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Abstract

The last 25 years of commercial DBMS development 
can be summed up in a single phrase: “One size fits all”. 

This phrase refers to the fact that the traditional DBMS 

architecture (originally designed and optimized for 
business data processing) has been used to support many 

data-centric applications with widely varying 

characteristics and requirements.  
In this paper, we argue that this concept is no longer 

applicable to the database market, and that the 

commercial world will fracture into a collection of 
independent database engines, some of which may be 

unified by a common front-end parser. We use examples 

from the stream-processing market and the data-
warehouse market to bolster our claims. We also briefly 

discuss other markets for which the traditional 
architecture is a poor fit and argue for a critical 

rethinking of the current factoring of systems services 

into products.  

1. Introduction 

Relational DBMSs arrived on the scene as research 

prototypes in the 1970’s, in the form of System R [10] 

and INGRES [27]. The main thrust of both prototypes 

was to surpass IMS in value to customers on the 

applications that IMS was used for, namely “business 

data processing”. Hence, both systems were architected 

for on-line transaction processing (OLTP) applications, 

and their commercial counterparts (i.e., DB2 and 

INGRES, respectively) found acceptance in this arena in 

the 1980’s. Other vendors (e.g., Sybase, Oracle, and 

Informix) followed the same basic DBMS model, which 

stores relational tables row-by-row, uses B-trees for 

indexing, uses a cost-based optimizer, and provides 

ACID transaction properties.   

Since the early 1980’s, the major DBMS vendors have 

steadfastly stuck to a “one size fits all” strategy, whereby 

they maintain a single code line with all DBMS services. 

The reasons for this choice are straightforward  the use 

of multiple code lines causes various practical problems, 

including: 

a cost problem, because maintenance costs increase 

at least linearly with the number of code lines; 

a compatibility problem, because all applications 

have to run against every code line; 

a sales problem, because salespeople get confused 

about which product to try to sell to a customer; and  

a marketing problem, because multiple code lines 

need to be positioned correctly in the marketplace. 

To avoid these problems, all the major DBMS vendors 

have followed the adage “put all wood behind one 

arrowhead”. In this paper we argue that this strategy has 

failed already, and will fail more dramatically off into the 

future.  

The rest of the paper is structured as follows. In 

Section 2, we briefly indicate why the single code-line 

strategy has failed already by citing some of the key 

characteristics of the data warehouse market. In Section 

3, we discuss stream processing applications and indicate 

a particular example where a specialized stream 

processing engine outperforms an RDBMS by two orders 

of magnitude. Section 4 then turns to the reasons for the 

performance difference, and indicates that DBMS 

technology is not likely to be able to adapt to be 

competitive in this market. Hence, we expect stream 

processing engines to thrive in the marketplace. In 

Section 5, we discuss a collection of other markets where 

one size is not likely to fit all, and other specialized 

database systems may be feasible. Hence, the 

fragmentation of the DBMS market may be fairly 

extensive.  In Section 6, we offer some comments about 

the factoring of system software into products. Finally, 

we close the paper with some concluding remarks in 

Section 7. 

2. Data warehousing 

In the early 1990’s, a new trend appeared: Enterprises 

wanted to gather together data from multiple operational 

databases into a data warehouse for business intelligence 
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purposes. A typical large enterprise has 50 or so 

operational systems, each with an on-line user community 

who expect fast response time. System administrators 

were (and still are) reluctant to allow business-

intelligence users onto the same systems, fearing that the 

complex ad-hoc queries from these users will degrade 

response time for the on-line community. In addition, 

business-intelligence users often want to see historical 

trends, as well as correlate data from multiple operational 

databases. These features are very different from those 

required by on-line users.  

For these reasons, essentially every enterprise created a 

large data warehouse, and periodically “scraped” the data 

from operational systems into it. Business-intelligence 

users could then run their complex ad-hoc queries against 

the data in the warehouse, without affecting the on-line 

users. Although most warehouse projects were 

dramatically over budget and ended up delivering only a 

subset of promised functionality, they still delivered a 

reasonable return on investment. In fact, it is widely 

acknowledged that historical warehouses of retail 

transactions pay for themselves within a year, primarily 

as a result of more informed stock rotation and buying 

decisions. For example, a business-intelligence user can 

discover that pet rocks are out and Barbie dolls are in, and 

then make appropriate merchandise placement and 

buying decisions.   

Data warehouses are very different from OLTP 

systems. OLTP systems have been optimized for updates, 

as the main business activity is typically to sell a good or 

service. In contrast, the main activity in data warehouses 

is ad-hoc queries, which are often quite complex. Hence, 

periodic load of new data interspersed with ad-hoc query 

activity is what a typical warehouse experiences. 

The standard wisdom in data warehouse schemas is to 

create a fact table, containing the “who, what, when, 

where” about each operational transaction. For example, 

Figure 1 shows the schema for a typical retailer. Note the 

central fact table, which holds an entry for each item that 

is scanned by a cashier in each store in its chain.  In 

addition, the warehouse contains dimension tables, with 

information on each store, each customer, each product, 

and each time period. In effect, the fact table contains a 

foreign key for each of these dimensions, and a star 

schema is the natural result.  Such star schemas are omni-

present in warehouse environments, but are virtually non-

existent in OLTP environments. 

It is a well known homily that warehouse applications 

run much better using bit-map indexes while OLTP users 

prefer B-tree indexes.  The reasons are straightforward: 

bit-map indexes are faster and more compact on 

warehouse workloads, while failing to work well in 

OLTP environments. As a result, many vendors support 

both B-tree indexes and bit-map indexes in their DBMS 

products.   

In addition, materialized views are a useful 

optimization tactic in warehouse worlds, but never in 

OLTP worlds. In contrast, normal (“virtual”) views find 

acceptance in OLTP environments. 

To a first approximation, most vendors have a 

warehouse DBMS (bit-map indexes, materialized views, 

star schemas and optimizer tactics for star schema 

queries) and an OLTP DBMS (B-tree indexes and a 

standard cost-based optimizer), which are united by a 

common parser, as illustrated in Figure 2. 

Although this configuration allows such a vendor to 

market his DBMS product as a single system, because of 

the single user interface, in effect, she is selling multiple 

systems. Moreover, there will considerable pressure from 

both the OLTP and warehouse markets for features that 

are of no use in the other world. For example, it is 

common practice in OLTP databases to represent the state 

(in the United States) portion of an address as a two-byte 

character string. In contrast, it is obvious that 50 states 

can be coded into six bits. If there are enough queries and 

enough data to justify the cost of coding the state field, 

then the later representation is advantageous. This is 

usually true in warehouses and never true in OLTP. 

Hence, elaborate coding of fields will be a warehouse 

feature that has little or no utility in OLTP. The inclusion 

of additional market-specific features will make 

commercial products look increasingly like the 

architecture illustrated in Figure 2. 

The illusion of “one size fits all” can be preserved as a 

marketing fiction for the two different systems of Figure 
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2, because of the common user interface.  In the stream 

processing market, to which we now turn, such a 

common front end is impractical. Hence, not only will 

there be different engines but also different front ends. 

The marketing fiction of “one size fits all” will not fly in 

this world. 

3. Stream processing 

Recently, there has been considerable interest in the 

research community in stream processing applications [7, 

13, 14, 20]. This interest is motivated by the upcoming 

commercial viability of sensor networks over the next 

few years. Although RFID has gotten all the press 

recently and will find widespread acceptance in retail 

applications dealing with supply chain optimization, there 

are many other technologies as well (e.g., Lojack [3]). 

Many industry pundits see a “green field” of monitoring 

applications that will be enabled by this “sea change” 

caused by networks of low-cost sensor devices.   

3.1 Emerging sensor-based applications 

There are obvious applications of sensor network 

technology in the military domain. For example, the US 

Army is investigating putting vital-signs monitors on all 

soldiers, so that they can optimize medical triage in 

combat situations. In addition, there is already a GPS 

system in many military vehicles, but it is not connected 

yet into a closed-loop system. Instead, the army would 

like to monitor the position of all vehicles and determine, 

in real time, if they are off course.  Additionally, they 

would like a sensor on the gun turret; together with 

location, this will allow the detection of crossfire 

situations.  A sensor on the gas gauge will allow the 

optimization of refueling.  In all, an army battalion of 

30,000 humans and 12,000 vehicles will soon be a large-

scale sensor network of several hundred thousand nodes 

delivering state and position information in real time.   

Processing nodes in the network and downstream 

servers must be capable of dealing with this “firehose” of 

data. Required operations include sophisticated alerting, 

such as the platoon commander wishes to know when 

three of his four vehicles cross the front line. Also 

required are historical queries, such as “Where has 

vehicle 12 been for the last two hours?” Lastly, 

requirements encompass longitudinal queries, such as 

“What is the overall state of readiness of the force right 

now?” 

Other sensor-based monitoring applications will also 

come over time in many non-military applications. 

Monitoring traffic congestion and suggesting alternate 

travel routes is one example. A related application is 

variable, congestion-based tolling on highway systems, 

which was the inspiration behind the Linear Road 

benchmark [9]. Amusement parks will soon turn passive 

wristbands on customers into active sensors, so that rides 

can be optimized and lost children located. Cell phones 

are already active devices, and one can easily imagine a 

service whereby the closest restaurant to a hungry 

customer can be located. Even library books will be 

sensor tagged, because if one is mis-shelved, it may be 

lost forever in a big library. 

There is widespread speculation that conventional 

DBMSs will not perform well on this new class of 

monitoring applications. In fact, on Linear Road, 

traditional solutions are nearly an order of magnitude 

slower than a special purpose stream processing engine 

[9]. The inapplicability of the traditional DBMS 

technology to streaming applications is also bolstered by 

an examination of the current application areas with 

streaming data. We now discuss our experience with such 

an application, financial-feed processing. 

3.2 An existing application:            

financial-feed processing 

Most large financial institutions subscribe to feeds that 

deliver real-time data on market activity, specifically 

news, consummated trades, bids and asks, etc. Reuters, 

Bloomberg and Infodyne are examples of vendors that 
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deliver such feeds. Financial institutions have a variety of 

applications that process such feeds. These include 

systems that produce real-time business analytics, ones 

that perform electronic trading, ones that ensure legal 

compliance of all trades to the various company and SEC 

rules, and ones that compute real-time risk and market 

exposure to fluctuations in foreign exchange rates. The 

technology used to implement this class of applications is 

invariably “roll your own”, because application experts 

have not had good luck with off-the-shelf system 

software products. 

In order to explore feed processing issues more deeply, 

we now describe in detail a specific prototype 

application, which was specified by a large mutual fund 

company. This company subscribes to several 

commercial feeds, and has a current production 

application that watches all feeds for the presence of late 

data. The idea is to alert the traders if one of the 

commercial feeds is delayed, so that the traders can know 

not to trust the information provided by that feed. This 

company is unhappy with the performance and flexibility 

of their “roll your own” solution and requested a pilot 

using a stream processing engine.   

The company engineers specified a simplified version 

of their current application to explore the performance 

differences between their current system and a stream 

processing engine. According to their specification, they 

were looking for maximum message processing 

throughput on a single PC-class machine for a subset of 

their application, which consisted of two feeds reporting 

data from two exchanges.   

Specifically, there are 4500 securities, 500 of which 

are “fast moving”. A stock tick on one of these securities 

is late if it occurs more than five seconds after the 

previous tick from the same security. The other 4000 

symbols are slow moving, and a tick is late if 60 seconds 

have elapsed since the previous tick.  

There are two feed providers and the company wished 

to receive an alert message each time there is a late tick 

from either provider. In addition, they wished to maintain 

a counter for each provider. When 100 late ticks have 

been received from either provider, they wished to 

receive a special “this is really bad” message and then to 

suppress the subsequent individual tick reports  

The last wrinkle in the company’s specification was 

that they wished to accumulate late ticks from each of 

two exchanges, say NYSE and NASD, regardless of 

which feed vendor produced the late data. If 100 late 

messages were received from either exchange through 

either feed vendor, they wished to receive two additional 

special messages. In summary, they want four counters, 

each counting to 100, with a resulting special message. 

An abstract representation of the query diagram for this 

task is shown in Figure 3. 

Although this prototype application is only a subset of 

the application logic used in the real production system, it 

represents a simple-to-specify task on which performance 

can be readily measured; as such, it is a representative 

example. We now turn to the speed of this example 

application on a stream processing engine as well as an 

RDBMS.

4. Performance discussion 

The example application discussed in the previous 

section was implemented in the StreamBase stream 

processing engine (SPE) [5], which is basically a 

commercial, industrial-strength version of Aurora [8, 13]. 

On a 2.8Ghz Pentium processor with 512 Mbytes of 

memory and a single SCSI disk, the workflow in Figure 3 

can be executed at 160,000 messages per second, before 

CPU saturation is observed. In contrast, StreamBase 

engineers could only coax 900 messages per second from 

an implementation of the same application using a 

popular commercial relational DBMS.  

In this section, we discuss the main reasons that result 

in the two orders of magnitude difference in observed 

performance. As we argue below, the reasons have to do 

with the inbound processing model, correct primitives for 

stream processing, and seamless integration of DBMS 

processing with application processing. In addition, we 

also consider transactional behavior, which is often 

another major consideration. 

4.1 “Inbound” versus “outbound” processing 

Built fundamentally into the DBMS model of the 

world is what we term “outbound” processing, illustrated 

in Figure 4. Specifically, one inserts data into a database 

as a first step (step 1). After indexing the data and 

committing the transaction, that data is available for 

subsequent query processing (step 2) after which results 

are presented to the user (step 3). This model of “process-

after-store” is at the heart of all conventional DBMSs, 

which is hardly surprising because, after all, the main 

function of a DBMS is to accept and then never lose data.  

In real-time applications, the storage operation, which 

must occur before processing, adds significantly both to 

the delay (i.e., latency) in the application, as well as to the 

processing cost per message of the application. An 

alternative processing model that avoids this storage 

bottleneck is shown graphically in Figure 5. Here, input 

streams are pushed to the system (step 1) and get 

processed (step 2) as they “fly by” in memory by the 

query network. The results are then pushed to the client 

application(s) for consumption (step 3). Reads or writes 

to storage are optional and can be executed 

asynchronously in many cases, when they are present. 

The fact that storage is absent or optional saves both on 

cost and latency, resulting in significantly higher 

performance. This model, called “inbound” processing, is 

what is employed by a stream processing engine such as 

StreamBase.  

One is, of course, led to ask “Can a DBMS do inbound 

processing?” DBMSs were originally designed as 

outbound processing engines, but grafted triggers onto 

their engines as an afterthought many years later.  There 

are many restrictions on triggers (e.g., the number 
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allowed per table) and no way to ensure trigger safety 

(i.e., ensuring that triggers do not go into an infinite 

loop). Overall, there is very little or no programming 

support for triggers. For example, there is no way to see 

what triggers are in place in an application, and no way to 

add a trigger to a table through a graphical user interface. 

Moreover, virtual views and materialized views are 

provided for regular tables, but not for triggers. Lastly, 

triggers often have performance problems in existing 

engines. When StreamBase engineers tried to use them 

for the feed alarm application, they still could not obtain 

more than 900 messages per second. In summary, triggers 

are incorporated to the existing designs as an afterthought 

and are thus second-class citizens in current systems.  

As such, relational DBMSs are outbound engines onto 

which limited inbound processing has been grafted. In 

contrast, stream processing engines, such as Aurora and 

StreamBase are fundamentally inbound processing 

engines.  From the ground up, an inbound engine looks 

radically different from an outbound engine. For 

example, an outbound engine uses a “pull” model of 

processing, i.e., a query is submitted and it is the job of 

the engine to efficiently pull records out of storage to 

satisfy the query.  In contrast, an inbound engine uses a 

“push” model of processing, and it is the job of the engine 

to efficiently push incoming messages through the 

processing steps entailed in the application.   

Another way to view the distinction is that an 

outbound engine stores the data and then executes the 

queries against the data.  In contrast, an inbound engine 

stores the queries and then passes the incoming data 

(messages) through the queries.   

Although it seems conceivable to construct an engine 

that is either an inbound or an outbound engine, such a 

design is clearly a research project. In the meantime, 

DBMSs are optimized for outbound processing, and 

stream processing engines for inbound processing.  In the 

feed alarm application, this difference in philosophy 

accounts for a substantial portion of the performance 

difference observed. 

4.2 The correct primitives 

SQL systems contain a sophisticated aggregation 

system, whereby a user can run a statistical computation 

over groupings of the records from a table in a database. 

The standard example is: 

Select avg (salary) 

From employee 

Group by department 

When the execution engine processes the last record in 

the table, it can emit the aggregate calculation for each 

group of records. However, this construct is of little 

benefit in streaming applications, where streams continue 

forever and there is no notion of “end of table”.   

Consequently, stream processing engines extend SQL 

(or some other aggregation language) with the notion of 

time windows. In StreamBase, windows can be defined 

based on clock time, number of messages, or breakpoints 

in some other attribute.  In the feed alarm application, the 

leftmost box in each stream is such an aggregate box.  

The aggregate groups stocks by symbol and then defines 

windows to be ticks 1 and 2, 2 and 3, 3 and 4, etc. for 

each stock.  Such “sliding windows” are often very useful 

in real-time applications. 

In addition, StreamBase aggregates have been 

constructed to deal intelligently with messages which are 

late, out-of-order, or missing. In the feed alarm 

application, the customer is fundamentally interested in 

looking for late data. StreamBase allows aggregates on 

windows to have two additional parameters. The first is a 

timeout parameter, which instructs the StreamBase 

execution engine to close a window and emit a value even 

if the condition for closing the window has not been 

satisfied. This parameter effectively deals with late or 

missing tuples. The second parameter is slack, which is a 

directive to the execution engine to keep a window open, 

after its closing condition has been satisfied. This 

parameter addresses disorder in tuple arrivals. These two 

parameters allow the user to specify how to deal with 
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stream abnormalities and can be effectively utilized to 

improve system resilience. 

In the feed alarm application each window is two ticks, 

but has a timeout of either 5 or 60 seconds. This will 

cause windows to be closed if the inter-arrival time 

between successive ticks exceeds the maximum defined 

by the user. This is a very efficient way to discover late 

data; i.e., as a side effect of the highly-tuned aggregate 

logic. In the example application, the box after each 

aggregate discards the valid data and keeps only the 

timeout messages. The remainder of the application 

performs the necessary bookkeeping on these timeouts. 

Having the right primitives at the lower layers of the 

system enables very high performance. In contrast, a 

relational engine contains no such built-in constructs. 

Simulating their effect with conventional SQL is quite 

tedious, and results in a second significant difference in 

performance. 

It is possible to add time windows to SQL, but these 

make no sense on stored data. Hence, window constructs 

would have to be integrated into some sort of an inbound 

processing model.  

4.3 Seamless integration of DBMS processing and 

application logic 

Relational DBMSs were all designed to have client-

server architectures. In this model, there are many client 

applications, which can be written by arbitrary people, 

and which are therefore typically untrusted. Hence, for 

security and reliability reasons, these client applications 

are run in a separate address space from the DBMS. The 

cost of this choice is that the application runs in one 

address space while DBMS processing occurs in another, 

and a process switch is required to move from one 

address space to the other. 

In contrast, the feed alarm application is an example of 

an embedded system. It is written by one person or group, 

who is trusted to “do the right thing”. The entire 

application consists of (1) DBMS processing for 

example the aggregation and filter boxes, (2) control 

logic to direct messages to the correct next processing 

step, and (3) application logic. In StreamBase, these three 

kinds of functionality can be freely interspersed. 

Application logic is supported with user-defined boxes, 

the Count100 box in our example financial-feed 

processing application. The actual code, shown in Figure 

6, consists of four lines of C++ that counts to 100 and sets 

a flag that ensures that the correct messages are emitted. 

Control logic is supported by allowing multiple 

predicates in a filter box, and thereby multiple exit arcs. 

As such, a filter box performs “if-then-else” logic in 

addition to filtering streams. 

In effect, the feed alarm application is a mix of DBMS-

style processing, conditional expressions, and user-

defined functions in a conventional programming 

language. This combination is performed by StreamBase 

within a single address space without any process 

switches. Such a seamless integration of DBMS logic 

with conventional programming facilities was proposed 

many years ago in Rigel [23] and Pascal-R [25], but was 

never implemented in commercial relational systems. 

Instead, the major vendors implemented stored 

procedures, which are much more limited programming 

systems. More recently, the emergence of object-

relational engines provided blades or extenders, which are 

more powerful than stored procedures, but still do not 

facilitate flexible control logic.   

Embedded systems do not need the protection provided 

by client-server DBMSs, and a two-tier architecture 

merely generates overhead. This is a third source of the 

performance difference observed in our example 

application. 

Another integration issue, not exemplified by the feed 

alarm example, is the storage of state information in 

streaming applications. Most stream processing 

applications require saving some state, anywhere from 

modest numbers of megabytes to small numbers of 

gigabytes. Such state information may include (1) 

reference data (i.e., what stocks are of interest), (2) 

translation tables (in case feeds use different symbols for 

the same stock), and (3) historical data (e.g., “how many 

late ticks were observed every day during the last year?”). 

As such, tabular storage of data is a requirement for most 

stream processing applications.  

StreamBase embeds BerkeleyDB [4] for state storage. 

However, there is approximately one order of magnitude 

performance difference between calling BerkeleyDB in 

the StreamBase address space and calling it in client-

server mode in a different address space. This is yet 

another reason to avoid process switches by mixing 

DBMS and application processing in one address space. 

Count 100 same as

Map
F.evaluate:

cnt++

if (cnt % 100 != 0) if !suppress emit lo-alarm 

else emit drop-alarm

else emit hi-alarm, set suppress = true

Figure 6: “Count100” logic 
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Although one might suggest that DBMSs enhance their 

programming models to address this performance 

problem, there are very good reasons why client-server 

DBMSs were designed the way they are. Most business 

data processing applications need the protection that is 

afforded by this model. Stored procedures and object-

relational blades were an attempt to move some of the 

client logic into the server to gain performance.  To move 

further, a DBMS would have to implement both an 

embedded and a non-embedded model, with different run 

time systems.  Again, this would amount to giving up on 

“one size fits all”. 

In contrast, feed processing systems are invariably 

embedded applications. Hence, the application and the 

DBMS are written by the same people, and driven from 

external feeds, not from human-entered transactions. As 

such, there is no reason to protect the DBMS from the 

application, and it is perfectly acceptable to run both in 

the same address space. In an embedded processing 

model, it is reasonable to freely mix application logic, 

control logic and DBMS logic, which is exactly what 

StreamBase does. 

4.4 High availability  

It is a requirement of many stream-based applications 

to have high availability (HA) and stay up 7x24. Standard 

DBMS logging and crash recovery mechanisms (e.g., 

[22]) are ill-suited for the streaming world as they 

introduce several key problems. 

First, log-based recovery may take large number of 

seconds to small numbers of minutes. During this period, 

the application would be “down”. Such behavior is 

clearly undesirable in many real-time streaming domains 

(e.g., financial services). Second, in case of a crash, some 

effort must be made to buffer the incoming data streams, 

as otherwise this data will be irretrievably lost during the 

recovery process. Third, DBMS recovery will only deal 

with tabular state and will thus ignore operator states. For 

example, in the feed alarm application, the counters are 

not in stored in tables; therefore their state would be lost 

in a crash. One straightforward fix would be to force all 

operator state into tables to use DBMS-style recovery; 

however, this solution would significantly slow down the 

application.  

The obvious alternative to achieve high availability is 

to use techniques that rely on Tandem-style process pairs 

[11]. The basic idea is that, in the case of a crash, the 

application performs failover to a backup machine, which 

typically operates as a “hot standby”, and keeps going 

with small delay. This approach eliminates the overhead 

of logging. As a case in point, StreamBase turns off 

logging in BerkeleyDB.   

Unlike traditional data-processing applications that 

require precise recovery for correctness, many stream-

processing applications can tolerate and benefit from 

weaker notions of recovery. In other words, failover does 

not always need to be “perfect”. Consider monitoring 

applications that operate on data streams whose values 

are periodically refreshed. Such applications can often 

tolerate tuple losses when a failure occurs, as long as such 

interruptions are short. Similarly, if one loses a couple of 

ticks in the feed alarm application during failover, the 

correctness would probably still be preserved. In contrast, 

applications that trigger alerts when certain combinations 

of events happen, require that no tuples be lost, but may 

tolerate temporary duplication. For example, a patient 

monitoring application may be able to tolerate duplicate 

tuples (``heart rate is 79'') but not lost tuples (``heart rate 

has changed to zero''). Of course, there will always be a 

class of applications that require strong, precise recovery 

guarantees. A financial application that performs 

portfolio management based on individual stock 

transactions falls into this category.  

As a result, there is an opportunity to devise simplified 

and low overhead failover schemes, when weaker 

correctness notions are sufficient. A collection of detailed 

options on how to achieve high availability in a streaming 

world has recently been explored [17]. 

4.5 Synchronization 

Many stream-based applications rely on shared data 

and computation. Shared data is typically contained in a 

table that one query updates and another one reads. For 

example, the Linear Road application requires that 

vehicle-position data be used to update statistics on 

highway usage, which in turn are read to determine tolls 

for each segment on the highway. Thus, there is a basic 

need to provide isolation between messages.  

Traditional DBMSs use ACID transactions to provide 

isolation (among others things) between concurrent 

transactions submitted by multiple users. In streaming 

systems, which are not multi-user, such isolation can be 

effectively achieved through simple critical sections, 

which can be implemented through light-weight 

semaphores. Since full-fledged transactions are not 

required, there is no need to use heavy-weight locking-

based mechanisms anymore. 

In summary, ACID properties are not required in most 

stream processing applications, and simpler, specialized 

performance constructs can be used to advantage. 

5. One size fits all? 

The previous section has indicated a collection of 

architectural issues that result in significant differences in 

performance between specialized stream processing 

engines and traditional DBMSs. These design choices 

result in a big difference between the internals of the two 

engines. In fact, the run-time code in StreamBase looks 

nothing like a traditional DBMS run-time. The net result 

is vastly better performance on a class of real-time 

applications. These considerations will lead to a separate 

code line for stream processing, of course assuming that 

the market is large enough to facilitate this scenario.  

In the rest of the section, we outline several other 

markets for which specialized database engines may be 

viable.  
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5.1 Data warehouses 

The architectural differences between OLTP and 

warehouse database systems discussed in Section 2 are 

just the tip of the iceberg, and additional differences will 

occur over time. We now focus on probably the biggest 

architectural difference, which is to store the data by 

column, rather than by row. 

All major DBMS vendors implement record-oriented 

storage systems, where the attributes of a record are 

placed contiguously in storage. Using this “row-store” 

architecture, a single disk write is all that is required to 

push all of the attributes of a single record out to disk.   

Hence, such a system is “write-optimized” because high 

performance on record writes is easily achievable. It is 

easy to see that write-optimized systems are especially 

effective on OLTP-style applications, the primary reason 

why most commercial DBMSs employ this architecture. 

In contrast, warehouse systems need to be “read-

optimized” as most workload consists of ad-hoc queries 

that touch large amounts of historical data. In such 

systems, a “column-store” model where the values for all 

of the rows of a single attribute are stored contiguously is 

drastically more efficient (as demonstrated by Sybase IQ 

[6], Addamark [1], and KDB [2]).  

With a column-store architecture, a DBMS need only 

read the attributes required for processing a given query, 

and can avoid bringing into memory any other irrelevant 

attributes. Given that records with hundreds of attributes 

(with many null values) are becoming increasingly 

common, this approach results in a sizeable performance 

advantage for warehouse workloads where typical queries 

involve aggregates that are computed on a small number 

of attributes over large data sets. The first author of this 

paper is engaged in a research project to explore the 

performance benefits of a column-store system. 

5.2 Sensor networks 

It is not practical to run a traditional DBMS in the 

processing nodes that manage sensors in a sensor network 

[21, 24]. These emerging platforms of device networks 

are currently being explored for applications such as 

environmental and medical monitoring, industrial 

automation, autonomous robotic teams, and smart homes 

[16, 19, 26, 28, 29].  

In order to realize the full potential of these systems, 

the components are designed to be wireless, with respect 

to both communication and energy. In this environment, 

bandwidth and power become the key resources to be 

conserved. Furthermore, communication, as opposed to 

processing or storage access, is the main consumer of 

energy. Thus, standard DBMS optimization tactics do not 

apply and need to be critically rethought. Furthermore, 

transactional capabilities seem to be irrelevant in this 

domain. 

In general, there is a need to design flexible, light-

weight database abstractions (such as TinyDB [18]) that 

are optimized for data movement as opposed to data 

storage.  

5.3 Text search 

None of the current text search engines use DBMS 

technology for storage, even though they deal with 

massive, ever-increasing data sets. For instance, Google 

built its own storage system (called GFS [15]) that 

outperforms conventional DBMS technology (as well as 

file system technology) for some of the reasons discussed 

in Section 4.  

A typical search engine workload [12, 15] consists of a 

combination of inbound streaming data (coming from 

web crawlers), which needs to be cleaned and 

incorporated into the existing search index, and ad hoc 

look-up operations on the existing index. In particular, the 

write operations are mostly append-only and read 

operations sequential. Concurrent writes (i.e., appends) to 

the same file are necessary for good performance. Finally, 

the large number of storage machines, made up of 

commodity parts, ensure that failure is the norm rather 

than the exception. Hence, high availability is a key 

design consideration and can only be achieved through 

fast recovery and replication.  

Clearly, these application characteristics are much 

different from those of conventional business-processing 

applications. As a result, even though some DBMSs has 

built-in text search capabilities, they fall short of meeting 

the performance and availability requirements of this 

domain: they are simply too heavy-weight and inflexible. 

5.4 Scientific databases 

Massive amounts of data are continuously being 

gathered from the real-world by sensors of various types, 

attached to devices such as satellites and microscopes, or 

are generated artificially by high-resolution scientific and 

engineering simulations.  

The analysis of such data sets is the key to better 

understanding physical phenomena and is becoming 

increasingly commonplace in many scientific research 

domains. Efficient analysis and querying of these vast 

databases require highly-efficient multi-dimensional 

indexing structures and application-specific aggregation 

techniques. In addition, the need for efficient data 

archiving, staging, lineage, and error propagation 

techniques may create a need for yet another specialized 

engine in this important domain. 

5.5 XML databases 

Semi-structured data is everywhere. Unfortunately, 

such data does not immediately fit into the relational 

model. There is a heated ongoing debate regarding how to 

best store and manipulate XML data. Even though some 

believe that relational DBMSs (with proper extensions) 

are the way to go, others would argue that a specialized 

engine is needed to store and process this data format. 

6. A Comment on Factoring 

Most stream-based applications require three basic 

services:
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Message transport: In many stream applications, 

there is a need to transport data efficiently and 

reliably among multiple distributed machines. The 

reasons for these are threefold. First, data sources 

and destinations are typically geographically 

dispersed. Second, high performance and availability 

requirements dictate the use of multiple cooperating 

server machines. Third, virtually all big enterprise 

systems consist of a complicated network of business 

applications running on a large number of machines, 

in which an SPE is embedded. Thus, the input and 

outputs messages to the SPE need to be properly 

routed from and to the appropriate external 

applications.  

Storage of state: As discussed in Section 4.3, in all 

but the most simplistic applications, there is a need to 

store state, typically in the form of read-only 

reference and historical tables, and read-write 

translation (e.g., hash) tables.  

Execution of application logic: Many streaming 

applications demand domain-specific message 

processing to be interspersed with query activity. In 

general, it is neither possible nor practical to 

represent such application logic using only the built-

in query primitives (e.g., think legacy code).  

A traditional design for a stream-processing 

application spreads the entire application logic across 

three diverse systems: (1) a messaging system (such as 

MQSeries, WebMethods, or Tibco) to reliably connect 

the component systems, typically using a 

publish/subscribe paradigm; (2) a DBMS (such as DB2 or 

Oracle) to provide persistence for state information; and 

(3) an application server (such as WebSphere or 

WebLogic) to provide application services to a set of 

custom-coded programs. Such a three-tier configuration 

is illustrated in Figure 7.  

Unfortunately, such a design that spreads required 

functionality over three heavyweight pieces of system 

software will not perform well. For example, every 

message that requires state lookup and application 

services will entail multiple process switches between 

these different services. 

In order to illustrate this per message overhead, we 

trace the steps taken when processing a message. An 

incoming message is first picked up by the bus and then 

forwarded to the custom application code (step 1), which 

cleans up and then processes the message. If the message 

needs to be correlated with historical data or requires 

access to persistent data, then a request is sent to the DB 

server (steps 2-3), which accesses the DBMS. The 

response follows the reverse path to the application code 

(steps 4-5). Finally, the outcome of the processed 

message is forwarded to the client task GUI (step 6). 

Overall, there are six “boundary crossings” for processing 

a single message. In addition to the obvious context 

switches incurred, messages also need to transformed on-

the-fly, by the appropriate adapters, to and from the 

native formats of the systems, each time they are picked 

up from and passed on to the message bus. The result is a 

very low useful work to overhead ratio. Even if there is 

some batching of messages, the overhead will be high and 

limit achievable performance. 

To avoid such a performance hit, a stream processing 

engine must provide all three services in a single piece of 

system software that executes as one multi-threaded 

process on each machine that it runs. Hence, an SPE must 

have elements of a DBMS, an application server, and a 

messaging system. In effect, an SPE should provide 

specialized capabilities from all three kinds of software 

“under one roof”. 

This observation raises the question of whether the 

current factoring of system software into components 

(e.g., application server, DBMS, Extract-Transform-Load 

system, message bus, file system, web server, etc.) is 

actually an optimal one. After all, this particular 

decomposition arose partly as a historical artifact and 

partly from marketing happenstance. It seems like other 

factoring of systems services seems equally plausible, and 
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Figure 7: A multi-tier stream processing architecture 
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it should not be surprising to see considerable evolution 

of component definition and factoring off into the future. 

7. Concluding Remarks 

In summary, there may be a substantial number of 

domain-specific database engines with differing 

capabilities off into the future.  We are reminded of the 

curse “may you live in interesting times”.  We believe 

that the DBMS market is entering a period of very 

interesting times. There are a variety of existing and 

newly-emerging applications that can benefit from data 

management and processing principles and techniques. At 

the same time, these applications are very much different 

from business data processing and from each other 

there seems to be no obvious way to support them with a 

single code line. The “one size fits all” theme is unlikely 

to successfully continue under these circumstances. 

References 

[1] Addamark Scalable Log Server. 

http://www.addamark.com/products/sls.htm.

[2] Kx systems. http://www.kx.com/.

[3] Lojack.com, 2004. http://www.lojack.com/.

[4] Sleepycat software. http://www.sleepycat.com/.

[5] StreamBase Inc. 

http://www.streambase.com/.

[6] Sybase IQ. 

http://www.sybase.com/products/databaseservers/sybaseiq.

[7] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. 

Convey, C. Erwin, E. Galvez, M. Hatoun, J. Hwang, A. 

Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, 

Y. Zing, R.Yan, and S. Zdonik. Aurora: A Data Stream 

Management System (demo description). In Proceedings of 

the 2003 ACM SIGMOD Conference on Management of 

Data, San Diego, CA, 2003. 

[8] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. 

Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. 

Aurora: A New Model and Architecture for Data Stream 

Management. VLDB Journal, 2003. 

[9] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. Maskey, 

E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear Road: 

A Benchmark for Stream Data Management Systems. In 

Proceedings of the 30th International Conference on Very 

Large Data Bases (VLDB), Toronto, CA, 2004. 

[10] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. 

Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A. 

Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. 

Traiger, B. Wade, and V. Watson. System R: A Relational 

Approach to Database Management. ACM Transactions on 

Database Systems, 1976. 

[11] J. Barlett, J. Gray, and B. Horst. Fault tolerance in Tandem 

computer systems. Tandem Computers Technical Report 

86.2., 1986. 

[12] E. Brewer, “Combining systems and databases: a search 

engine retrospective,” in Readings in Database Systems, M. 

Stonebraker and J. Hellerstein, Eds., 4 ed, 2004. 

[13] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. 

Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. 

Zdonik. Monitoring Streams: A New Class of Data 

Management Applications. In proceedings of the 28th 

International Conference on Very Large Data Bases 

(VLDB'02), Hong Kong, China, 2002. 

[14] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. 

Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. 

R. Madden, V. Raman, F. Reiss, and M. A. Shah. 

TelegraphCQ: Continuous Dataflow Processing for an 

Uncertain World. In Proc. of the 1st CIDR Conference,

Asilomar, CA, 2003. 

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google 

file system. In Proceedings of the nineteenth ACM 

symposium on Operating systems principles (SOSP),

Bolton Landing, NY, USA, 2003. 

[16] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, 

L. Luo, R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh. An 

Energy-Efficient Surveillance System Using Wireless 

Sensor Networks. In MobiSys'04, 2004. 

[17] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. 

Stonebraker, and S. Zdonik. High-Availability Algorithms 

for Distributed Stream Processing. In Proceedings of the 

International Conference on Data Engineering, Tokyo, 

Japan, 2004. 

[18] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The 

Design of an Acquisitional Query Processor for Sensor 

Networks. In Proceedings of SIGMOD, San Diego, CA, 

2003.

[19] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton. 

CodeBlue: An Ad Hoc Sensor Network Infrastructure for 

Emergency Medical Care. In WAMES'04, 2004. 

[20] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. 

Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma. 

Query Processing, Resource Management, and 

Approximation and in a Data Stream Management System. 

In Proc. of the First Biennial Conference on Innovative 

Data Systems Research (CIDR 2003), Asilomar, CA, 2003. 

[21] G. Pottie and W. Kaiser. Wireless Integrated Network 

Sensors. Communications of the ACM.

[22] K. Rothermel and C. Mohan. ARIES/NT: A Recovery 

Method Based on Write-Ahead Logging for Nested 

Transactions. In Proc. 15th International Conference on 

Very Large Data Bases (VLDB), Amsterdam, Holland, 

1989.

[23] L. A. Rowe and K. A. Shoens. Data abstraction, views and 

updates in RIGEL. In Proceedings of the 1979 ACM 

SIGMOD international conference on Management of data 

(SIGMOD), Boston, Massachusetts, 1979. 

[24] P. Saffo. Sensors: The Next Wave of Information. 

Communications of the ACM.

[25] J. W. Schmidth. Some High-Level Language Constructs for 

Data of Type Relation. Transactions on Database Systems,

2(247-261, 1977. 

[26] L. Schwiebert, S. Gupta, and J. Weinmann. Research 

Challenges in Wireless Networks of Biomedical Sensors. 

In Mobicom'01, 2001. 

[27] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The 

Design and Implementation of INGRES. ACM Trans. 

Database Systems, 1(3):189-222, 1976. 

[28] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. 

Lessons from a Sensor Network Expedition. In EWSN'04,

2004.

[29] C. S. Ting Liu, Pei Zhang and Margaret Martonosi. 

Implementing Software on Resource-Constrained Mobile 

Sensors: Experiences with Impala and ZebraNet. In 

MobiSys'04, 2004. 

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005) 

1084-4627/05 $20.00 © 2005 IEEE


