
MoteLab: A Wireless Sensor Network Testbed

Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh
Division of Engineering and Applied Sciences

Harvard University
{werner,swies,mdw}@eecs.harvard.edu

Abstract— As wireless sensor networks have emerged as a exciting new
area of research in Computer Science, many of the logistical challenges
facing those who wish to develop, deploy, and debug applications
on realistic large-scale sensor networks have gone unmet. Manually
reprogramming nodes, deploying them into the physical environment, and
instrumenting them for data gathering is tedious and time-consuming.

To address this need we have developed MoteLab, a Web-based
sensor network testbed. MoteLab consists of a set of permanently-
deployed sensor network nodes connected to a central server which
handles reprogramming and data logging while providing a web interface
for creating and scheduling jobs on the testbed. MoteLab accelerates
application deployment by streamlining access to a large, fixed network
of real sensor network devices; it accelerates debugging and development
by automating data logging, allowing the performance of sensor network
software to be evaluated offline. Additionally, by providing a web
interface MoteLab allows both local and remote users access to the
testbed, and its scheduling and quota system ensure fair sharing.

We have developed and deployed MoteLab at Harvard and found it
invaluable for both research and teaching. The MoteLab source is freely
available, easy to install, and already in use at several other research
institutions. We expect that widespread use of MoteLab will accelerate
and improve wireless sensor network research.

I. INTRODUCTION

Testing wireless sensor networks can be frustrating. Deploying a
network into a realistic environment requires iteratively reprogram-
ming dozens of nodes, locating them throughout an area large enough
to produce an interesting radio topology, and instrumenting them
to extract debugging and performance data. Although reasonable
tools exist for evaluating large sensor networks in simulation [1],
[2], only a real sensor network testbed can provide the realism
exigent to understand resource limitations, communication loss, and
energy constraints at scale. The advent of networked “backchannel”
interfaces for sensor nodes, such as the Crossbow MIB-600, makes
remote reprogramming and monitoring of permanently-powered sen-
sor network nodes possible. However, there are few existing tools for
managing such large-scale networked testbeds.

The MoteLab sensor network testbed platform addresses these
challenges. Through a web interface, MoteLab allows users to create
and schedule experiments. It automates testbed reprogramming and
logs data generated by experiments to a persistent database. Users can
retrieve data through the web interface or directly from the database.
MoteLab also allows users to interact with individual nodes directly
during experiments. By providing a web interface to the testbed
MoteLab simplifies and accelerates deploying and evaluating wireless
sensor network applications.

In situ power profiling of sensor applications is another difficult
task faced by researchers, since rigging a node up to an appropriate
measurement harness is often non-trivial and requires manual data
capture [2]. We have instrumented a node in MoteLab with a
network-connected digital multimeter, allowing the MoteLab back-
end to continuously monitor the energy usage of the node. Current
consumption data is logged and returned with other data generated
during the experiment. Gathering energy usage data simply requires
checking a box in the Web interface.

MoteLab has been deployed on a network of 30 Ethernet-connected
MicaZ “motes” distributed over three floors of Maxwell Dworkin,
the Electrical Engineering and Computer Science building at Har-
vard University. MoteLab is freely available as open source, and
several universities and research labs have chosen it to manage
their own sensor network testbeds. In addition, because MoteLab
exports functionality through a web interface, remote users can use
the Harvard testbed for their own research. We believe that pervasive
web-based access to such testbeds will soon become an essential tool
for developing and evaluating sensor network applications, thereby
supporting a broad range of research efforts in this field.

This paper describes the architecture and implementation of the
MoteLab testbed framework and our experiences with the system over
the last 16 months of operation. Section II discusses related testbed
tools. Section III provides a technical overview of the MoteLab
system, and in Section IV, we discuss the various usage models for
application development and debugging. In Section V, we present
several ongoing research projects that have benefitted from MoteLab.
We close the paper with a discussion of areas for improvement and
future development plans.

II. RELATED WORK

While there are a number of existing sensor network testbeds,
most of these have not addressed the user interface issues arising
from a large and diverse user population. Existing testbeds often
require users to use homebrew scripts to reprogram the network or
debug network applications. Scheduling testbed access is performed
manually, e.g. over a mailing list. We designed MoteLab because
we beleive that a web interface is essential for simplifying access to
the testbed. The web interface MoteLab provides facilitates testbed
scheduling, node programming, data logging, and administrative
functions such as adjusting user quotas.

Most similar to MoteLab in goals and realization is EmStar [3], a
Linux-based approach to sensor network development and debugging.
Emstar is a sensor network emulator allowing the boundary between
simulated components and hardware to be shifted. For example, the
same application can run using either a simulated radio model or
the radios of a ceiling-mounted array of nodes. A related project,
EmTOS [4], allows TinyOS applications to be recompiled to run on
EmStar. MoteLab differs from these projects by running code directly
on real hardware and facilitating fair sharing of the testbed among
users.

SCALE [5] is a wireless communication assessment tool built on
top of EmStar. In that way it is similar to MoteLab’s Connectivity
Daemon (Section IV-B), which collects statistics on radio connectiv-
ity between MoteLab nodes and presents this data to users through a
web interface. MIT’s Roofnet [6] has also been used to collect similar
data.

More recently, several other large-scale testbeds have motivated
groups to develop management software. Ohio State University is in
the process of deploying a heterogenous testbed consisting of both

0-7803-9201-9/05/$20.00 ©2005 IEEE 483

Fig. 1. Component model showing the different software pieces that combine to form MoteLab. Connections between components illustrate
data flow. Here, three external users are using the lab. User A is setting up a job to be run later (Section III-D). User B is accessing the
MySQL tables directly to process data collected during a previous experiment (Section III-C). User C has a job running and has made a
direct connection to a serial forwarder to receive or send messages to the attached node (Section III-G.2).

XSM ”motes” and more substantial Stargate nodes. Kansei [7] is
under development to manage this testbed. It is unclear how similar
it will become to MoteLab before the testbed opens in Spring, 2005,
but due to the nature of the hardware supported there are some
inherent differences. Data logging, for example, is initially done to
local Stargate nodes rather than to a central server.

To address high levels of testbed contention Intel Research Berke-
ley has developed Mirage [8] which applies microeconomic ap-
proaches to arbitrate among competing users. Users request resources
by submitting bids using a virtual currency and auctions run period-
ically to select the winners. Besides this different scheduling model,
Mirage also does not provide the automated reprogramming and data
collection that MoteLab does. Users access the subset of the testbed
that they have gained access to by logging into a server and are
responsible for directing any reprogramming or data collection that
their experiments require. We view this usage model as extremely
complementary to the one provided by MoteLab and plan to integrate
more direct control over lab resources into future MoteLab releases.

III. TECHNICAL DETAILS

MoteLab is a set of software tools for managing a testbed of
ethernet-connected sensor network nodes. A central server handles
scheduling, reprogamming nodes, logging data, and providing a web
interface to users. Users access the testbed using a web browser to
set up or schedule jobs and download data.

MoteLab consists of several different software components. The
main pieces are:

• MySQL Database Backend : Stores data collected during
experiments, information used to generate web content, and state
driving testbed operation.

• Web Interface : PHP-generated pages present a user interface
for job creation, scheduling, and data collection, as well as an
administrative interface to certain testbed control functionality.

• DBLogger : Java data logger to collect and parse data generated
by jobs running on the lab.

• Job Daemon : Perl script run as a cron job to setup and tear
down jobs.

Figure 1 shows elements of the communication between these
components and an illustration of typical testbed activity.

The rest of this section is structured as follows. We begin with an
overview of MoteLab hardware. After defining a MoteLab “job”, an
important piece of terminology, we explain each software component
listed above in more detail. Finally, we describe several useful
MoteLab features not mentioned above. We postpone a description
of the typical MoteLab user experience to Section IV.

A. MoteLab Hardware

MoteLab software manages an fixed array of wireless sensor
network nodes fitted with Ethernet interface backchannel boards
allowing remote reprogramming and data logging. At Harvard, our
original testbed was 26 Mica2 motes. The Mica2 “mote” consists of
a 7.3 MHz ATmega128L processor, 128KB of code memory, 4KB
of data memory, and a Chipcon CC1000 radio operating at 433 MHz
with a data rate of approximately 34 Kbps. These were attached to 26

0-7803-9201-9/05/$20.00 ©2005 IEEE 484

Fig. 2. Crossbow MIB600 “emote” interface board. Attached to a
Mica2 or MicaZ “mote”, provides remote reprogramming and data
logging capabilities.

Ethernet interface boards: 6 EPRB’s [9] developed at Intel research
by Phil Buonadonna and 20 Crossbow MIB-600 “emotes” (Figure 2).
The EPRB was the original solution integrating the reprogramming
and data logging hardware. The MIB-600 is a later, single-board
solution. Both provide one TCP port for reprogramming and another
for data logging. We recently upgraded MoteLab to use 30 CrossBow
MicaZ motes, which upgrade the Mica2 with Chipcon CC2420 IEEE
802.15.4 compliant radios.

While we expect that MoteLab will be most useful for experi-
menting with nodes in the Mica lineage running TinyOS [10], the
MoteLab software can manage any lab of nodes providing remote
reprogramming and data logging capabilities. For example, we intend
to explore the use of Ethernet-USB interfaces for interfacing to the
newer Telos [11] motes.

At Harvard, all of the MoteLab software described below runs on
a central server running Linux with Apache, MySQL, and PHP.

B. What Is a MoteLab Job?

Throughout this section we refer to a “job” running on MoteLab.
A MoteLab job consists of some number of executables and testbed
nodes, a description mapping each node used to an executable,
several Java class files used for data logging, and other configuration
parameters, such as whether or not to perform power profiling
during the experiment. To create a job a user uploads the required
executables and class files and describes how the lab should be
programmed. Once a job is created, MoteLab stores the configuration
information allowing the same job to be run multiple times, for
different amounts of time or at different times of day.

C. MySQL Database Backend

MoteLab uses a MySQL database to store all information needed
for testbed operation. This information divides into two categories:
job-generated data and testbed state.

When a user account is created, a MySQL database is created for
that user that will hold all of their job-generated data. A new set
of tables is created for each instance of a job run, one table for
each message type associated with the job. The user is given access
rights to their database, allowing them to leverage the MySQL query
language for post-processing.

A seperate database holds all lab state information, including user
information and access rights; node state; information about uploaded
executables and class files; job properties; and a representation of the
lab schedule. This state is provided to and modified by all of the other
main MoteLab components.

D. Web Interface

MoteLab uses PHP to generate dynamic web content, and
Javascript to provide an interactive user experience. This allows users

to access the lab in a platform-independent way. After logging in, a
normal user has access to the following functionality:

• Home Page : provides a summary of pending, running, and
completed jobs, and the ability to download data logged by the
lab during past experiments.

• User Info : instructions for database access, serial forwarder
access, and the ability to change lab passwords.

• Create Job : a rich interface for composing jobs. Users can
upload executables; choose which executables will run on which
testbed nodes; upload class files for message parsing; and choose
from among various options, including whether to run power
profiling during the experiment. Administrators can also choose
to run a job as a daemon for a given period at specified intervals,
and choose programs to run on MoteLab during and after job
execution.

• Edit Job : provides the same capabilities as the job creation
page, but reloads it with information from a stored job.

• Schedule : presents a view of the current state of the lab,
including finished, running, and pending jobs, and the ability
to schedule a job at various degrees of granularity. Users can
delete their own pending jobs; administrators can delete any.

Two additional pages are provided for administrators. The first
allows new user accounts to be created and modified, the second
allows lab partitioning to be configured.

E. DBLogger

DBLogger is a Java program started at the beginning of every
job. It connects to each node (via the each node’s interface board’s
data logging TCP port described in Section III-A) and uses class
introspection to parse messages sent over its serial port and insert
them into the appropriate MySQL database. The individual fields
of each message sent are parsed and their values extracted into the
database. The resulting table structure is identical to the message
structure, with the addition of fields identifying which testbed node
originated the message, the time the message was inserted into the
database, and a global sequence number.

F. Job Daemon

The Job Daemon is a Perl script run as as cron job. The Job Dae-
mon responsible sets up experiments, which involves reprogramming
nodes and starting other necessary system components (including the
DBLogger and serial forwarders), and tears them down when finished,
which involves stopping node activity, killing processes necessary
during the job, and dumping the data from the MySQL database into
a format suitable for download.

G. User Quotas, Real-time Access, Power Measurement

Three additional features of MoteLab not mentioned above merit
attention.

1) User Quotas: We provide a user quota system that facilitates
sharing the lab between multiple users. The quota does not control
how much total access the user can have to the lab. Rather, it limits
the number of outstanding jobs that the user can post to the lab at
once. For example, with a 30 minute quota, a single user could still
use many hours of lab time during a given day. But they could only
have 30 minutes of pending jobs at once, limiting the rate at which
they can schedule jobs and allowing other users to better compete
for access to the lab.

0-7803-9201-9/05/$20.00 ©2005 IEEE 485

Fig. 3. MoteLab screenshot showing the Schedule Page. Two pending
jobs are shown.

2) Direct Node Access: In addition to logging data to a database
through DBLogger, we provide users with direct access to each
node’s serial port over a TCP/IP connection. This permits the use
of custom programs for monitoring and injecting data into the
running application. Because our interface boards allow a single TCP
connection to the node, we use the TinyOS SerialForwarder program,
which acts as a TCP multiplexer.

3) In Situ Power Measurement: We have connected one node on
our network to a networked Keithley Digital Multimeter (Keithley
2701) and we expose the use of this device on the Create Job
page. The Keithley can sample continuously at 250Hz, and it bursts
at 3000Hz; currently we only suppor continuous operation. Time-
stamped current data is included in the download archive if the user
has selected this option. As sensor network developers become more
aware of power as a design constraint we expect that use of this
feature will become more common.

IV. USE MODELS

Broadly speaking, there are two different ways to use MoteLab.
Users can schedule a large number of jobs to be run unattended in
a batch fashion, or they can interact directly with their running job
by attaching to the exposed per-node serial forwarders or exploiting
real-time access to the MySQL database. Below we briefly describe
both usage models.

A. Batch Use

Sensor network experimentation begins on the desktop. After local
testing to verify that their application produces data, a user is ready
to use MoteLab. After logging on they proceed to the Create Job
page. After uploading the necessary files and specifying other job
parameters they proceed to the Schedule page and schedule their job
some time in the future.

When the job is ready to run, the Job Daemon reprograms the
network and starts the DBLogger with the user-uploaded class files.
The job is now live, and data sent to the serial port of any node will
be parsed and inserted into the appropriate MySQL tables created
for this job. When the job completes, the Job Daemon removes the
executable from the lab, and archives job data.

After the job completes post-processing can be done by parsing
the data dump files in the job download or by directly accessing the
MySQL database.

B. Real-time Access

MoteLab allows researchers to connect directly to the serial for-
warder running during their job via a set of dedicated ports on the
MoteLab machine. This facilitates a wide variety of different ways of
interacting with a running job. For example, a researcher may have
a data set that they want to inject for simulation, either because the
data collected is not of the type that could be collected on MoteLab,
or to make experiments reproducable.

Another use of the direct serial forwarder access is to do real-
time data analysis. Real-time data processing is possible either by
connecting to the serial forwarders providing a data stream for each
node, or by accessing the MySQL database during the job.

As an example of an application that uses real-time access, as
well as almost every other feature available on MoteLab, we discuss
here the Connectivity Daemon. The Connectivity Daemon is job like
any other on MoteLab. At Harvard it is used to collect information
eventually used to graphically illustrate connectivity between lab
nodes on the Maps page.

The Connectivity Daemon uses one executable and two class files.
In addition, it uses three features available only to administrators: the
abilities to run periodically when the lab is available, to execute a
program locally on MoteLab during the job, and to run a program on
MoteLab when the job completes. A Java program that runs during
the job connects directly to active nodes and uses this connection to
tell them when to send messages and when to listen. After the job
completes, a Perl script accesses the database tables created during
the job and calculates packet loss rates between each pair of nodes in
the network. Before finishing, it updates the connectivity information
stored in the mote info table in the database. The next time that the
Maps page is viewed, PHP generates a graphical representation of
link quality between nodes by using the new information. Figure 4
shows a screenshot of the Maps Page illustrating how the data
collected by the Connectivity Daemon is used.

V. RESEARCH USING MOTELAB

Although a relatively new tool, MoteLab is already at work
facilitating sensor network research at Harvard and elsewhere. Here
we describe several research projects at Harvard that have used
MoteLab, as well as instructional lab use. Because MoteLab provides
a web interface, we at Harvard have a number of external users and
we briefly describe their activities. And with MoteLab now deployed
at several other universities we attempt to provide information about
their experiences with the MoteLab software.

A. MoteTrack and CodeBlue

MoteTrack is an RF-based location tracking system developed for
TinyOS-based motes [12]. While RF-based location tracking is a
well-studied problem, most existing approaches make use of 802.11
and a central server to map RF signals to physical location. In
contrast, MoteTrack is entirely decentralized and is designed to be
extremely robust to failures of the beacon node infrastructure. In our
building, MoteTrack achieves an 80th-percentile tracking accuracy of
2 meters, which rivals that of existing systems based on 802.11. In
addition, MoteTrack continues to operate well in the face of beacon
node failure or signal distortion.

MoteTrack represents a case where MoteLab is used not just
to develop a complete sensor network application in an arbitrary
environment, but as a valuable infrastructure in its own right. The
distribution of MoteLab nodes around our building allowed us to
achieve good coverage and develop a building-wide location tracking
system, which would not have been possible in a single, smaller lab.

0-7803-9201-9/05/$20.00 ©2005 IEEE 486

Fig. 4. Screenshot of the Maps Page showing connectivity on the most densely-populated floor of our MoteLab deployment. The Maps
Page is generated dynamically by PHP using data collected periodically by the Connectivity Daemon (Section IV-B).

The Harvard CodeBlue project [13] is developing robust proto-
cols and services for integrating wireless devices into a range of
medical care settings. This project requires that we develop a robust
infrastructure for naming, discovery, data delivery, and security that
runs on a range of devices, including motes, PDAs, and laptops.
We are experimenting with ad hoc multicast routing algorithms,
such as ADMR [14], which permit multiple devices to transmit data
to multiple recipients over multihop wireless links. MoteLab is an
essential resource for developing the CodeBlue system, allowing us
to test our approach in a realistic setting on real motes.

B. Instructional Use

MoteLab is also a valuable tool for teaching sensor network con-
cepts, allowing students to experiment with a real testbed. The Web-
based interface simplifies the mechanical aspects of programming
and debugging the network. MoteLab has been used to teach two
graduate courses at Harvard involving sensor network projects. In
each class (32 and 28 students, respectively), groups of 2-3 students
were issued “mote kits” comprised of several Mica2 or Telos motes,
programming boards, and cables. Students used the kits to develop
code for a TinyOS-based programming assignment, then deployed
their code on MoteLab for a full-scale analysis. In the first year,
students used MoteLab to study radio connectivity and RSSI as it
varies with distance. In the second year, students developed a robust
multihop routing protocol. Students also undertake an independent
research project related to the theme of the course, and many groups
used MoteLab for this purpose. The MoteTrack system described in
Section V-A was originally a project for this course.

C. External Users and External MoteLabs

We have made MoteLab accounts available to external researchers
upon request. To date, 20 external users have MoteLab accounts. One
external user used it to analyze signal strength observed at different
nodes and create a location estimation technique based on cluster
analysis. Another used MoteLab to evaluate an order statistic service.
MoteLab’s web interface and quota system facilitate easy lab sharing.

We view our MoteLab as a shared resource for the entire sensor
network research community.

The MoteLab software is available for download and several
external research groups have installed the system for managing
their own testbeds. External use by these groups has resulted in
valuable feedback and led to feature additions. Examples include the
direct node access discussed in Section III-G.2, division of the lab
into multiple ”zones” scheduled independently, and simple scripting
support.

D. Discussion

Our experiences with MoteLab, the experience of the user com-
munity, and recent related work (e.g. Mirage) have made evident the
salient features of the MoteLab model and brought into clearer focus
the strengths and weaknesses of our design.

For testbeds with a high degree of contention our simplistic
scheduling model may not be the best approach. At Harvard, our
MoteLab is typically lightly loaded. When Intel Research, Berkeley,
experimented with MoteLab they found the scheduling model unable
to cope with their level of testbed contention. Out of that need came
Mirage [8] which uses an economic, bidding-based model to schedule
testbed resources.

Another MoteLab design decision that Mirage brings into focus is
tying testbed access with job scheduling and data collection. MoteLab
automates everything, when a researcher might actually want more
fine grained control during their assigned time slot. Mirage solves
this problem by allowing users to log into a central server and use
tools their to manage the testbed during their time window, restricting
their access to the nodes that they have access to and kicking them
off the server when their time window expires.

We are also exploring ways to allow researchers direct access
to nodes, both through a web interface available only during their
experiment, and through command-line scripts that would integrate
seamlessly into a build environment. Our eventual goal is to provide
a “make motelab” command that would collect new binaries
locally, consult a local configuration file, and then communicate with

0-7803-9201-9/05/$20.00 ©2005 IEEE 487

the MoteLab server to upload binaries and properly reprogram testbed
nodes (assuming the user has access to those testbed nodes at that
time).

In January, 2005, a Testbeds Working Group was created to explore
testbed-related issues and to continue the development of testbeds to
assist in wireless sensor networks research. The group consists of
representatives from Harvard, UC Berkeley, Intel Research Berkeley,
MIT, Ohio State, Kent State, Harvard as well as others with large
testbeds to manage. It is our hope that this working group will be
able to integrate some of the existing solutions into a more global
architecture, allowing testbed management code to be collectively
developed and maintained.

VI. FUTURE WORK AND CONCLUSIONS

Wireless sensor networks are becoming a nexus of activity within
the computer science community. Unfortunately, few good tools for
experimenting with wireless sensor networks exist. Simulators fail to
capture significant details of node operation or wireless communi-
cation, and while real testbeds capture the realism that simulations
miss, traditionally they have been difficult to use or limited to a small
group of reseachers.

Our goal in designing MoteLab was to develop a interface to a
networked testbed allowing a large community of users to share
access. We believe that web-based access is essential since UNIX
accounts or scripts are hard to manage and can restrict access to a
local community. In addition, to arbitrate access among a large group
of researchers a preemptive scheduler is necessary.

MoteLab meets these design goals. By running sensor network
software on real hardware, MoteLab provides an experimentation
environment similar to most deployments. MoteLab’s web interface
and preemptive scheduler allow a large community to share access
to the lab and eliminates the difficulties inherent in cooperative
scheduling. Finally, because MoteLab is freely distributed and built
on top of readily-available software tools, other organizations can
easily set up their own MoteLab testbeds. As our MoteLab testbed at
Harvard increases to several hundred nodes, its size will drive future
MoteLab development. Such a large lab will demand partitioning,
allowing different experiments to run side by side on different
portions of the lab. We have already developed a MoteLab feature
allowing different lab “zones” to be created and scheduled seperately
on the scheduling page, and we will continue work allowing MoteLab
to manage larger labs. Other areas of future work include decoupling
scheduling and job execution, allowing users more control over the
testbed during their allocated time slots. Increasing the modularity
of the codebase is also crucial since it allows a larger variety of
hardware architectures to be supported. Finally, scripting support has
been requested by several adopters and, while not replacing the web

interface, would provide a powerful tool for more serious researchers
interested in running multiple experiments with different parameters,
for example.

In summary, we have described MoteLab, a wireless sensor net-
work testbed. MoteLab is unique in its ability to manage a network
of real, network-attached wireless sensor network nodes. MoteLab is
a powerful tool for sensor network research, and we hope to see it
widely deployed. We will continue MoteLab development as directed
by the needs of our user community.

REFERENCES

[1] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
scalable simulation of entire TinyOS applications,” in Proc. the First
ACM Conference on Embedded Networked Sensor Systems (SenSys
2003), November 2003.

[2] V. Shnayder, M. Hempstead, B. rong Chen, G. Werner-Allen, and
M. Welsh, “Simulating the power consumption of large-scale sensor
network applications,” in Proc. the 2nd international conference on
Embedded networked sensor systems (SenSys 2004), November 2004.

[3] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and
D. Estrin, “Emstar: a software environment for developing and deploying
wireless sensor networks,” in Proceedings of the 2004 USENIX Technical
Conference, Boston, MA, 2004.

[4] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Os-
terweil, and T. Schoellhammer, “A system for simulation, emulation,
and deployment of heterogeneous sensor networks,” in Proceedings of
the Second ACM Conference on Embedded Networked Sensor Systems,
Baltimore, MD, 2004.

[5] A. Cerpa, N. Busek, and D. Estrin, “Scale: A tool for Simple Con-
nectivity Assessment in Lossy Environments,” Center for Embedded
Networked Sensing, University of California, Los Angeles, Tech. Rep.
CENS Technical Report 0021, September 2003.

[6] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level
measurements from an 802.11b mesh network,” SIGCOMM Comput.
Commun. Rev., vol. 34, no. 4, pp. 121–132, 2004.

[7] Ohio State University, “Kansei: Sensor Testbed for At-Scale Experi-
ments,” Poster, 2nd International TinyOS Technology Exchange, Berke-
ley, CA, 11 Feb 2005.

[8] Intel Research Berkeley, “Mirage: Microeconomic Resource Allocation
for SensorNet Testbeds,” http://mirage.berkeley.intel-research.net/.

[9] P. Buonodanna, “EPRB : Ethernet PRogramming Board,” http://berkeley.
intel-research.net/pbuonado/EPRB/.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister,
“System architecture directions for networked sensors,” in Proc. the
9th International Conference on Architectural Support for Programming
Languages and Operating Systems, Boston, MA, USA, Nov. 2000, pp.
93–104.

[11] Moteiv Corporation, “Telos Sensor Network Module,” http://www.
moteiv.com.

[12] K. Lorincz and M. Welsh, “MoteTrack: A robust, decentralized location
tracking system for disaster response,” Harvard University, Tech. Rep.
TR-19-04, March 2004.

[13] K. Lorincz, D. Malan, T. R. F. Fulford-Jones, A. Nawoj, A. Clavel,
V. Shnayder, G. Mainland, S. Moulton, and M. Welsh, “Sensor Net-
works for Emergency Response: Challenges and Opportunities,” IEEE
Pervasive Computing, Oct-Dec 2004.

[14] J. G. Jetcheva and D. B. Johnson, “Adaptive demand-driven multicast
routing in multi-hop wireless ad hoc networks,” in Proc. ACM Mobi-
Hoc’01, October 2001.

0-7803-9201-9/05/$20.00 ©2005 IEEE 488

