
Autonomic Computing and Reliability Improvement

Yuan-Shun Dai

Department of Computer and Information Science, Indiana University, Purdue University,
Indianapolis, IN, USA. (Email: ydai@cs.iupui.edu)

Abstract

The rapidly increasing complexity of systems is

driving the movement towards autonomic systems that

are capable of managing themselves without the need

for human intervention. Without autonomic

technologies, many conventional systems suffer

reliability degradation due to the accumulation of

errors. The autonomic management techniques break

the traditional reliability degradation trend. This paper

comprehensively describes the roles and functions of

various autonomic components, and systematically

reviews past and current technologies that have been

developed to address the specific areas of the

autonomic computing environment. A new mechanism

of model-driven autonomic management is further

presented, which is more intelligent and efficient.

1. Introduction

The term autonomic computing [1] is intentionally

chosen because the idea is to mimic the autonomic

nervous systems found in biology. The systems self-

adapt, self-heal, and self-protect. Because of the

increasing complexity of computing systems, human

systems management is rapidly becoming obsolete.

Humans are simply not able to optimally configure

these large, complex, heterogeneous, and dynamically

evolving systems in an effective manner. Therefore,

there is a strong need to move away from human

managed systems to autonomic managed systems.

 Reliability is a measure of trustworthiness of a

computing system, which can be defined as the

probability for component, communication, service or

system to successfully achieve their tasks/objectives.

The reliability has been extensively studied for about

half century and many theories and models have been

presented for various conditions, see e.g. Xie et al. [2].

 The autonomic computing is related to reliability

enhancement, and also the reliability models will

further improve current autonomic technology to a

more predictable, measurable, and effective manner.

 This paper introduces and classifies the autonomic

technologies that will enhance the reliability, including

the self-adaptation, self-healing and self-protection.

Following that, we further propose a new autonomic

management mechanism driven by reliability models.

This model-driven mechanism depicts an outline

sketch to further improve the autonomic technology.

2. Reliability and Autonomic Computing

This section identifies the technologies and theories

that have been proposed to be useful in an autonomic

computing environment focusing on those things that

will enhance the reliability of such a system. The three

areas in autonomic computing related to reliability

improvement will address are: (1) Self-adaptation, (2)

Self-healing, and (3) Self-protection.

2.1. Self-Adaptation

Self-adaptation refers to the ability of the system to

automatically adapt to changes in the physical topology

of a system as well as changes in the applications that

run on the system. Many techniques have been

presented for the purpose of self-adaptation, which can

be classified by adaptive domains, aspect-oriented

programming, and utility optimized adaptation.

 Adaptive domains are actually a hierarchical system.

Each domain is separately managed based on policies

loaded from a parent domain during runtime. A Host

Manager oversees the operation of the Domain

Manager which manages parent and child nodes of a

specific domain. The domain manager then is tied to a

specific Managed Object which may be a sensor that is

responsible for one or more domains.

The idea using Aspect-Oriented Programming is to

implement a monitor system outside the OS kernel or

applications. Application being monitored is connected

to sensors and effectors of the autonomic manager via

an aspect crosscut layer. The effectors self-adapt if the

sensors suggest corrective action need occur.

 Utility Optimized Adaptation uses the economic

theory of utility to determine how resources should be

allocated on competing resource consumers. Utility

theory analyzes what the consumer is willing to give

up something for his need. Individual utility curves are

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

constructed to form an aggregate utility curve which

can be fitted against the available resources to best

adapt configurations that can maximize overall utility.

 The self-adaptive techniques improve system

reliability by eliminating or dramatically reducing the

need for human operations, as human configuration of

complicated systems can often be error prone.

Moreover, the human configuration for large and

complex systems may be much ineffective, which can

cause timing failures due to the dynamic property of

these systems, so the self-adaptation is also beneficial

to the reliability from this perspective. The self-

adaptation can also improve the fault-tolerance of the

system, e.g. if a component used by a service is in an

erroneous state, then the self-adaptive scheme will

automatically configure some similar components

found online as backups in maintaining this service.

2.2. Self-Healing

Self-healing is concerned with the ability of the

system to automatically recover from faults, which is

directly related to reliability growth. Accurate

detection is critical to designing an effective self-

healing system. Fault detection is accomplished by

some form of monitoring. The question is what

parameters to monitor, how to determine accurately if a

fault has occurred or is likely to occur, and what

corrective measures can be taken to repair the system

unobtrusively. The idea is to repair only the component

that has failed without bringing down the entire system

so that resource availability is maintained even if the

QoS is somewhat degraded. Some self-healing

methods are introduced in the following.

 Aspect-Oriented Programming can also be used for

self-healing in addition to self-adaptation. The basic

approach is same that source code need not be accessed

to implement the system. For self-healing application,

the monitored parameters are those that are associated

with fault-detection rather than configuration.

Corrective action takes place if a monitored parameter

indicates that a fault is occurring or about to occur.

 Patterson et al. [3] presented the Recovery Oriented

Computing which focuses on MTTR rather than MTTF

in order to provide higher system availability. The use

of data clustering to analyze successes and failures

provides for the discovery of the combination of

components that are most highly correlated with the

failed requests. Once failures have occurred how is

recovery initiated? Rather than perform a hard reboot

on the system, a recursively restartable system that

gracefully tolerates successive restarts at multiple

levels is used. Also, fine grain partitioning of the

system enables bounded, partial restarts that recover a

failed system faster than a full reboot. It also enables

strong fault containment and diagnosis providing for

enhanced system reliability.

 Another method is remote healing whereby the

system utilizes an architecture that supports monitoring

and repair actions on a remote operating system or

application memory without using the processor(s) of

the target machine. To support remote healing a

computer system must be equipped with a backdoor, a

specialized network interface that allows external

accesses to its resources without involving its

processors. Backdoors enable intervention on a system

even when it is “dead.” There must be generic support

by the OS to enable remote healing via a backdoor to

allow remote access to system memory. Backdoors can

be implemented using remote memory communication.

 Machine leaning is also proposed as a self-healing

approach for the system to “learn” series of events that

lead to failures thereby providing prediction and

system manage process control. Time-series algorithms,

rule-based algorithms and Bayesian network

techniques are mainly used for the machine learning.

2.3. Self-Protection

The self-protection technique of an autonomic

computing system is concerned with protecting the

system from malicious attacks. Most of these attacks

are assumed to be generated from external sources, but

the system must be prepared to address attacks that are

initiated from within the system as well. Examples of

types of attacks that should be monitored fall into three

basic categories: (1) Denial of Service; (2) Viruses and

Hackers; and (3) Application level attacks or failures.

 One way of self-protection is to dynamically modify

ones’ defensive posture in an attempt to hinder the

adversary’s intelligence gathering process to decrease

system vulnerability. Experiments sought to

substantiate, “autonomic response can improve overall

assurance by thwarting an attack while it is underway.”

 A feedback mechanism is also used for self-

protection, considering the tradeoffs of compromised

information systems resulting from “false negatives”

and the maintenance costs of unnecessary ongoing

defensive countermeasures that result from “false

positives.” It combines online implementation using

sensors to detect intrusions and an offline component

storing models and numerical optimization utilities.

The approach makes heavy use of probabilistic models

for decision making. The offline component performs

the mathematical, probabilistic computations for

decision making that is then stored in an online module

to determine if the system state is normal.

 The self-protection techniques are good for both

reliability and security. To protect the system from

inner faults of components is related to reliability

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

issues while to protect the system/information from

outer attacks is related to security issues.

3. Model-Driven Autonomic Management

Here, a new model-driven scheme for autonomic

management is further presented, based on various

reliability models, see e.g. Xie et al. [2].

3.1. Why Model-Driven?

Most prior autonomic computing techniques rely on

monitoring effort evenly distributed all over the system.

In fact, different services are not equally likely to fail

at a same time, so evenly distributing the monitoring

effort is neither economic nor efficient.

 The model-driven autonomic management can better

allocate the resources by using the reliability models to

predict and direct the distribution of monitoring efforts.

By the models, if certain services or components are

predicted to have high reliability at a time, then there is

no need for intensive monitoring during that period. On

the other hand, those with low reliability require more

intensive monitoring. Combining with the models, the

autonomic computing becomes more intelligent.

The models can also guide some automated

optimization. The evaluated/predicted reliability can be

input into an optimization model for system design,

control, configure, allocation problems, in order to

maximize reliability, minimize cost, or other objectives.

 The models can be further combined with the

machine learning process to predict the failure events

and the causes related to them. The correctness or

errors of prediction can feedback to adjust the models

and parameters as a learning process. Based on the

prediction, certain preventative maintenance can be

conducted to avoid the failures from real occurrence.

3.2. The Model-Driven Mechanism

To implement the model-driven autonomic manage,

it proposes to include a library of reliability models,

hierarchical modeling scheme, real-time and long-term

data collection, model selection and adjustment, and

finally combined with other autonomic technology.

 For the model-driven mechanism, a library of

reliability models should be preset. This library will

contain many reliability models at various levels, such

as component-level (such as software/hardware),

network-level (communication channels), service-level

(combination of multiple components and

communication channels), and system-level (involve

multiple services). This library is used to provide

sources for any component/service/system to select

suitable models based on the goodness of fit.

 The hierarchical modeling scheme will be applied,

which means models of the higher service/system-level

can be integrated from the lower component-level

models. Such hierarchical modeling will be much

efficient because the component models can be built in

parallel by sensors when monitoring the components,

and the service/system-level model can be derived by

just substituting the lower-levels’ models/parameters in.

 The data need to be collected for two purposes: real-

time system monitoring and optimization; and long-

term observation to discern and archive patterns of

model types and parameterization. The goodness of fit

will be used to select/adjust models.

 The hierarchical models are corresponded to the

hierarchical control of autonomic computing. The

component-level models can help sensors to monitor

and report more effective and intelligent. E.g., highly

reliable components are not required to be intensively

monitored. The models also prepare for the sensors not

to always report, which saves network bandwidth. The

sensors will not report to higher-level agents if the data

being monitored is in a range of the model prediction.

If abnormal data appear, the sensors will report it and

then analyze the causes. If such abnormal condition is

persistent, which means the models are not fitted, then

model adjustment is required.

 For higher-level control, the higher-level models are

useful not only to direct the monitoring but also to help

make optimal decisions. Moreover, if the possible

causes for the latent failures can be determined as well,

some preventative maintenance can be conducted and

remove the causes in advance. To make optimal

decisions [2: pp. 239-274].

4. Conclusion

This paper has presented a variety of existing ideas,

models, and technologies that encompass the self-

adaptation, self-healing, self-protect components of

such a system in an effort to identify promising areas

that will improve reliability. Furthermore, this paper

presented a new model-driven autonomic management

mechanism which makes the autonomic computing

more intelligent, efficient, and economic.

References

[1] J. Kephart, and D. Chess, “The Vision of Autonomic

Computing”, IEEE Computer, January 2003, pp. 41-50.

[2] M. Xie, Y.S. Dai, K.L. Poh, Computing Systems

Reliability: Models and Analysis, Kluwer Academic

Publishers: New York, U.S.A., 2004.

[3] D. Patterson, A. Brown, P. Broadwell, et al., “Recovery

Oriented Computing (ROC): Motivation, Definition,

Techniques, and Case Studies”, Technical Report CSD-02-

1175, Univ of California-Berkeley, March 2002, pp. 1-25.

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

