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Unsupervised Speech Activity Detection Using
Voicing Measures and Perceptual Spectral Flux

Seyed Omid Sadjadi and John H. L. Hansen, Fellow, [EEE

Abstract—Effective speech activity detection (SAD) is a nec-
essary first step for robust speech applications. In this letter, we
propose a robust and unsupervised SAD solution that leverages
four different speech voicing measures combined with a per-
ceptual spectral flux feature, for audio-based surveillance and
monitoring applications. Effectiveness of the proposed technique
is evaluated and compared against several commonly adopted
unsupervised SAD methods under simulated and actual harsh
acoustic conditions with varying distortion levels. Experimental
results indicate that the proposed SAD scheme is highly effective
and provides superior and consistent performance across various
noise types and distortion levels.

Index Terms—Clarity, Combo-SAD, harmonicity, perceptual
spectral flux, speech activity detection, voicing measures.

I. INTRODUCTION

PEECH activity detection (SAD) has applications in a
S variety of contexts such as speech coding [1], automatic
speech recognition (ASR) [2], speaker and language identifica-
tion [3], and speech enhancement. In addition, for surveillance
and monitoring applications that involve listening to long
conversational audio recordings with small a priori speech
presence probability, SAD, including segmentation techniques
[6], [7], can help mitigate the excessive cognitive load on
human listeners by removing long and often noisy non-speech
intervals. In this study, our goal is to develop a robust and un-
supervised SAD system for such severe noisy communication
applications [4], [S].

State-of-the-art SAD techniques include both supervised and
unsupervised approaches. Supervised methods, which are often
based on either Gaussian mixture models (GMM) [5], hidden
Markov models (HMM) [2], or multi-layer perceptrons (MLP)
[5] work well given that pre-trained models for both speech
and non-speech classes broadly match the acoustic characteris-
tics of the test environment. Hence, they are limited to applica-
tions where a large amount of training data is available and the
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acoustic properties of the test environment are consistent and
known a priori as well .

On the other hand, unsupervised SAD techniques assume
no a priori knowledge about the acoustic characteristics of the
test environment, and can be categorized as feature-based [1],
[8], or statistical model-based [9]-[12]. Feature-based methods
perform well under stationary noise conditions at relatively
high signal-to-noise ratio (SNR) levels, however their perfor-
mance degrades rapidly as the noise level increases. Statistical
model-based techniques employ a likelihood ratio test (LRT)
of speech presence and absence hypotheses in the short-time
Fourier transform (STFT) domain, assuming that an estimate
of the noise power spectrum is available. The LRT based
techniques are generally robust and effective, however their
performance is dependent on the accuracy of the noise spectrum
estimate, which is assumed to be uncorrelated and additive,
making them vulnerable to the presence of non-stationary and
rapid changing noise.

In this study, we propose a robust and unsupervised SAD
system solely based on features that convey fundamental
traits of speech, which are governed by the speech produc-
tion process. The effectiveness of the proposed technique is
evaluated in both simulated and actual noisy conditions using
data from the SPINE2 corpus [13] and dry-run speech mate-
rial from Phase-I of the DARPA program Robust Automatic
Transcription of Speech (RATS) [4], respectively. Performance
of the proposed SAD method is benchmarked against that
of commonly adopted feature-based (e.g., ITU G729 Annex
B [1]) and statistical model-based (e.g., single and multiple
observation LRT [9], [10], [12]) approaches.

II. SYSTEM DESCRIPTION: COMBO-SAD

In this section, we describe the procedure for extraction of a
1-dimensional feature vector that is used in our system as soft-
decision for the speech/non-speech discrimination task. This
“combo” feature is efficiently obtained from a linear combina-
tion of four different voicing measures as well as a perceptual
spectral flux feature. The voicing measures include harmonicity,
clarity, prediction gain, and periodicity. The perceptual spectral
flux and periodicity are extracted in the frequency domain, while
the harmonicty, clarity, and prediction gain are all time domain
features. For feature extraction, the audio signal is blocked into
32 ms frames with a 10 ms skip rate. In order to extract the peri-
odicity, harmonicity, and clarity, an approximate knowledge of
the plausible pitch range in human speech is required. Here, we
choose a pitch period duration within the interval of [2, 16] ms
(or equivalently [62.5, 500] Hz in the frequency domain), where
the lower limit is imposed by the analysis frame length, and the
fact that each frame should at least cover two pitch periods for
a reliable voicing estimate.
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A. Time Domain Features

All time domain voicing measures in this section, directly or
indirectly, use the normalized autocorrelation proposed in [14]
for noise robust pitch estimation. The deterministic autocorre-
lation of a short-time windowed segment x(n) is computed as,

N-1
> a(w(i)el + kyw( + k)
=0
Tt k) = T SN )
> w(i)w(j + k)
j=0

where w(j) is a Hanning window, and # and % are frame and
autocorrelation lag indices, respectively. It has been shown that
normalization by autocorrelation of the window function in (1)
effectively mitigates the impact of strong formants on the max-
imum autocorrelation peak in the pitch range, and obviates the
need for low-pass filtering and/or center-clipping [15]. In addi-
tion, it also compensates for the windowing effect which tapers
the autocorrelation function towards zero for larger lags.

1) Harmonicity: Harmonicity (a.k.a. harmonics-to-noise
ratio) is defined as the relative height of the maximum autocor-
relation peak in the plausible pitch range. Mathematically, it
can be expressed as,

h(t) =

kIIlaX =
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2ms<k<16 ms

Note that the autocorrelation of a periodic signal is also peri-
odic with the same period, and its maximum takes on values
close to the autocorrelation at zero lag. Accordingly, for voiced
segments which have periodic structure, the harmonicity shows
sharp peaks.

2) Clarity: We define clarity as the relative depth of the min-
imum average magnitude difference function (AMDF) valley in
the plausible pitch range. Computing the AMDF from its exact
definition is costly; however, it has been shown that the AMDF
can be derived (analytically) from the autocorrelation as [15],

D(t. k) = p(k) - \/2 [Fuw(t,0) — row(t, k)], where 3(k) is a
scale factor that can vary between 0.6 and 1.0. We have found
that the clarity feature is not very sensitive with respect to the
value of this parameter; therefore, we set 3(k) to 0.8 in our ex-
periments. The clarity is then extracted as,

D(t7 kmin)

D(t kmax) ’

D(t. k). 3)

e(ty=1-

arg min
2ms<k<16 ms

k min —

Subtracting the term from 1 in (3) simply converts the minimum
to a maximum, which is more desirable for our application.
In this manner, the clarity exhibits large values for voiced and
speech-like segments, while maintaining a minimum for back-
ground sounds.

3) Prediction Gain: The prediction gain is defined as the
ratio of the signal energy to the linear prediction (LP) residual
signal energy. The signal energy can be obtained from the au-
tocorrelation at zero lag. In order to calculate the LP residual
signal energy, however, the Levinson-Durbin recursion [15] is
applied and the error from the last step yields the energy of
the residual signal. The prediction gain is then computed as,
Gp(t) = log(re.(1,0)/€”), where € is the error in the last
step of the recursion, and p is the order of LP analysis which
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is set to 10 in this study (assuming a sampling rate of 8 kHz). In
short-time frames, there is a high correlation among speech sam-
ples, making it easier to predict, or in other words the denomi-
nator in (7,,(¢) becomes smaller. Therefore, the average predi-
cation gain reaches its highest value for voiced and speech-like
frames.

B. Frequency Domain Features

Both features from this section are extracted in the STFT do-
main which is formed by taking a 2048-point DFT from Ham-
ming windowed frames after zero padding. Magnitude informa-
tion is only used and the phase response is discarded.

1) Periodicity: In the STFT domain, the harmonics of the
pitch frequency are apparent in the magnitude spectrum of
speech during voiced and speech-like segments. This obser-
vation serves as the basis for the harmonic product spectrum
(HPS) technique [15] which has been widely applied for pitch
detection in noisy environments. The HPS in the log-spectral
domain is defined as, P(t,w) = Zf;l log | X (¢, lw)|, where R
is the number of frequency-compressed copies of the original
spectrum, which is fixed to 8 in this study. The frequency-com-
pressed copies coincide at the fundamental frequency and
reinforce the amplitude, while other harmonics are cancelled or
attenuated in the final product. The periodicity is computed as
the maximum peak of P(#,w) in the plausible pitch range,

PhPS (t) = P(t wmax)a

arg max
62.5 Hz<w <500 Hz
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The periodicity is especially impervious to noise and other back-
ground sounds, since their spectral harmonics cannot combine
coherently in the HPS. The periodicity can thus be used to ef-
fectively discriminate speech from non-speech sounds.

2) Perceptual Spectral Flux: Over short-time frames, speech
is a quasi-stationary and slowly varying signal, meaning that its
spectrum does not change rapidly from one frame to another.
Hence, one can effectively exploit this quality to develop a fea-
ture capable of discriminating speech from other more rapidly
varying sounds. An example of such a feature is the SF [16],
which measures the degree of variation in the spectrum across
time. Given the benefits of incorporating perceptual models into
speech processing frameworks (e.g., MFCC), in this study we
define the perceptual SF as,

SE,(t) = || Xm(t,w) — X (t — Lw)]],, (5)
where || - ||1 denotes the Z'-norm, and X,,,(#,w) is the energy
normalized mel-spectrum at frame £ which is calculated using an
80-channel mel-filterbank spanning the frequency range from
0 to the Nyquist frequency. The perceptual SF exhibits rela-
tively deep valleys for speech segments, while maintaining a
maximum value for background sounds/silence. Accordingly,
we employ the negative of this parameter as a feature for speech/
non-speech discrimination.

After extracting the above noted features, a 5-dimensional
vector is formed by concatenating the voicing measures along
with the perceptual SF. Each feature dimension f; is then
normalized according to, f/ = (f; — ji;)/0;, where the mean
t; and standard deviation o; are computed over the entire
waveform. The normalized 5-dimensional feature vectors are
linearly mapped into a 1-dimensional feature space represented
by the most significant eigenvector of the feature covariance
matrix. This is realized through a principal component analysis
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Fig. 1. Individual features as well as their combination for a sample waveform
with an average segmental SNR of 2.59 dB. (a) noisy speech signal, (b) the
combo feature along with the decision threshold (dashed), (c) the perceptual SF,
(d) the periodicity, (e) the clarity, (f) the prediction gain, and (g) the harmonicity.
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Fig. 2. Distribution of the combo feature values for a sample waveform.

(PCA) and retaining the dimension that corresponds to the
largest eigenvalue. The 1-dimensional “combo” feature is
smoothed via a 3-point median filter to serve as soft-decisions
for the SAD (i.e., called “Combo-SAD”). Fig. 1 shows sample
time domain plots of individual features as well as their com-
bination for part of a noisy speech waveform with an average
segmental SNR of 2.59 dB. It is seen that, although the indi-
vidual features might not be as discriminative for the SAD task,
their combination exhibits a great potential for noise robust
speech/non-speech detection. Distribution of the combo feature
values for a 366-second noisy speech signal is depicted in Fig. 2
(note that this is an example for illustration; the distribution of
the combo feature can vary across different waveforms based
on the distortion level and also the proportion between speech
and non-speech frames, although it still remains bimodal). It
is evident that the combo feature has a bimodal distribution
in which speech and non-speech classes are well separated.
We exploit this property for hard-decision making by fitting
a 2-mixture GMM to the feature and estimating a detection
threshold (7'h) from a weighted average of the mixture means
as, Th = apsp + (1 — @) pesr, Where pig, and pig; are the
speech and non-speech mixture means, respectively. The
weight parameter ¢ can be tuned to achieve the desired false
accept/reject rate (Pg, and P,i55). To increase robustness of the
GMM fit over two distinct modes of the feature distribution,
after random initialization, the EM algorithm is repeated 5
times and the model with the largest likelihood is selected.

III. EXPERIMENTAL SETUP

The proposed unsupervised SAD system is evaluated using
speech material from the SPINE2 evaluation set [13] and
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Fig. 3. Distribution of files in terms of the segmental SNR (dB) in (a) SPINE2
corpus, and (b) RATS Phase-I dry-run data.

RATS Phase-I dry-run data. The SPINE2 evaluation set con-
sists of 64 talker-pair conversations in stereo format (128
mono waveforms) recorded in simulated military background
noise environments. On average, each mono waveform is 180
seconds long containing only 78 seconds of speech activity.
Background noise types include quiet, office, Humvee, air-
craft carrier, E3A, and MCE field shelter. RATS dry-run data
consists of a total of 111 conversational telephone speech
(CTS) waveforms that were retransmitted and recorded over
8 extremely degraded communication channels with distinct
noise characteristics. The distortion type is non-linear (similar
to clipping) and to some extent correlated with speech. Each
CTS file is 900 seconds long with very sparse speech activity.
As previously noted in Section I, our goal here is to develop
a robust unsupervised SAD system for long audio recordings
with small a priori speech presence probability, in order to
assist human listeners avoid auditing long noisy non-speech in-
tervals. This justifies our choice of the aforementioned datasets
for evaluations. However, our system has the potential to be
adapted for automatic speech applications such as speaker and
language identification, with no or minimal modifications.

Fig. 3 illustrates the SNR differences between the two data
corpora used in our evaluations. It can be seen that RATS
dry-run set is of comparatively much lower quality with the
bulk of the data exhibiting an average segmental SNR below
10 dB (note, however, that due to its non-linear nature, the
distortion in RATS data may not be strictly characterized by
SNR). It is expected that a robust SAD should perform equally
well on both datasets. Here, segmental SNR is reported because
there is no access to the original clean speech or background
noises for these databases, and the SNR is estimated based on
speech/non-speech information from manual transcripts.

Given that majority of the features described in Section II
can primarily detect voicing, the proposed SAD may perform
poorly in detecting short unvoiced frames surrounding a voiced
segment. To alleviate this issue, similar to [5] and [8], the bound-
aries of each detected speech segment are extended by 0.1 s (i.e.,
10 frames). The same post-processing is applied for other tech-
niques used in our evaluations.

IV. RESULTS AND CONCLUSION

We evaluate the proposed unsupervised Combo-SAD system
on the two datasets, and compare its performance against that
of five commonly adopted SAD solutions, namely ITU G729B
[1], single-observation LRT (SOLRT) [9], SOLRT paired with
an HMM-based hangover smoothing scheme [9], multiple-ob-
servation LRT (MOLRT) [10], and a recently introduced mod-
ification to MOLRT that incorporates harmonicity information
into the LRT framework [12].

Receiver operating characteristic (ROC) curves obtained
from the evaluations are shown in Fig. 4. These curves indicate
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Fig. 4. Comparison of ROC curves for the proposed Combo-SAD method
versus other feature-based and LRT-based techniques considered in the evalua-
tions using (a) SPINE2 evaluations set, and (b) RATS dry-run data for Phase-I.

that: (i) as expected, the RATS dry-run data is much more
challenging than the SPINE2 task for SAD. All SAD schemes
considered perform reasonably well on the SPINE2 evaluation
set, however except for the proposed Combo-SAD system
and the modified MOLRT (hrmfrq MOLRT), we observe a
significant drop in speech detection performance on the RATS
dry-run data. (ii) Our unsupervised system performs equally
well on both high and low SNR data, which points to its
robustness across diverse environmental noise and non-linear
channel distortions. The basic assumption in formulating dif-
ferent flavors of statistical LRT based SAD is that the noise
is additive and uncorrelated, however, it should be noted that
the type of distortion seen in RATS data is non-linear and
correlated with speech. This is one of the major reasons for the
poor performance of this class of SAD methods on RATS data.
In addition, it should be noted that many existing SAD systems
(including those considered in this study) are developed for
scenarios where higher energy is strongly correlated with
speech presence (i.e., additive noise scenarios). However, due
to the transmission failures, RATS data contains non-trans-
mission (NT) regions characterized with high-amplitude static
noise which adversely impact parameter/noise estimation and
eventually performance of the existing methods. It is worth
remarking here that according to the RATS program guidelines
for the SAD task the NT regions are excluded from scoring.
DARPA has set specific targets for the SAD task within the
RATS program that should be satisfied for acceptable system
performance. A system that passes the Phase-I target should
achieve a challenging missed detection rate (Pyjss) of 5% or
less at a false-alarm rate (Pg, ) of 3%. Table I summarizes perfor-
mances of the different SAD techniques in terms of P ;45 for the
datastes considered. It is observed that our unsupervised tech-
nique consistently outperforms the commonly adopted LRT-
based methods, satisfying the Phase-I targets for the DARPA
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TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED COMBO-SAD TECHNIQUE
VERSUS THE LRT-BASED APPROACHES IN TERMS OF P,i.s AT Pr, = 3%

Data |Proposed|hrmfrq_ MOLRT |MOLRT [Sohn|SOLRT
SPINE2| 3.7 8.6 83 [209] 209
RATS 4.6 37.5 493 |57.3| 56.7
TABLE II

PERFORMANCE COMPARISON OF THE INDIVIDUAL FEATURES USED IN THE
PROPOSED COMBO-SAD ON RATS DATA, IN TERMS OF I ,;.s AT P, = 3%

Feature |harmonicity |clarity | prediction gain|periodicity| pSF
Priss 10.76 7.43 13.47 1322 [33.14

RATS program. For the sake of comparison, performance of the
proposed Combo-SAD framework with the individual features
used are reported in Table II. Clearly, the clarity and percep-
tual SF are the best and worst performing features, respectively,
while the other 3 features show similar performances.
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