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Abstract

Conventional SEIR (Susceptible–Exposed–Infectious–

Recovered) models have been utilized by numerous 

researchers to study and predict disease outbreak.  By 

combining the predictive nature of such mathematical 

models along with the measured occurrences of disease, a 

more robust estimate of disease progression can be made. 

The Kalman filter is the method designed to incorporate 

model prediction and measurement correction. 

Consequently, we produce an SEIR model which governs 

the short term behaviour of an epidemic outbreak.  The 

mathematical structure for an associated Kalman filter is 

developed and estimates of a simulated outbreak are 

provided 

1. Introduction

Mathematical models have been used to study the 

outbreak of a number of infectious diseases [1, 2, 6].  In 

particular, difference and differential equations are the 

methodologies in which such models are written [4, 5, 6]. 

Many research hospitals and/or public health departments 

are maintaining a database of emergency room visits by 

patients with categorized complaints.  The combination of a 

mathematical model of an outbreak with daily 

measurements beckons the application of a Kalman filter to 

provide an optimal estimate of the number of infections. 

This paper will provide the mathematical infrastructure 

required to implement a Kalman filter on simulated 

emergency room data. 

 The program of this discussion will be to provide a 

general model, discuss model simplification, and 

demonstrate the efficacy of the filter on simulated data.  In 

this first section, we establish common notation and a 

general model for the outbreak of a specific (but unknown) 

infectious disease through a general population.

1.1 Notation

S = S(t) = number of people in the population susceptible to 

the disease at time t

E = E(t) = number of people in the population exposed/ 

infected by the disease at time t

I = I(t) = number of people in the population who are 

infectious at time t

R = R(t) = number of people in the population who have 

recovered from the disease at time t

There are a number of parameters which will need to be 

either modeled or estimated from the data.  It is assumed 

that these parameters are time invariant though more 

sophisticated efforts and information could produce time–

varying models.  A description of these parameters is listed 

below. 

1.2 Parameters 

β = probability of disease transmission

v = rate of seroconversion (i.e., from exposed to infecti–

ous) 

µI  = death rate of infectious due to the disease 

α = recovery delay rate

ρ(I) = βI(t) = conversion rate from susceptible to exposed/

infected (also called the force of infection)

In figure 1 below, a schematic diagram expresses the 

graphical representation of the spread of an infectious 

disease through a population.  Implicit in this figure is the 

assumption that everyone in the population is susceptible to 

the disease.  The first boxes illustrate the migration of the 

population of susceptibles S(t) to those exposed and 

infected E(t).  The rate at which the susceptibles are 

infected is proportional to the number of contacts c with the 

infectious population I(t) times the probability of disease 

transmission per contact β times the proportion of the

population which is infectious:  ρ(I) = βI(t).  Since the

infected leave the population of susceptibles a negative sign 

is attached to this quantity.  Consequently, dS(t)/dt = 0 – 

ρ(I)S(t) ≡ βI(t)S(t).  In a similar manner, the disease

dynamics of equation (1.1) are formed.
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 Figure 1.1. Disease dynamics 

1.3 Disease Dynamics 
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This “full” model expressed in (1.1) operates under the 

simplifying assumption of a sufficiently short time–scale 

such that no significant population enters the susceptible 

population and that the parameters β, ν, µI, and α do not 

vary with respect to time.  The efforts behind this work are 

to present a model for a short time–scale within the 

epidemic cycle (i.e., on the order of 2–3 weeks).  

Consequently, a series of simplifying assumptions can be 

made which are listed below. 

Assumptions 

(i) Short time–scale:  t ∈ [to, to + ∆t] where the 

change in time ∆t is less than three weeks. 

(ii) No immigration to or emigration from the 

subpopulations 

(iii) Insufficient time for R (recovereds) to return 

to the population of susceptibles 

(iv) For t ∈ [to, to + ∆t], S(t) = S(to) = So.

From (iv), 0
dS

dt
=  and ( ) oS t S=  (constant).  Set ρ(I) = 

βSoI(t) ≡ ρoI(t), where ρo ≡ βSo, so that the second and 

third equations of the disease dynamics become 
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Observe that the fourth equation of the disease dynamics is 

completely decoupled from the middle two equations.  

Consequently, the population of recovereds can be 

computed as 
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t

o I

t
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By setting X = [E,I]T
 , the reduced set of disease dynamics 

can be written in the vector–matrix form 
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The measurements of this system are a portion of the 

number of infectious which report to emergency rooms on a 

day–to–day basis.  More precisely, let T be the probability 

that a member of the infectious population appears in a 

reporting emergency room.  Then, the measurements are 

m(t) = TI(t). (1.5) 

The measured quantity, TI(t), rather than the modeled 

population of infectious people I(t), is what emergency 

departments reported.  Thus, make the following change of 

variables (1.6) to transform the problem to a “non–

dimensional” framework. 
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≡
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Since, 
d E dE

T
dt dt

= and 
d I dI

T
dt dt

= , then multiplying (1.2) 

by T and simplifying yields the “dimensionless” disease 

dynamics 
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and the associated measurements 

( ) ( )m t I t= . (1.8) 

Now with ,
T

E I=X and A as above, the disease 

dynamics can be written as 

d
A

dt
=X

X  (1.9) 

where X  is the state vector.  As equation (1.9) 

illustrations, the disease dynamics are linear.  Moreover, 

there are regular time measurements (1.8).  Modern control 

theory was developed around this very scenario:  The need 

to solve linear differential equations in association with 

regularly sampled (in time) measurements.  An optimal 

estimate of the model predicted/ measurement corrected 

state of a disease outbreak can be obtained via the Kalman 

filter.  The discussion is hereafter, framed in the Kalman 

filter context. 

2. The Kalman Filter

Since the mathematical models of the disease dynamics 

(1.9) and measurements (1.8) are inherently imperfect, 

“noise” in the form of zero–mean Gaussian random 

processes are added to enhance these modelling 

deficiencies.  Thus, to the state dynamics, add a vector w(t)

~ N(0,Q(t)) called the state or system error.  The matrix 

Q(t) is called the state or system noise covariance.

Similarly, to compensate for the variability in the 

measurements, a vector v(t) ~ N(0,V(t)) called the 

measurement error is added (1.8).  The matrix V(t) is called 

the measurement noise covariance.  The definitions below 

help to develop the Kalman filter (see, e.g., Costa [3]). 

State Vector:
E

I
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State Dynamics:
d

A
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X

System Model:
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Kalman gains matrix:  ( ) ( ) ( )T
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Information matrix: 1( ) [ ( ) ( )]T
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State correction: ( , ) ( )[ ( ) ( )]c n n n n p nt M K t m t m t= −X

Predicted measurement: 1( ) ( , )pp n n nm t I t M −=

State estimate: 1
ˆ ( , ) ( , ) ( , )p cn n n n n nt M t M t M−= +X X X

Covariance update (Joseph form):  

( ) [ ( ) ] ( )[ ( ) ]

( ) ( ) ( )

T
n nxn n n nxn n

T
n n n

P t I K t H P t I K t H

K t V t K t

= − − +

3. Simulation

A mathematical model that simulates the 

underlying dynamics of the hospital daily visits that are 

influenza related was developed in the form of equation 

(3.1)

( ) 2cos(2 / 365) 8 tD t t wπ= + + . (3.1) 

Here t = 0, 1, 2, … , 5x365 is measured in single days over 

five years, and (0,2)tw N is normally distributed noise.  

We assumed the following set of initial conditions and 

parameters:  

1000, 10, 1, 2,o o o oS E I R= = = =
0.4, 0.5, 0.3,  and 0.1Iν β α µ= = = = .

The system noise covariance Q was selected as a 10% 

variation of the initial state covariance 

( ) ( ( ) )( ( ) )T
o o oo oP t X t X tµ µ= − − and ( )1

2
o oo E Iµ = + .

Finally, the measurement noise covariance V was selected 

as the variance in the data. 

The filter was run over the simulated data (3.1) to 

establish a baseline estimate of the number of 

exposed/infected and infectious reporting to an emergency 
department.  The results are depicted in Figure 3.1 below.  

A one–standard deviation neighborhood, based on the 

estimated covariance matrices P(t) was computed for the 

infectious class; see top portion of Figure 3.2.  Then a 

simulated one–week (i.e., seven day) outbreak was 
introduced into the population at a random seed time to in 

the form of (3.2). 

0  for  

( , ) 2( )  for  6

0  for  6

o

outbreak o o o o

o

t t

f t t t t t t t

t t

<
= − ≤ ≤ +
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 (3.2) 

That is, ( , )outbreak of t t was added to the simulated data D(t)

in (3.1).  If the Kalman filter estimate of the infectious class 

( , )k kI t M , reflecting the influence of the measurements 

( ) ( , )outbreak oD t f t t+ through time tk, exceeded the one– 

standard deviation neighborhood established for the 

baseline case within ten days of the start of the outbreak 

(i.e., for [ , 10]k o ot t t∈ + ), then a true positive for outbreak 

detection was recorded.  Otherwise, a false negative was 

recorded.  To insure a sufficient number of measurements 

were processed by the Kalman filter, the range of the 

random outbreak time was restricted:  [50,1800]ot ∈ days.  

One thousand random outbreaks were tested and the 

number of true positives (Tp) and false negatives (Fn) were 

recorded.  For this test, 100% of the outbreaks were 

discovered within the requisite time period (10 days).  In 

particular, 2.9% of the outbreaks were detected on day 2, 

17.3% were detected on day 3, 59.8% were detected on day 

4, 19.9% were detected on day 5, and 0.1% were detected 

on day 6 of the outbreak. 

Figure 3.1. Baseline Kalman filter estimates from 
simulated data 

Figure 3.2. One standard deviation neighborhood of 
the infectious class 
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4. Conclusions 

A set of mathematical models governing the outbreak of 

an infectious disease have been detailed.  Simulated data 

have been generated.  The associated Kalman filter has 

been developed and tested against the simulated data with 

positive results.  Analysis concerning the variation of the 

model parameters and their effect upon the Kalman filter 

estimates and the application of this method to real 

recorded emergency department data will be the focus of 

future work 
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