
“One Size Fits All”: An Idea Whose Time Has Come and Gone

Michael Stonebraker

Computer Science and Artificial

Intelligence Laboratory, M.I.T., and

StreamBase Systems, Inc.

stonebraker@csail.mit.edu

U ur Çetintemel

Department of Computer Science

Brown University, and

StreamBase Systems, Inc.

ugur@cs.brown.edu

Abstract

The last 25 years of commercial DBMS development
can be summed up in a single phrase: “One size fits all”.

This phrase refers to the fact that the traditional DBMS

architecture (originally designed and optimized for
business data processing) has been used to support many

data-centric applications with widely varying

characteristics and requirements.
In this paper, we argue that this concept is no longer

applicable to the database market, and that the

commercial world will fracture into a collection of
independent database engines, some of which may be

unified by a common front-end parser. We use examples

from the stream-processing market and the data-
warehouse market to bolster our claims. We also briefly

discuss other markets for which the traditional
architecture is a poor fit and argue for a critical

rethinking of the current factoring of systems services

into products.

1. Introduction

Relational DBMSs arrived on the scene as research

prototypes in the 1970’s, in the form of System R [10]

and INGRES [27]. The main thrust of both prototypes

was to surpass IMS in value to customers on the

applications that IMS was used for, namely “business

data processing”. Hence, both systems were architected

for on-line transaction processing (OLTP) applications,

and their commercial counterparts (i.e., DB2 and

INGRES, respectively) found acceptance in this arena in

the 1980’s. Other vendors (e.g., Sybase, Oracle, and

Informix) followed the same basic DBMS model, which

stores relational tables row-by-row, uses B-trees for

indexing, uses a cost-based optimizer, and provides

ACID transaction properties.

Since the early 1980’s, the major DBMS vendors have

steadfastly stuck to a “one size fits all” strategy, whereby

they maintain a single code line with all DBMS services.

The reasons for this choice are straightforward the use

of multiple code lines causes various practical problems,

including:

a cost problem, because maintenance costs increase

at least linearly with the number of code lines;

a compatibility problem, because all applications

have to run against every code line;

a sales problem, because salespeople get confused

about which product to try to sell to a customer; and

a marketing problem, because multiple code lines

need to be positioned correctly in the marketplace.

To avoid these problems, all the major DBMS vendors

have followed the adage “put all wood behind one

arrowhead”. In this paper we argue that this strategy has

failed already, and will fail more dramatically off into the

future.

The rest of the paper is structured as follows. In

Section 2, we briefly indicate why the single code-line

strategy has failed already by citing some of the key

characteristics of the data warehouse market. In Section

3, we discuss stream processing applications and indicate

a particular example where a specialized stream

processing engine outperforms an RDBMS by two orders

of magnitude. Section 4 then turns to the reasons for the

performance difference, and indicates that DBMS

technology is not likely to be able to adapt to be

competitive in this market. Hence, we expect stream

processing engines to thrive in the marketplace. In

Section 5, we discuss a collection of other markets where

one size is not likely to fit all, and other specialized

database systems may be feasible. Hence, the

fragmentation of the DBMS market may be fairly

extensive. In Section 6, we offer some comments about

the factoring of system software into products. Finally,

we close the paper with some concluding remarks in

Section 7.

2. Data warehousing

In the early 1990’s, a new trend appeared: Enterprises

wanted to gather together data from multiple operational

databases into a data warehouse for business intelligence

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

purposes. A typical large enterprise has 50 or so

operational systems, each with an on-line user community

who expect fast response time. System administrators

were (and still are) reluctant to allow business-

intelligence users onto the same systems, fearing that the

complex ad-hoc queries from these users will degrade

response time for the on-line community. In addition,

business-intelligence users often want to see historical

trends, as well as correlate data from multiple operational

databases. These features are very different from those

required by on-line users.

For these reasons, essentially every enterprise created a

large data warehouse, and periodically “scraped” the data

from operational systems into it. Business-intelligence

users could then run their complex ad-hoc queries against

the data in the warehouse, without affecting the on-line

users. Although most warehouse projects were

dramatically over budget and ended up delivering only a

subset of promised functionality, they still delivered a

reasonable return on investment. In fact, it is widely

acknowledged that historical warehouses of retail

transactions pay for themselves within a year, primarily

as a result of more informed stock rotation and buying

decisions. For example, a business-intelligence user can

discover that pet rocks are out and Barbie dolls are in, and

then make appropriate merchandise placement and

buying decisions.

Data warehouses are very different from OLTP

systems. OLTP systems have been optimized for updates,

as the main business activity is typically to sell a good or

service. In contrast, the main activity in data warehouses

is ad-hoc queries, which are often quite complex. Hence,

periodic load of new data interspersed with ad-hoc query

activity is what a typical warehouse experiences.

The standard wisdom in data warehouse schemas is to

create a fact table, containing the “who, what, when,

where” about each operational transaction. For example,

Figure 1 shows the schema for a typical retailer. Note the

central fact table, which holds an entry for each item that

is scanned by a cashier in each store in its chain. In

addition, the warehouse contains dimension tables, with

information on each store, each customer, each product,

and each time period. In effect, the fact table contains a

foreign key for each of these dimensions, and a star

schema is the natural result. Such star schemas are omni-

present in warehouse environments, but are virtually non-

existent in OLTP environments.

It is a well known homily that warehouse applications

run much better using bit-map indexes while OLTP users

prefer B-tree indexes. The reasons are straightforward:

bit-map indexes are faster and more compact on

warehouse workloads, while failing to work well in

OLTP environments. As a result, many vendors support

both B-tree indexes and bit-map indexes in their DBMS

products.

In addition, materialized views are a useful

optimization tactic in warehouse worlds, but never in

OLTP worlds. In contrast, normal (“virtual”) views find

acceptance in OLTP environments.

To a first approximation, most vendors have a

warehouse DBMS (bit-map indexes, materialized views,

star schemas and optimizer tactics for star schema

queries) and an OLTP DBMS (B-tree indexes and a

standard cost-based optimizer), which are united by a

common parser, as illustrated in Figure 2.

Although this configuration allows such a vendor to

market his DBMS product as a single system, because of

the single user interface, in effect, she is selling multiple

systems. Moreover, there will considerable pressure from

both the OLTP and warehouse markets for features that

are of no use in the other world. For example, it is

common practice in OLTP databases to represent the state

(in the United States) portion of an address as a two-byte

character string. In contrast, it is obvious that 50 states

can be coded into six bits. If there are enough queries and

enough data to justify the cost of coding the state field,

then the later representation is advantageous. This is

usually true in warehouses and never true in OLTP.

Hence, elaborate coding of fields will be a warehouse

feature that has little or no utility in OLTP. The inclusion

of additional market-specific features will make

commercial products look increasingly like the

architecture illustrated in Figure 2.

The illusion of “one size fits all” can be preserved as a

marketing fiction for the two different systems of Figure

Store_key

Product_key

Time_key

Customer_key

Cost

Quantity

Discount

…

Store_key

Product_key

Time_key

Customer_key

Cost

Quantity

Discount

…
Customer_key

Name

Address

Status

Customer_key

Name

Address

Status

Product_key

Name

Description

Product_key

Name

Description

Store_key

City

State

Region

Store_key

City

State

Region

Time_key

Day

Month

Year

Time_key

Day

Month

YearSALES (Fact Table)

STORE (DimensionTable) TIME (DimensionTable)

Figure 1: A typical star schema

Common

Top Parser

Common

Top Parser

OLTP

Bottom

OLTP

Bottom
Warehouse

Bottom

Warehouse

Bottom

Figure 2: The architecture of current DBMSs

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

2, because of the common user interface. In the stream

processing market, to which we now turn, such a

common front end is impractical. Hence, not only will

there be different engines but also different front ends.

The marketing fiction of “one size fits all” will not fly in

this world.

3. Stream processing

Recently, there has been considerable interest in the

research community in stream processing applications [7,

13, 14, 20]. This interest is motivated by the upcoming

commercial viability of sensor networks over the next

few years. Although RFID has gotten all the press

recently and will find widespread acceptance in retail

applications dealing with supply chain optimization, there

are many other technologies as well (e.g., Lojack [3]).

Many industry pundits see a “green field” of monitoring

applications that will be enabled by this “sea change”

caused by networks of low-cost sensor devices.

3.1 Emerging sensor-based applications

There are obvious applications of sensor network

technology in the military domain. For example, the US

Army is investigating putting vital-signs monitors on all

soldiers, so that they can optimize medical triage in

combat situations. In addition, there is already a GPS

system in many military vehicles, but it is not connected

yet into a closed-loop system. Instead, the army would

like to monitor the position of all vehicles and determine,

in real time, if they are off course. Additionally, they

would like a sensor on the gun turret; together with

location, this will allow the detection of crossfire

situations. A sensor on the gas gauge will allow the

optimization of refueling. In all, an army battalion of

30,000 humans and 12,000 vehicles will soon be a large-

scale sensor network of several hundred thousand nodes

delivering state and position information in real time.

Processing nodes in the network and downstream

servers must be capable of dealing with this “firehose” of

data. Required operations include sophisticated alerting,

such as the platoon commander wishes to know when

three of his four vehicles cross the front line. Also

required are historical queries, such as “Where has

vehicle 12 been for the last two hours?” Lastly,

requirements encompass longitudinal queries, such as

“What is the overall state of readiness of the force right

now?”

Other sensor-based monitoring applications will also

come over time in many non-military applications.

Monitoring traffic congestion and suggesting alternate

travel routes is one example. A related application is

variable, congestion-based tolling on highway systems,

which was the inspiration behind the Linear Road

benchmark [9]. Amusement parks will soon turn passive

wristbands on customers into active sensors, so that rides

can be optimized and lost children located. Cell phones

are already active devices, and one can easily imagine a

service whereby the closest restaurant to a hungry

customer can be located. Even library books will be

sensor tagged, because if one is mis-shelved, it may be

lost forever in a big library.

There is widespread speculation that conventional

DBMSs will not perform well on this new class of

monitoring applications. In fact, on Linear Road,

traditional solutions are nearly an order of magnitude

slower than a special purpose stream processing engine

[9]. The inapplicability of the traditional DBMS

technology to streaming applications is also bolstered by

an examination of the current application areas with

streaming data. We now discuss our experience with such

an application, financial-feed processing.

3.2 An existing application:

financial-feed processing

Most large financial institutions subscribe to feeds that

deliver real-time data on market activity, specifically

news, consummated trades, bids and asks, etc. Reuters,

Bloomberg and Infodyne are examples of vendors that

Alarm
Delay=5 sec

Alarm
Delay=60 sec

Union Count 100

500 fast

securities

4000 slow

securities

Feed A

Problem in Feed A

Case
provider

Union Count 100

Problem in Provider 1

Union Count 100Case
provider

Provider 1

Provider 1

Provider 2

Provider 2

Alarm
Delay=5 sec

Alarm
Delay=60 sec

Union Count 100

500 fast

securities

4000 slow

securities

Feed B

Case
alarm type

Problem in Security In Feed A

Problem in Feed B

Case
alarm type

Problem in Security in Feed B

Map

Case
alarm type

Problem in Provider 2

Case
alarm type

Filter
alarm=true

Filter
alarm=true

Filter
alarm=true

Filter
alarm=true

Map

Figure 3: The Feed Alarm application in StreamBase

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

deliver such feeds. Financial institutions have a variety of

applications that process such feeds. These include

systems that produce real-time business analytics, ones

that perform electronic trading, ones that ensure legal

compliance of all trades to the various company and SEC

rules, and ones that compute real-time risk and market

exposure to fluctuations in foreign exchange rates. The

technology used to implement this class of applications is

invariably “roll your own”, because application experts

have not had good luck with off-the-shelf system

software products.

In order to explore feed processing issues more deeply,

we now describe in detail a specific prototype

application, which was specified by a large mutual fund

company. This company subscribes to several

commercial feeds, and has a current production

application that watches all feeds for the presence of late

data. The idea is to alert the traders if one of the

commercial feeds is delayed, so that the traders can know

not to trust the information provided by that feed. This

company is unhappy with the performance and flexibility

of their “roll your own” solution and requested a pilot

using a stream processing engine.

The company engineers specified a simplified version

of their current application to explore the performance

differences between their current system and a stream

processing engine. According to their specification, they

were looking for maximum message processing

throughput on a single PC-class machine for a subset of

their application, which consisted of two feeds reporting

data from two exchanges.

Specifically, there are 4500 securities, 500 of which

are “fast moving”. A stock tick on one of these securities

is late if it occurs more than five seconds after the

previous tick from the same security. The other 4000

symbols are slow moving, and a tick is late if 60 seconds

have elapsed since the previous tick.

There are two feed providers and the company wished

to receive an alert message each time there is a late tick

from either provider. In addition, they wished to maintain

a counter for each provider. When 100 late ticks have

been received from either provider, they wished to

receive a special “this is really bad” message and then to

suppress the subsequent individual tick reports

The last wrinkle in the company’s specification was

that they wished to accumulate late ticks from each of

two exchanges, say NYSE and NASD, regardless of

which feed vendor produced the late data. If 100 late

messages were received from either exchange through

either feed vendor, they wished to receive two additional

special messages. In summary, they want four counters,

each counting to 100, with a resulting special message.

An abstract representation of the query diagram for this

task is shown in Figure 3.

Although this prototype application is only a subset of

the application logic used in the real production system, it

represents a simple-to-specify task on which performance

can be readily measured; as such, it is a representative

example. We now turn to the speed of this example

application on a stream processing engine as well as an

RDBMS.

4. Performance discussion

The example application discussed in the previous

section was implemented in the StreamBase stream

processing engine (SPE) [5], which is basically a

commercial, industrial-strength version of Aurora [8, 13].

On a 2.8Ghz Pentium processor with 512 Mbytes of

memory and a single SCSI disk, the workflow in Figure 3

can be executed at 160,000 messages per second, before

CPU saturation is observed. In contrast, StreamBase

engineers could only coax 900 messages per second from

an implementation of the same application using a

popular commercial relational DBMS.

In this section, we discuss the main reasons that result

in the two orders of magnitude difference in observed

performance. As we argue below, the reasons have to do

with the inbound processing model, correct primitives for

stream processing, and seamless integration of DBMS

processing with application processing. In addition, we

also consider transactional behavior, which is often

another major consideration.

4.1 “Inbound” versus “outbound” processing

Built fundamentally into the DBMS model of the

world is what we term “outbound” processing, illustrated

in Figure 4. Specifically, one inserts data into a database

as a first step (step 1). After indexing the data and

committing the transaction, that data is available for

subsequent query processing (step 2) after which results

are presented to the user (step 3). This model of “process-

after-store” is at the heart of all conventional DBMSs,

which is hardly surprising because, after all, the main

function of a DBMS is to accept and then never lose data.

In real-time applications, the storage operation, which

must occur before processing, adds significantly both to

the delay (i.e., latency) in the application, as well as to the

processing cost per message of the application. An

alternative processing model that avoids this storage

bottleneck is shown graphically in Figure 5. Here, input

streams are pushed to the system (step 1) and get

processed (step 2) as they “fly by” in memory by the

query network. The results are then pushed to the client

application(s) for consumption (step 3). Reads or writes

to storage are optional and can be executed

asynchronously in many cases, when they are present.

The fact that storage is absent or optional saves both on

cost and latency, resulting in significantly higher

performance. This model, called “inbound” processing, is

what is employed by a stream processing engine such as

StreamBase.

One is, of course, led to ask “Can a DBMS do inbound

processing?” DBMSs were originally designed as

outbound processing engines, but grafted triggers onto

their engines as an afterthought many years later. There

are many restrictions on triggers (e.g., the number

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

allowed per table) and no way to ensure trigger safety

(i.e., ensuring that triggers do not go into an infinite

loop). Overall, there is very little or no programming

support for triggers. For example, there is no way to see

what triggers are in place in an application, and no way to

add a trigger to a table through a graphical user interface.

Moreover, virtual views and materialized views are

provided for regular tables, but not for triggers. Lastly,

triggers often have performance problems in existing

engines. When StreamBase engineers tried to use them

for the feed alarm application, they still could not obtain

more than 900 messages per second. In summary, triggers

are incorporated to the existing designs as an afterthought

and are thus second-class citizens in current systems.

As such, relational DBMSs are outbound engines onto

which limited inbound processing has been grafted. In

contrast, stream processing engines, such as Aurora and

StreamBase are fundamentally inbound processing

engines. From the ground up, an inbound engine looks

radically different from an outbound engine. For

example, an outbound engine uses a “pull” model of

processing, i.e., a query is submitted and it is the job of

the engine to efficiently pull records out of storage to

satisfy the query. In contrast, an inbound engine uses a

“push” model of processing, and it is the job of the engine

to efficiently push incoming messages through the

processing steps entailed in the application.

Another way to view the distinction is that an

outbound engine stores the data and then executes the

queries against the data. In contrast, an inbound engine

stores the queries and then passes the incoming data

(messages) through the queries.

Although it seems conceivable to construct an engine

that is either an inbound or an outbound engine, such a

design is clearly a research project. In the meantime,

DBMSs are optimized for outbound processing, and

stream processing engines for inbound processing. In the

feed alarm application, this difference in philosophy

accounts for a substantial portion of the performance

difference observed.

4.2 The correct primitives

SQL systems contain a sophisticated aggregation

system, whereby a user can run a statistical computation

over groupings of the records from a table in a database.

The standard example is:

Select avg (salary)

From employee

Group by department

When the execution engine processes the last record in

the table, it can emit the aggregate calculation for each

group of records. However, this construct is of little

benefit in streaming applications, where streams continue

forever and there is no notion of “end of table”.

Consequently, stream processing engines extend SQL

(or some other aggregation language) with the notion of

time windows. In StreamBase, windows can be defined

based on clock time, number of messages, or breakpoints

in some other attribute. In the feed alarm application, the

leftmost box in each stream is such an aggregate box.

The aggregate groups stocks by symbol and then defines

windows to be ticks 1 and 2, 2 and 3, 3 and 4, etc. for

each stock. Such “sliding windows” are often very useful

in real-time applications.

In addition, StreamBase aggregates have been

constructed to deal intelligently with messages which are

late, out-of-order, or missing. In the feed alarm

application, the customer is fundamentally interested in

looking for late data. StreamBase allows aggregates on

windows to have two additional parameters. The first is a

timeout parameter, which instructs the StreamBase

execution engine to close a window and emit a value even

if the condition for closing the window has not been

satisfied. This parameter effectively deals with late or

missing tuples. The second parameter is slack, which is a

directive to the execution engine to keep a window open,

after its closing condition has been satisfied. This

parameter addresses disorder in tuple arrivals. These two

parameters allow the user to specify how to deal with

updates

pull processing

storage

1

results

2

3

Figure 4: “Outbound” processing

input

streams
1

push

processing

2

results

optional

archive

access

optional

storage

storage

3

Figure 5: “Inbound” processing

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

stream abnormalities and can be effectively utilized to

improve system resilience.

In the feed alarm application each window is two ticks,

but has a timeout of either 5 or 60 seconds. This will

cause windows to be closed if the inter-arrival time

between successive ticks exceeds the maximum defined

by the user. This is a very efficient way to discover late

data; i.e., as a side effect of the highly-tuned aggregate

logic. In the example application, the box after each

aggregate discards the valid data and keeps only the

timeout messages. The remainder of the application

performs the necessary bookkeeping on these timeouts.

Having the right primitives at the lower layers of the

system enables very high performance. In contrast, a

relational engine contains no such built-in constructs.

Simulating their effect with conventional SQL is quite

tedious, and results in a second significant difference in

performance.

It is possible to add time windows to SQL, but these

make no sense on stored data. Hence, window constructs

would have to be integrated into some sort of an inbound

processing model.

4.3 Seamless integration of DBMS processing and

application logic

Relational DBMSs were all designed to have client-

server architectures. In this model, there are many client

applications, which can be written by arbitrary people,

and which are therefore typically untrusted. Hence, for

security and reliability reasons, these client applications

are run in a separate address space from the DBMS. The

cost of this choice is that the application runs in one

address space while DBMS processing occurs in another,

and a process switch is required to move from one

address space to the other.

In contrast, the feed alarm application is an example of

an embedded system. It is written by one person or group,

who is trusted to “do the right thing”. The entire

application consists of (1) DBMS processing for

example the aggregation and filter boxes, (2) control

logic to direct messages to the correct next processing

step, and (3) application logic. In StreamBase, these three

kinds of functionality can be freely interspersed.

Application logic is supported with user-defined boxes,

the Count100 box in our example financial-feed

processing application. The actual code, shown in Figure

6, consists of four lines of C++ that counts to 100 and sets

a flag that ensures that the correct messages are emitted.

Control logic is supported by allowing multiple

predicates in a filter box, and thereby multiple exit arcs.

As such, a filter box performs “if-then-else” logic in

addition to filtering streams.

In effect, the feed alarm application is a mix of DBMS-

style processing, conditional expressions, and user-

defined functions in a conventional programming

language. This combination is performed by StreamBase

within a single address space without any process

switches. Such a seamless integration of DBMS logic

with conventional programming facilities was proposed

many years ago in Rigel [23] and Pascal-R [25], but was

never implemented in commercial relational systems.

Instead, the major vendors implemented stored

procedures, which are much more limited programming

systems. More recently, the emergence of object-

relational engines provided blades or extenders, which are

more powerful than stored procedures, but still do not

facilitate flexible control logic.

Embedded systems do not need the protection provided

by client-server DBMSs, and a two-tier architecture

merely generates overhead. This is a third source of the

performance difference observed in our example

application.

Another integration issue, not exemplified by the feed

alarm example, is the storage of state information in

streaming applications. Most stream processing

applications require saving some state, anywhere from

modest numbers of megabytes to small numbers of

gigabytes. Such state information may include (1)

reference data (i.e., what stocks are of interest), (2)

translation tables (in case feeds use different symbols for

the same stock), and (3) historical data (e.g., “how many

late ticks were observed every day during the last year?”).

As such, tabular storage of data is a requirement for most

stream processing applications.

StreamBase embeds BerkeleyDB [4] for state storage.

However, there is approximately one order of magnitude

performance difference between calling BerkeleyDB in

the StreamBase address space and calling it in client-

server mode in a different address space. This is yet

another reason to avoid process switches by mixing

DBMS and application processing in one address space.

Count 100 same as

Map
F.evaluate:

cnt++

if (cnt % 100 != 0) if !suppress emit lo-alarm

else emit drop-alarm

else emit hi-alarm, set suppress = true

Figure 6: “Count100” logic

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

Although one might suggest that DBMSs enhance their

programming models to address this performance

problem, there are very good reasons why client-server

DBMSs were designed the way they are. Most business

data processing applications need the protection that is

afforded by this model. Stored procedures and object-

relational blades were an attempt to move some of the

client logic into the server to gain performance. To move

further, a DBMS would have to implement both an

embedded and a non-embedded model, with different run

time systems. Again, this would amount to giving up on

“one size fits all”.

In contrast, feed processing systems are invariably

embedded applications. Hence, the application and the

DBMS are written by the same people, and driven from

external feeds, not from human-entered transactions. As

such, there is no reason to protect the DBMS from the

application, and it is perfectly acceptable to run both in

the same address space. In an embedded processing

model, it is reasonable to freely mix application logic,

control logic and DBMS logic, which is exactly what

StreamBase does.

4.4 High availability

It is a requirement of many stream-based applications

to have high availability (HA) and stay up 7x24. Standard

DBMS logging and crash recovery mechanisms (e.g.,

[22]) are ill-suited for the streaming world as they

introduce several key problems.

First, log-based recovery may take large number of

seconds to small numbers of minutes. During this period,

the application would be “down”. Such behavior is

clearly undesirable in many real-time streaming domains

(e.g., financial services). Second, in case of a crash, some

effort must be made to buffer the incoming data streams,

as otherwise this data will be irretrievably lost during the

recovery process. Third, DBMS recovery will only deal

with tabular state and will thus ignore operator states. For

example, in the feed alarm application, the counters are

not in stored in tables; therefore their state would be lost

in a crash. One straightforward fix would be to force all

operator state into tables to use DBMS-style recovery;

however, this solution would significantly slow down the

application.

The obvious alternative to achieve high availability is

to use techniques that rely on Tandem-style process pairs

[11]. The basic idea is that, in the case of a crash, the

application performs failover to a backup machine, which

typically operates as a “hot standby”, and keeps going

with small delay. This approach eliminates the overhead

of logging. As a case in point, StreamBase turns off

logging in BerkeleyDB.

Unlike traditional data-processing applications that

require precise recovery for correctness, many stream-

processing applications can tolerate and benefit from

weaker notions of recovery. In other words, failover does

not always need to be “perfect”. Consider monitoring

applications that operate on data streams whose values

are periodically refreshed. Such applications can often

tolerate tuple losses when a failure occurs, as long as such

interruptions are short. Similarly, if one loses a couple of

ticks in the feed alarm application during failover, the

correctness would probably still be preserved. In contrast,

applications that trigger alerts when certain combinations

of events happen, require that no tuples be lost, but may

tolerate temporary duplication. For example, a patient

monitoring application may be able to tolerate duplicate

tuples (``heart rate is 79'') but not lost tuples (``heart rate

has changed to zero''). Of course, there will always be a

class of applications that require strong, precise recovery

guarantees. A financial application that performs

portfolio management based on individual stock

transactions falls into this category.

As a result, there is an opportunity to devise simplified

and low overhead failover schemes, when weaker

correctness notions are sufficient. A collection of detailed

options on how to achieve high availability in a streaming

world has recently been explored [17].

4.5 Synchronization

Many stream-based applications rely on shared data

and computation. Shared data is typically contained in a

table that one query updates and another one reads. For

example, the Linear Road application requires that

vehicle-position data be used to update statistics on

highway usage, which in turn are read to determine tolls

for each segment on the highway. Thus, there is a basic

need to provide isolation between messages.

Traditional DBMSs use ACID transactions to provide

isolation (among others things) between concurrent

transactions submitted by multiple users. In streaming

systems, which are not multi-user, such isolation can be

effectively achieved through simple critical sections,

which can be implemented through light-weight

semaphores. Since full-fledged transactions are not

required, there is no need to use heavy-weight locking-

based mechanisms anymore.

In summary, ACID properties are not required in most

stream processing applications, and simpler, specialized

performance constructs can be used to advantage.

5. One size fits all?

The previous section has indicated a collection of

architectural issues that result in significant differences in

performance between specialized stream processing

engines and traditional DBMSs. These design choices

result in a big difference between the internals of the two

engines. In fact, the run-time code in StreamBase looks

nothing like a traditional DBMS run-time. The net result

is vastly better performance on a class of real-time

applications. These considerations will lead to a separate

code line for stream processing, of course assuming that

the market is large enough to facilitate this scenario.

In the rest of the section, we outline several other

markets for which specialized database engines may be

viable.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

5.1 Data warehouses

The architectural differences between OLTP and

warehouse database systems discussed in Section 2 are

just the tip of the iceberg, and additional differences will

occur over time. We now focus on probably the biggest

architectural difference, which is to store the data by

column, rather than by row.

All major DBMS vendors implement record-oriented

storage systems, where the attributes of a record are

placed contiguously in storage. Using this “row-store”

architecture, a single disk write is all that is required to

push all of the attributes of a single record out to disk.

Hence, such a system is “write-optimized” because high

performance on record writes is easily achievable. It is

easy to see that write-optimized systems are especially

effective on OLTP-style applications, the primary reason

why most commercial DBMSs employ this architecture.

In contrast, warehouse systems need to be “read-

optimized” as most workload consists of ad-hoc queries

that touch large amounts of historical data. In such

systems, a “column-store” model where the values for all

of the rows of a single attribute are stored contiguously is

drastically more efficient (as demonstrated by Sybase IQ

[6], Addamark [1], and KDB [2]).

With a column-store architecture, a DBMS need only

read the attributes required for processing a given query,

and can avoid bringing into memory any other irrelevant

attributes. Given that records with hundreds of attributes

(with many null values) are becoming increasingly

common, this approach results in a sizeable performance

advantage for warehouse workloads where typical queries

involve aggregates that are computed on a small number

of attributes over large data sets. The first author of this

paper is engaged in a research project to explore the

performance benefits of a column-store system.

5.2 Sensor networks

It is not practical to run a traditional DBMS in the

processing nodes that manage sensors in a sensor network

[21, 24]. These emerging platforms of device networks

are currently being explored for applications such as

environmental and medical monitoring, industrial

automation, autonomous robotic teams, and smart homes

[16, 19, 26, 28, 29].

In order to realize the full potential of these systems,

the components are designed to be wireless, with respect

to both communication and energy. In this environment,

bandwidth and power become the key resources to be

conserved. Furthermore, communication, as opposed to

processing or storage access, is the main consumer of

energy. Thus, standard DBMS optimization tactics do not

apply and need to be critically rethought. Furthermore,

transactional capabilities seem to be irrelevant in this

domain.

In general, there is a need to design flexible, light-

weight database abstractions (such as TinyDB [18]) that

are optimized for data movement as opposed to data

storage.

5.3 Text search

None of the current text search engines use DBMS

technology for storage, even though they deal with

massive, ever-increasing data sets. For instance, Google

built its own storage system (called GFS [15]) that

outperforms conventional DBMS technology (as well as

file system technology) for some of the reasons discussed

in Section 4.

A typical search engine workload [12, 15] consists of a

combination of inbound streaming data (coming from

web crawlers), which needs to be cleaned and

incorporated into the existing search index, and ad hoc

look-up operations on the existing index. In particular, the

write operations are mostly append-only and read

operations sequential. Concurrent writes (i.e., appends) to

the same file are necessary for good performance. Finally,

the large number of storage machines, made up of

commodity parts, ensure that failure is the norm rather

than the exception. Hence, high availability is a key

design consideration and can only be achieved through

fast recovery and replication.

Clearly, these application characteristics are much

different from those of conventional business-processing

applications. As a result, even though some DBMSs has

built-in text search capabilities, they fall short of meeting

the performance and availability requirements of this

domain: they are simply too heavy-weight and inflexible.

5.4 Scientific databases

Massive amounts of data are continuously being

gathered from the real-world by sensors of various types,

attached to devices such as satellites and microscopes, or

are generated artificially by high-resolution scientific and

engineering simulations.

The analysis of such data sets is the key to better

understanding physical phenomena and is becoming

increasingly commonplace in many scientific research

domains. Efficient analysis and querying of these vast

databases require highly-efficient multi-dimensional

indexing structures and application-specific aggregation

techniques. In addition, the need for efficient data

archiving, staging, lineage, and error propagation

techniques may create a need for yet another specialized

engine in this important domain.

5.5 XML databases

Semi-structured data is everywhere. Unfortunately,

such data does not immediately fit into the relational

model. There is a heated ongoing debate regarding how to

best store and manipulate XML data. Even though some

believe that relational DBMSs (with proper extensions)

are the way to go, others would argue that a specialized

engine is needed to store and process this data format.

6. A Comment on Factoring

Most stream-based applications require three basic

services:

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

Message transport: In many stream applications,

there is a need to transport data efficiently and

reliably among multiple distributed machines. The

reasons for these are threefold. First, data sources

and destinations are typically geographically

dispersed. Second, high performance and availability

requirements dictate the use of multiple cooperating

server machines. Third, virtually all big enterprise

systems consist of a complicated network of business

applications running on a large number of machines,

in which an SPE is embedded. Thus, the input and

outputs messages to the SPE need to be properly

routed from and to the appropriate external

applications.

Storage of state: As discussed in Section 4.3, in all

but the most simplistic applications, there is a need to

store state, typically in the form of read-only

reference and historical tables, and read-write

translation (e.g., hash) tables.

Execution of application logic: Many streaming

applications demand domain-specific message

processing to be interspersed with query activity. In

general, it is neither possible nor practical to

represent such application logic using only the built-

in query primitives (e.g., think legacy code).

A traditional design for a stream-processing

application spreads the entire application logic across

three diverse systems: (1) a messaging system (such as

MQSeries, WebMethods, or Tibco) to reliably connect

the component systems, typically using a

publish/subscribe paradigm; (2) a DBMS (such as DB2 or

Oracle) to provide persistence for state information; and

(3) an application server (such as WebSphere or

WebLogic) to provide application services to a set of

custom-coded programs. Such a three-tier configuration

is illustrated in Figure 7.

Unfortunately, such a design that spreads required

functionality over three heavyweight pieces of system

software will not perform well. For example, every

message that requires state lookup and application

services will entail multiple process switches between

these different services.

In order to illustrate this per message overhead, we

trace the steps taken when processing a message. An

incoming message is first picked up by the bus and then

forwarded to the custom application code (step 1), which

cleans up and then processes the message. If the message

needs to be correlated with historical data or requires

access to persistent data, then a request is sent to the DB

server (steps 2-3), which accesses the DBMS. The

response follows the reverse path to the application code

(steps 4-5). Finally, the outcome of the processed

message is forwarded to the client task GUI (step 6).

Overall, there are six “boundary crossings” for processing

a single message. In addition to the obvious context

switches incurred, messages also need to transformed on-

the-fly, by the appropriate adapters, to and from the

native formats of the systems, each time they are picked

up from and passed on to the message bus. The result is a

very low useful work to overhead ratio. Even if there is

some batching of messages, the overhead will be high and

limit achievable performance.

To avoid such a performance hit, a stream processing

engine must provide all three services in a single piece of

system software that executes as one multi-threaded

process on each machine that it runs. Hence, an SPE must

have elements of a DBMS, an application server, and a

messaging system. In effect, an SPE should provide

specialized capabilities from all three kinds of software

“under one roof”.

This observation raises the question of whether the

current factoring of system software into components

(e.g., application server, DBMS, Extract-Transform-Load

system, message bus, file system, web server, etc.) is

actually an optimal one. After all, this particular

decomposition arose partly as a historical artifact and

partly from marketing happenstance. It seems like other

factoring of systems services seems equally plausible, and

RDBMSRDBMS

Message BusMessage Bus

Custom

App 1

Custom

App 1

1 2 5 6

3 4

process boundary

boundary crossing

Custom

App 2

Custom

App 2
Custom

App 3

Custom

App 3
Custom

App n

Custom

App n
......

Application ServerApplication Server

DB ServerDB Server

from stream

sources

to client

task GUIs

messages results

Figure 7: A multi-tier stream processing architecture

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

it should not be surprising to see considerable evolution

of component definition and factoring off into the future.

7. Concluding Remarks

In summary, there may be a substantial number of

domain-specific database engines with differing

capabilities off into the future. We are reminded of the

curse “may you live in interesting times”. We believe

that the DBMS market is entering a period of very

interesting times. There are a variety of existing and

newly-emerging applications that can benefit from data

management and processing principles and techniques. At

the same time, these applications are very much different

from business data processing and from each other

there seems to be no obvious way to support them with a

single code line. The “one size fits all” theme is unlikely

to successfully continue under these circumstances.

References

[1] Addamark Scalable Log Server.

http://www.addamark.com/products/sls.htm.

[2] Kx systems. http://www.kx.com/.

[3] Lojack.com, 2004. http://www.lojack.com/.

[4] Sleepycat software. http://www.sleepycat.com/.

[5] StreamBase Inc.

http://www.streambase.com/.

[6] Sybase IQ.

http://www.sybase.com/products/databaseservers/sybaseiq.

[7] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.

Convey, C. Erwin, E. Galvez, M. Hatoun, J. Hwang, A.

Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul,

Y. Zing, R.Yan, and S. Zdonik. Aurora: A Data Stream

Management System (demo description). In Proceedings of

the 2003 ACM SIGMOD Conference on Management of

Data, San Diego, CA, 2003.

[8] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.

Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.

Aurora: A New Model and Architecture for Data Stream

Management. VLDB Journal, 2003.

[9] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. Maskey,

E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear Road:

A Benchmark for Stream Data Management Systems. In

Proceedings of the 30th International Conference on Very

Large Data Bases (VLDB), Toronto, CA, 2004.

[10] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.

Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A.

Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L.

Traiger, B. Wade, and V. Watson. System R: A Relational

Approach to Database Management. ACM Transactions on

Database Systems, 1976.

[11] J. Barlett, J. Gray, and B. Horst. Fault tolerance in Tandem

computer systems. Tandem Computers Technical Report

86.2., 1986.

[12] E. Brewer, “Combining systems and databases: a search

engine retrospective,” in Readings in Database Systems, M.

Stonebraker and J. Hellerstein, Eds., 4 ed, 2004.

[13] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.

Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S.

Zdonik. Monitoring Streams: A New Class of Data

Management Applications. In proceedings of the 28th

International Conference on Very Large Data Bases

(VLDB'02), Hong Kong, China, 2002.

[14] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.

Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S.

R. Madden, V. Raman, F. Reiss, and M. A. Shah.

TelegraphCQ: Continuous Dataflow Processing for an

Uncertain World. In Proc. of the 1st CIDR Conference,

Asilomar, CA, 2003.

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google

file system. In Proceedings of the nineteenth ACM

symposium on Operating systems principles (SOSP),

Bolton Landing, NY, USA, 2003.

[16] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher,

L. Luo, R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh. An

Energy-Efficient Surveillance System Using Wireless

Sensor Networks. In MobiSys'04, 2004.

[17] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M.

Stonebraker, and S. Zdonik. High-Availability Algorithms

for Distributed Stream Processing. In Proceedings of the

International Conference on Data Engineering, Tokyo,

Japan, 2004.

[18] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The

Design of an Acquisitional Query Processor for Sensor

Networks. In Proceedings of SIGMOD, San Diego, CA,

2003.

[19] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton.

CodeBlue: An Ad Hoc Sensor Network Infrastructure for

Emergency Medical Care. In WAMES'04, 2004.

[20] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M.

Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.

Query Processing, Resource Management, and

Approximation and in a Data Stream Management System.

In Proc. of the First Biennial Conference on Innovative

Data Systems Research (CIDR 2003), Asilomar, CA, 2003.

[21] G. Pottie and W. Kaiser. Wireless Integrated Network

Sensors. Communications of the ACM.

[22] K. Rothermel and C. Mohan. ARIES/NT: A Recovery

Method Based on Write-Ahead Logging for Nested

Transactions. In Proc. 15th International Conference on

Very Large Data Bases (VLDB), Amsterdam, Holland,

1989.

[23] L. A. Rowe and K. A. Shoens. Data abstraction, views and

updates in RIGEL. In Proceedings of the 1979 ACM

SIGMOD international conference on Management of data

(SIGMOD), Boston, Massachusetts, 1979.

[24] P. Saffo. Sensors: The Next Wave of Information.

Communications of the ACM.

[25] J. W. Schmidth. Some High-Level Language Constructs for

Data of Type Relation. Transactions on Database Systems,

2(247-261, 1977.

[26] L. Schwiebert, S. Gupta, and J. Weinmann. Research

Challenges in Wireless Networks of Biomedical Sensors.

In Mobicom'01, 2001.

[27] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The

Design and Implementation of INGRES. ACM Trans.

Database Systems, 1(3):189-222, 1976.

[28] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler.

Lessons from a Sensor Network Expedition. In EWSN'04,

2004.

[29] C. S. Ting Liu, Pei Zhang and Margaret Martonosi.

Implementing Software on Resource-Constrained Mobile

Sensors: Experiences with Impala and ZebraNet. In

MobiSys'04, 2004.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

