Abstract:
An iterative method is developed for computing the current induced by plane wave excitation on conducting bodies of arbitrary shape. In this method, the scattering body i...Show MoreMetadata
Abstract:
An iterative method is developed for computing the current induced by plane wave excitation on conducting bodies of arbitrary shape. In this method, the scattering body is divided into lit- and shadow-side regions separated by the geometric optics boundary. The induced current at any point on the surface of the scatterer is expressed as the sum of an approximate optics current and a correction current. Both of these currents are computed by iteration for the lit and shadow regions separately. The general theory is presented and applied to the problems of scattering from a two-dimensional cylinder of circular and square cross sections. The results are compared with the method of moments and good agreement is obtained. This method does not give erroneous results at internal resonances of the scatterer, does not suffer from computer storage problems and can be extended to nonperfect conductors as well as to three-dimensional bodies.
Published in: IEEE Transactions on Antennas and Propagation ( Volume: 33, Issue: 11, November 1985)