reports the MSE obtained by increasing the number
of features and considering the related optimal hyper-parameter
values. According to the minimization of the MSE metric, the
optimal feature set is formed by six features, which are: cross-
correlation, skewness, variance, Pearson correlation coefficient,
mutual information, and approximate entropy. Additionally,
Fig. 11(c) shows the best hyper-parameter values (C' = 0.1,
v = 2, and € = 0.01) for the optimal feature set.

Table I reports the evaluation metrics, described in Section II-
F4, obtained in the training set by increasing the number of
features considered. In this table, the optimal feature set is high-
lighted in bold, which, in addition to minimizing the prediction
error, enables to reach an accuracy equal to 82.1%.

Finally, the SVR model and its ability to predict the outcome
of the processing algorithm was evaluated on the test set. The
values of the evaluation metrics, described in Section II-F4, are
reported in Table II.
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TABLE Il
ACCURACY (AC), SENSITIVITY (SE), SPECIFICITY (SP) AND THE PERCENTAGE OF CORRECT IDENTIFICATION (PC) EVALUATED ON THE TEST SET BY USING
THE SVR OPTIMIZED DURING THE TRAINING PHASE. ALSO, THE FEATURE SET AND THE VALUES OF THE HYPER-PARAMETERS ARE REPORTED

Num. Features | Feature Set

Hyper-parameter
C ‘ €

AC [%] | SP[%] | SE[%] | PC [%]
| ~

6 | CC-SK-V-PCC-MI-ApEn | 0.1 | 001 | 2 |

809 | 879 | 700 | 922

[V. DISCUSSION

In this work, a pipeline was proposed to automatically op-
timize the electrode configuration in terms of the number and
position of the electrodes on the maternal abdomen. Such op-
timal configuration allows reaching the optimal estimation of
the fHR by means of the algorithm described in [18] and, more
generally, based on the blind source separation technique.

A. Identification of the Optimal Configuration Type

Fig. 9 shows that the reference configuration was always
able to achieve a significantly better fHR estimation except for
the Seban dataset, where the assessed RMSE was on average
< 10 ms for both normal and reference configurations. In fact,
positioning the electrodes following the reference configuration
makes the contribution of one of the three independent com-
ponents that describe the mECG signal negligible, while at the
same time enhancing the contribution of the other two. This has
two advantages, particularly relevant in case the number of leads
is limited. Firstly, it improves the identification of the mECG
signal, facilitating its removal from the acquired signals. Thisisa
fundamental step in all non-invasive fECG analysis, as effective
removal of mECG is required to obtain an accurate detection of
fHR. Secondly, by reducing the number of components needed
to describe the mECG, there are more components available
to map the fECG and other noise sources. This results in the
identification of low-amplitude fECG, even in the presence of
noise or artifacts.

Figs. 9(c) and 9(d) show the results obtained in the in vivo
dataset. The data were acquired at the end of pregnancy, when
the fECG signal has the maximum amplitude and the SNR has
the highest value. In some cases, the fECG can even be visually
recognized, presenting amplitude greater than noise. If at least
four bipolar leads are available, i.e., at least four independent
components can be identified, the fECG can be easily isolated,
regardless of the number of components needed to represent the
mECG; the electrode position has then limited influence on the
fECG extraction. For this reason, considering the data from
the Seban database (Fig. 9(c)), the fHR estimate provided by
the reference configuration is not significantly different from
that provided by the normal configuration. Instead, the refer-
ence configuration provides significant improvements when the
available leads are less than four, as in the IHDB-fIHDB database
(Fig. 9(d)).

In silico (Figs. 9(a) and 9(b)), the range of variation of the
fECG amplitude is wide, so as to simulate different stages of
pregnancy. Regarding the configuration formed by eight leads
(Fig. 9(a)), the reference configuration enables us to obtain

significantly better performance in terms of F-score metric. On
the other hand, the RMSE values are not significantly different,
even if the dispersion of the RMSE values obtained with the
normal configuration is greater than that obtained with the
reference configuration. When these results are compared with
those obtained with only four leads (Fig. 9(b)), the difference
between the normal and the reference configurations is less
marked. Indeed, the reduction in the number of components
obtained by the reference configuration becomes less beneficial
when the number of observations is high, like with eight leads.
On the other hand, when the number of leads is limited as shown
in Fig. 9(b), where the leads are only four, the results obtained
by applying the selected algorithm to signals acquired by the
reference configuration outperform the results obtained from
signals recorded by the normal configuration both in terms of
R peak position and fHR estimation. Therefore, the reference
configuration can help recognize the fECG when the acquisition
conditions are challenging, due to areduced number of available
signals and lower SNR.

B. Optimization of the Reference Configuration
Characteristics

After established that the reference configuration is more
suitable than the normal configuration for fHR estimation, we
optimized the reference configuration characteristics in terms of
number of leads, distance between the electrodes, shape, and
electrode placement. For what concerns the number of leads,
the evaluation was done in silico, where the experiments were
performed without high amplitude artifacts due to movements
that can be detected by the ICA as sources. In this way, we
consider that our signal is composed by a limited number of main
sources, i.e. maternal and fetal heart activity, muscular and respi-
ration noise, and acquisition noise.Therefore, by leveraging the
strategy presented in this paper, with an electrode configuration
that minimizes the number of fECG and mECG components,
along with our ICA-based denoising algorithm [ 18], we consider
four leads as sufficient for fetal R-peaks detection (Fig. 10(a)).

The proposed method is not optimal when the number of inde-
pendent sources in the signal is high, e.g. due to motion artifacts
in extramural monitoring. This can be tackled by adjusting the
strategy proposed in this work to more electrodes while exploit-
ing the same ICA-based signal processing approach. Indeed,
the adaptive segmentation of the signals described in [18] limits
the number of sources due to motion artifacts in the same ICA
segment. In this way, the number of sources for each adaptive
segment is kept limited, enabling the effective isolation of the
fECG even if the acquired signals are corrupted by a larger
number of decorrelated motion artifacts (independent sources).
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Fig. 12.  Guidelines for the optimal electrode configuration, which con-

sists of a reference configuration formed by four leads obtained by
placing the active electrodes along a horizontal line at a mutual distance
of 6 cm. The active electrodes are close to the head of the fetus, and the
reference electrode is positioned on the opposite side of the maternal
abdomen at a distance 8 cm from the active electrodes.

Placing the electrodes on a line produces significantly better
performance than placing the active electrodes on a semi-circle
(Fig. 10(b)). Figs. 10(c) and 10(d) present the results for the
investigated distances between the electrodes. For what concerns
the active electrodes, their minimum mutual distance for highly
accurate performance is 6 cm. Indeed, reducing the distance
makes the signals acquired by each lead too similar, hampering
the separation of independent components by ICA. Instead,
increasing the distance between the reference electrode and
the active electrodes from 8 to 24 cm does not lead to any
improvement, suggesting a distance of 8 cm to be the most
suitable for the intended applications, limiting the obtrusiveness
of the measurement setup.

According to the results presented in Figs. 10(e) and 10(f),
the best option is positioning the active electrodes close to the
head of the fetus; therefore, the best position is REF-UP, i.e.,
the reference electrode placed on the upper part of the belly,
for cephalic presentation, and REF-DOWN, reference in the
lower part of the belly, for breech presentation. Following this
suggestion, the amplitude of the fECG signal is enhanced, and
the number of independent components required to describe the
fECG is reduced. This combination facilitates the detection of
the fHR.

Summarizing, our results suggest that the optimal electrode
configuration consists of a reference configuration with four
leads obtained by positioning the active electrodes along a
horizontal line at a mutual distance of at least 6 cm; the ref-
erence electrode is placed on the opposite side of the maternal
abdomen at a distance of at least 8§ cm from the active elec-
trodes. Furthermore, we also observed that the best electrode
configuration features the active electrodes close to the fetal
head. The optimal configuration is defined here according to
the performance obtained by the processing algorithm described
in [18] for fHR assessment. The proposed guidelines, which are
summarized in Fig. 12, ease both the extraction of the fECG
and the estimation of the fHR as it combines the reduction of
the number of independent components needed to describe the
ECG signals with an enhancement of the fECG amplitude.

C. Automatic Selection of the Optimal Electrode
Configuration With Unknown Fetal Position

Table II reports the performance of the proposed automatic
optimal configuration detector evaluated in the test set. The data
forming this set are completely independent of those used to
define our guidelines, optimize the model parameters, and train
the SVR. This was to ensure a fair evaluation of our method.
As shown in Table II, the accuracy of the prediction model is
80.9%, only slightly lower than that obtained on the validation
set (82.1%, reported in Table I). This indicates that the model
is generalizable. Accuracy describes the overall performance of
the model and takes into account both types of errors: FG and
FB. The latter is more frequent than the former. Indeed, the
Specificity is higher than the Sensitivity, showing that the bad
configurations are correctly classified more easily than the good
configurations.

Considering the purpose of the current work, aiming at the
selection of the electrode configuration resulting in the best
fHR estimation, the FB error is less critical than the FG error.
Indeed, if a bad configuration is wrongly recognized as good
and employed to acquire the multichannel signals, the quality of
fHR estimation will be poor with consequent deterioration of the
monitoring quality. On the other hand, if a good configuration
is wrongly recognized as bad, another good configuration will
be selected without significant deterioration of the monitoring
performance.

The goal of pre-selecting an optimal configuration among a
multitude of configurations made available by an electrode grid
is clearly accomplished, as confirmed by the high value of the
PC metric, with more than 92% of the subjects where the best
configuration was correctly identified.

D. Limitations

The main limitation of this work is in that the proposed auto-
matic optimal configuration detection method, based on SVR,
is trained and validated on in-silico data only. This scenario is
simpler than reality, as it disregards the variety of motion artifacts
that typically corrupt long-term monitoring. Furthermore, in the
simulator, the fetus is approximated with a current spherical
dipole. Therefore, the simulations lack fetal movements because
they cannot be reproduced with sufficient reliability. Both types
of artifacts could degrade the detection performance reported
in this work. However, due to the complexity of pregnancy and
the difficulty in obtaining information about the fetus, such as
position and reliable estimation of the fHR (especially during
the vernix caseosa period), the use of in-silico data enables us to
provide an accurate ground-truth reference and a large number of
subjects, while considering a wide variety of different conditions
and scenarios. In future developments, the proposed method will
also be applied and validated in real pregnancies.

V. CONCLUSION

To conclude, the proposed method provides for the first time
indications about the most suited electrode configuration for fHR
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monitoring by multichannel electrophysiological recording, tak-
ing into account the characteristics of the source signals in
combination with the algorithms employed for fHR estimation,
and dynamically adapting to the fetal presentation.

The proposed method, based on SVR, can predict in advance
the accuracy of the fHR estimation based on features extracted
from the raw data, prior to performing complex fHR estimations.
‘When more electrodes are available, the automatic selection of
the best 5-electrode configuration proposed in this manuscript
is the optimal solution to take advantage of the 16-channel
recording while keeping the computational cost low. Indeed, the
optimal configuration is made up of only four leads that ensure
lightweight processing.

The proposed solution, beyond being flexible, robust, and
lightweight, can handle the change in fetal position and manage
signal degradation, ensuring accurate and reliable estimation of
the fHR also during wearable, long-term monitoring applica-
tions.
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