1113

Highly Efficient, Limited Range Multipliers for LUT-Based
FPGA Architectures

R. H. Turner and R. F. Woods

Abstract—A novel design technique for deriving highly efficient multi-
pliers that operate on a limited range of multiplier values is presented.
Using the technique, Xilinx Virtex field programmable gate array (FPGA)
implementations for a discrete cosine transform and poly-phase filter were
derived with area reductions of 31%-70% and speed increases of 5%-35 %
when compared to designs using general-purpose multipliers. The tech-
nique gives superior results over other fixed coefficient methods and is ap-
plicable to a range of FPGA technologies.

Index Terms—Discrete cosine transform (DCT), multiplier-less multi-
plier blocks, poly-phase filters, reconfigurable multipliers, signed digit en-
coding.

I. INTRODUCTION

In digital signal processing (DSP) algorithms, many fixed trans-
forms such as the discrete cosine transform (DCT) do not require the
flexibility of a general-purpose multiplier as the multiplicand has a
limited number of values [1], [2]. In these cases, a constant coefficient
multiplier (KCM) can be derived using a number of techniques such
as distributed arithmetic (DA) [3], string encoding [4] and common
subexpression elimination [5]. KCMs are particularly attractive for
ROM-based field programmable gate arrays (FPGAs) such as the Al-
tera Stratix [6] and the Xilinx Virtex [7], as all possible outcomes can
be precomputed and stored, resulting in efficient solutions for digital
filters [3] and digital downconverters [8]. These approaches, however,
are applied in cases where the applications have fixed coefficients
and cannot be used efficiently in applications where a limited number
of coefficients is needed. To date, no method has been presented to
tradeoff multiplier complexity efficiently with computational needs. A
technique is presented here for designing “limited number” or reduced
coefficient multipliers (RCMs) which exploit circuit redundancy,
naturally created when mapping algorithms to FPGAs, to allow highly
efficient implementations to be achieved.

The paper is organized as follows. Section II presents the basic con-
cept leading to, in Section III, a general methodology for generating
the most efficient RCM structures based on performance needs. In Sec-
tion IV, the technique is applied to a two-dimensional (2-D) DCT cir-
cuit and a poly-phase filter. Conclusions are given in Section V.

II. BASIC CONCEPT OF THE RECONFIGURATION MUX

One approach to implementing “limited number” coefficient capa-
bility is to develop separate KCMs for each single coefficient and swap
in and out the KCMs as needed, i.e., reconfigure. This process can
be viewed as connecting individual circuits using a mux or rc_mux
[9] which is conceptual and is not implemented. With reconfiguration
times reaching 200 pts, however, this approach is proving prohibitive as
this constitutes a downtime of 20 000 clock cycles for a digital signal

Manuscript received February 28, 2003; revised August 15, 2003. This work
was supported in part a student grant from the Department of Education for
Northern Ireland.

The authors are with the Institute of Electronics, Communications and In-
formation Technology, Queen’s University of Belfast, Belfast, Northern Ireland
(e-mail: rht@qub.ac.uk; r.woods @qub.ac.uk).

Digital Object Identifier 10.1109/TVLSI.2004.833399

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 10, OCTOBER 2004

4ifp LUT Co
_| 41pLUT] ¢, *ﬂsp@? f
—Spare] LDi CouT *.S“
——Spare CY XOR AT In} Sum
P | T > o
A —ij-. -
CY MUX E E
SpareE [I’D
Co Ci

(a) (b)

Fig. 1. Adder implementation in LUT-based FPGA technologies. (a) Xilinx
Virtex FPGA slice. (b) Lattice XPGA cell.

S S S

c ol 1]

B B B @

A S, A S, A S
(a) (b) ()

Fig. 2. Possible implementations using the rc_mux design technique. (a) Cell
1. (b) Cell 2. (c) Cell 3.

WNseet | MUpLUT — Dedicated
liges resource
// Arithmetic
4 f or
Delay

N Data
M inputs Lines
Fig. 3. Abstract FPGA cell view with N input functions mapped to an M input

LUT and spare M-N inputs used for function selection.

processing (DSP) system with a clock rate of 100 MHz. In this brief,
these rc_muxes are physically implemented by exploiting unused hard-
ware thereby allowing circuit functionality to be changed without the
negative impact of these reconfiguration times.

A. Redundancy Creating by Mapping Process

Many FPGAs such as the Altera Stratix [6], the Xilinx Virtex [7]
and the Lattice XPGAs [10] are composed of dedicated blocks of logic
such as the fast carry logic, connected to LUTs as shown in Fig. 1 for
the Virtex and XPGA technologies. Each circuit adds bits A, B, C'i and
produces bits So and Co using the fast carry logic and, in the case of
the Xilinx Virtex in Fig. 1(a), the 4-input LUT is used to implement the
remaining XOR gate. This process occurs in synthesis tools which opt
(quite correctly) to utilize the fast carry logic rather than implement the
adder using the slower LUT hardware. These unused LUT inputs can
be used to implement the rc_mux as shown in Fig. 2, thereby increasing
cell functionality. For example, cell 3 can be used to implement either
A+ B or A — C using the select signal S.

This concept has been generalized in Fig. 3 for an M -input LUT cell
and a dedicated resource. Whilst the resource is an adder in this ex-
ample, Courtney [11] has demonstrated how the same approach can be
used for cyclic redundancy checker (CRC) circuits but using a flip-flop
as the dedicated resource. The key aim is to develop a technique which
most efficiently uses these cells to create the required multipliers.

1063-8210/04$20.00 © 2004 IEEE

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 10, OCTOBER 2004

Determine
function of
ded.resource

{

1
1
1
1
1
1
1
1
1
Determine LUT :
1
1
1
1
1
1
1
1
1

function in terms
of mux & No. of
select inputs

{d

Generate set
of possible
cells

d

SD encode the
coefficient

d

Group SSDs across
slots using 1 SSD
from each slot

8 &

:X

Generate pairs of
groups and SSDs
from prev. layer and
last marked layer

Set current layer to

last layer and set its

outputs as input to
the current layer

a

Check if grouping
functionality can be
shared

T

If layer contains odd
number of groups or
SSDs then mark for

later layers

Required
output?

Yes
Target FPGA
technology @
End
Fig. 4. RCM general design methodology.
TABLE 1
VIRTEX FUNCTIONALITY FOR 3 INPUTS (A, B, & C) AND CONTROL (S)
Symbol Operation
#1 #2
1 A+B A+C
2 A-B A-C
3 A+B A-C
4 B A+C
5 -B A-C
6 B A-C
7 -B A+C

III. RCM DESIGN METHOLOLOGY

The RCM design methodology (Fig. 4) involves two major steps.
The first step is to generate a full set of possible cell configurations
for the specific FPGA technology. This will depend on the number of
LUT inputs and the dedicated hardware resource. The second step is the
detection of terms that can be shared between coefficients. As signed
digit (SD) encoding was found to give the consistently best results,
the coefficients are SD encoded and the resulting shifted signed digits
(SSDs) then grouped to develop the tree structure for the final RCM
circuit. The process is finished when the required outputs are produced.
A prototype C++ program was developed that was able to go through
all the possibilities listed in Tables I and II and find all computable
combinations thereby allowing the best implementation to be detected.
This is described in more detail later.

A. Generation of FPGA Cell Definitions

This concept can be expanded beyond the list of cells given in Fig. 2,
by considering more possible combinational inputs, M and select lines,

1114

N, as given in Table I. The additional AND gate in the Xilinx Virtex
(Fig. 5) can be used to give direct control over the A input allowing
additional operations such as 0 and 2 A to be implemented and giving
the additional functions in Table II.

B. Development of RCM Circuits

The main objective of the mapping technique is to generate the RCM
structure with a minimal number of cells. This RCM structure (Fig. 6)
is formed by combining a number of data inputs, X, in this case two,
in a tree structure and producing a number of outputs, Y., in this case
one.

The design process is illustrated using a single-input, single-output
(SISO) example which multiplies an input X by four coefficients
a(0), a(1),a(2), and a(3) which is given in Table III. This process is
done in sequential fashion, so only one of the coefficients is required at
any one time and is termed a slot where a(0) is in slot 0, etc. The first
step is to convert the coefficients into a SD representation (Table IV).
In this representation, a + indicates an addition, a — means a
subtraction and a subscript has been added to signify that each of these
operate on the input data, X . This represents a different mapping than
straightforward string encoding [4] and is part of the design technique.

The next phase involves grouping these SSDs to generate the tree
structure which is influenced by the cell functionality. Groupings are
made such that there is only one SSD from each slot which equates to
the concept of selecting only one of the mux inputs to the circuits at
any one time. The SSDs operate on the same input data, X, as indicated
by the subscript in Table V. The focus is to combine columns together
based on the cell computations. For example, columns 2%, 2*, and 2°
can be mapped into cell 1 (in Fig. 7) which performs A+ B and A — C'
where A = 23 (+x),B = 21(—|—X), and C = 20(—1—)(). The number
within the cells in Fig. 7, refers to the cell functionality labeling given
in Tables I and II. The cell “0” covers SSDs in columns 2° and 27.
This gives the inputs to Layer 1 in Table V where the “X,,” indicates
a “don’t care” term and was generated because the cell output was 0.
This is used to reduce the number of states that the cell has to cover
in the next layer. The “2” cell with functionality of 12 in Table II, can
cover terms in columns 2° and 2°. Inputs to layer 2 are given in the
third part of Table V. Finally the “3”cell can cover terms in columns 2°
and 2° giving the multiplier structure shown in Fig. 7.

A 10-bit general-purpose multiplier with this specification would
have required nine cells, but only four are needed here which is the
same for the worse case KCM for a(2). Table VI compares a “general
purpose multiplier,” a “four coefficient multiplier” implemented using
a VHDL CASE statement to allow for optimization and the RCM.
The circuits were synthesised using Synplify Pro [12] for a Virtex
XCV300-4 PQ240. The reduction from design 1 to 2 shows the power
of the synthesis tools but the RCM results are better because Synplify
is unable to perform the optimization shown here.

A C++ software program was developed to perform the process just
described which takes as it’s inputs, the SD encoded coefficients and
the library of the cells given in Tables I and II and generates the RCM in
a number of formats including structural VHDL. The software avoids
an exhaustive search because of knowledge about the RCM. First, the
search is limited to a tree network which does not adversely affect the
quality of the resulting circuit. Second, the problem is trimmed at each
level because two groupings containing the same SSD cannot be com-
bined, thereby avoiding an exponential growth in the number of groups
to check. It only took a few seconds on a Pentium II1 300 MHz machine,
to derive the multiplier structure described earlier.

1115 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 10, OCTOBER 2004

TABLE 1I
VIRTEX 1/2 SLICE FUNCTIONALITY FOR 2 INPUTS (A & B) AND CONTROL (S1&S2)
Operation Operation Operation
#1 #2 #3 #4 #1 #2 #3 #4 #1 #2 #3 #4
8 A 0 2A A-B 27 B 2A -B A 46 B A A A-B
9 -A A B A-B 28 0 A B 2A 47 B A+B -A 0
10 0 2A -A A-B 29 0 -B 2A 48 0 A B A-B
11 B 2A 0 A-B 30 A 2A -B A-B 49 A A B A+B
12 A 0 A+B AB 31 B 2A -B 0 50 B A B 0
13 -A 0 B A-B 32 0 A B A+B 51 B A+B A A-B
14 0 2A B A-B 33 0 A -B A+B 52 -A A B 0
15 B 2A A A 34 A A+B A A-B 53 A 2A B A+B
16 2A A A+B 0 35 B 2A -B A-B 54 B A B A-B
17 0 A B A-B 36 0 2A B A+B 55 B A+B B A
18 0 A+B A A-B 37 0 2A -A A+B 56 B 2A -A A+B
19 B 2A A 0 38 A A+B -B A-B 57 A 2A -A A+B
20 2A A A+B AB 39 B A+B 0 AB 58 B 0 -A A-B
21 0 A A 2A 40 A 2A B A+B 59 A 2A B A-B
22 0 A+B B AB 41 0 2A B A+B 60 B 2A B A+B
23 B 2A A A-B 42 B A -A 0 61 A 2A B A+B
24 2A 0 A+B AB 43 B A+B A A 62 B 0 B A-B
25 0 A A A+B 44 0 A -A A-B 63 A A+B B A-B
26 A 2A -A A-B 45 -A A B 2A
41 /P LUT C [D:,’ edicated FOUR COEFFICIENTS FOR A 4 POINT DCT
i esource
9 2% 97 20 25 2% 23 92 o 0
S a® 502 1 0 0 0 0 0 1 0 1 0
c f CY XOR a(l) 473 0 1 1 1 0 1 1 0 0 1
B f i —‘)Di_ a2 42 1 0 0 1 0 1 0 1 1 0
A A E/ S, a3 362 0 1 0 1 1 0 1 0 1 0
B 4& TABLE 1V
QY.MUX. SD RECODING OF COEFFICIENTS
c, 9 28 27 20 25 2F 3 pZ ol 0
Fig. 5. Additional Virtex feature for LUT setup with M = 4, N = 3. a(0) -502 - +x +x
a(l) 473 +x -~ -x +x
a(2) -426 -X +x -X -X -X
X a(3) 362 +x -X -X +x +x
TABLE V
INPUTS TO VARIOUS LAYERS FOR 4 CELL EXAMPLE
X:
§ 20 2% 27 2% 22 2t 23 22 2! 20 g
X +x +x 3
Inputs ~ ~ 4
o to layer
0 -X +x X -X -X 5
Fig. 6. RCM example structure. +x X -X +x +x 5
IV. PRACTICAL APPLICATION OF RCM TECHNIQUE l ~ Xo +H 3
nputs
A. Application to a SISO Application tolayer X i a3
. . . 1 - - 3
An FPGA-based 2-D DCT implementation (Fig. 8) was explored +X v +l 3
based on an existing intellectual property (IP) core [13] where the DCT X v b
coefficients are given by
k - + 2
a(k) = 2Cos ¥ and Inputs 5 42
to layer - - 2
. 2 k wk 2 E :
b(k) =4/ _/_ra(k)(_l) Cos <2N) 5 + 2

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 10, OCTOBER 2004

Fig. 7. RCM implementation using only four cells.
TABLE VI
COMPARISON OF A 12 X 16 BIT MULTIPLIER
. Area Speed
No. Description
P (LUTs) (MHz)
1 General purpose multiplier 333 29.1
2 Four coefficient multiplier 193 27.1
3 RCM 86 43.4

First stage Second stage
Fig. 8. DCT Core Block.
.7)L(> First 71& Second | 4 | Transform .| First 71& second | Y
o | stage stage circuitry ”| stage stage [1.°
> ¥ i tad 8
16 16 %
Second
1D DCT

Fig. 9. First configuration.

Two configurations were investigated. The first (Fig. 9) represents a
modular design approach. As eight samples are required before any
data is produced, the previous seven output samples are ignored and
this means that the second stage is only used once every eight cycles in
the implementation. Thus, it is possible to time-share the second stage
which represents the second design. Table VII gives the performance
comparison between versions using the RCM and Xilinx’s general-pur-
pose multiplier [14].

B. Application to a SIMO Block

In a SIMO system, an additional optimization is possible by sharing
common subexpressions used by different outputs. This has been

1116

TABLE VII
DCT PERFORMANCE ON A XILINX VIRTEX XVC50 FPGA
o General-purpose RCM
Description Area Speed Area Speed
(LUTs) (MHz) (LUTs) (MHz)
DCT (Fig. 9) 734 14.8 485 19.4
DCT second stage, time-
shared 670 15.5 435 21.3
TABLE VIII
COEFFICIENTS REQUIRED AT THE DIFFERENT OUTPUTS
215 2I4 21 2I, 21] 2Il) 2‘) 2 27 2(; 25 ZJ 2,: 21 2I 20
a) 0 0 0 0 0 o0 1 1 I 1 1 0 0 0 0 0
a) 0 0O 0O O O 1 0 0 1 0 0 1 1 1 1 0
b)) 1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0
b(1) 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0
c(0) 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1
el) 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0

Fig. 10.

Example of a multiplier block used in the filter.

termed multiplier-less multiplier blocks [2], [15] and the best reduc-
tions [1]-[3], [5], [15], [16] were found where common subexpressions
were shared between a group of KCMs, so this approach is adopted
here.

The outputs Y, are generated as shown by (1) where X is the input,
vector Y, is the output, S selects the slot and a(S),b(S), and ¢(S)
are the coefficients. This forms part of the poly-phase filter example.
Table VIII gives three sets of two coefficients that are used and the cir-
cuit is shown in Fig. 10. The design goal here is not only to share subex-
pressions within taps (as in the previous section) but to share terms be-
tween taps

Y1 a(s)
Yol =05 | X (@)
Ys c(S)

As before, the coefficients are SD encoded (Table IX) and the map-
ping process carried out starting with grouping of SSD’s in the coeffi-
cients ¢(0) and ¢(1) as shown. The sub-expression sharing leads to four
groupings two of which, 2 and 3, are identified in other coefficients.
This leaves a pattern in a(0) and a(1) which is covered by grouping 1
and a pattern in ¢(0) which is covered by grouping 4. The uncovered

1117
TABLE IX
SD ENCODED COEFFICIENTS AND GROUPINGS
214 2I‘\ 2I2 2II 2\0 2') 2R 27 2& 25 21 21 22 21 20 2»1
afl) +x 53 |
a(l) +x Mt [= o x|
" . Be= =
) X ° X
e(0) +x X +x X
el) +x) X
afl) +1 0
afl) +1 t+
Layer b(0) x +2 +
! b(I) X +3 =X
c(0) +3 + +4
c(l) +3 +3 0
a(0) +
a(l) +
Layer b(0) ~ +5
T b X *s
c(® +5 +s
el) + 0

Register High ou\t/pUt rate
Fig. 11. Transformed poly-phase design.
TABLE X
PERFORMANCE OF FOUR DESIGN APPROACHES
Clock Rate Throughput Area TR/Area
(MHz) (MSample/s) (LUTs/Slices) (Samples/s/LUT)
General-purpose 26.2 26.2 (5599/4123) 4500
RCM 280 28.0 (1661/1583) 16857
Hybrid ROM/adder 373 28.0* (2199/1528) 12733
CoreGen (Bit serial DA) 44-5 2.6%* (416/235) 6250

* Produces a result every 4 cycles but operate 3 block in parallel
** Produces a result after 17 clock cycles

bits in 5(0) and b(1) are considered in a later layer. These groupings
form the first layer of cells in Fig. 10. The layer 1 groupings are made in
Table IX. The shaded areas indicate that some groupings can be made
across SSDs that do not have same input source. This is because cell 5
in Fig. 10, has a mux input which can accommodate this. Columns 2°
and 2* in ¢(0) and ¢(1) are grouped together in cell 6 and columns 2°
and 2! in a(0) and a(1) are grouped together in cell 7. The term in 2°
in ¢(0) and ¢(1) is delayed to the second layer as shown.

The circuitin Fig. 10 is one component of a poly-phase filter (Fig. 11)
that was designed using this technique. A full poly-phase filter imple-
mentation [17] was implemented that had an interpolation of 1:3 and
a filter length of 55. This design was used as not all the filter taps are
used in the computation of each output sample, therefore a number of
taps time-share a resource.

Four implementations were investigated: a general-purpose design
synthesised from VHDL using Synplify [12]; a design using hybrid
ROM/adder KCM design blocks based on Kean [18] that the authors
believe is very efficient; a bit serial DA implementation from Xilinx’s
CoreGen software and; the RCM-based design. The middle two de-
signs were chosen as they were ROM-based. Table X gives perfor-
mance figures for each of the designs and shows that the RCM imple-

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 10, OCTOBER 2004

mentation results in improved area and speed. As multipliers dominate
filter area, the gain has been substantial.

V. CONCLUSION

A design methodology for developing RCMs that operate on a lim-
ited number of coefficient inputs, has been presented. Spare LUT ca-
pacity which naturally results from using the dedicated fast adder cir-
cuitry, is used to implement reconfigurable multiplexers. Area savings
and speed improvement are achieved for a full 2-D DCT and a poly-
phase filter and the technique can be applied to a range of other trans-
formations such as the fast Fourier transform (FFT) and Wavelet trans-
forms.

The technique has been demonstrated for a Xilinx Virtex FPGA but
it is possible to develop a generic library for a range of FPGA tech-
nologies as many FPGA technologies have the LUT/dedicated resource
combination. Exploitation of detailed features of specific FPGA tech-
nologies, allows much greater flexibility in the library.

With the current Xilinx Virtex II FPGA architecture, it could be ar-
gued that the on-board multipliers could be used to implement these
functions. However, this technique can be still be applied to the LUT
and adder resource and leaving the on-board multiplier for other parts
of the complex system, for in many cases, functions such as the DCT
and poly-phase filter form only part of a complex system.

REFERENCES

[11 A. Yurdakul and G. Dundar, “Multiplierless realization of linear DSP
transforms by using common two-term expressions,” J. VLSI Signal Pro-
cessing, no. 22, pp. 163-172, 1999.

[2] A. G. Dempster and M. D. Macleod, “Use of minimum-adder multiplier
blocks in FIR digital filters,” IEEE Trans. Circuits Syst. 11, vol. 42, pp.
569-577, Sept. 1995.

[3] G.R. Goslin, “Using Xilinx FPGAs to design custom digital signal pro-
cessing devices,” in Proc. DSPX., Jan. 1995, pp. 565-604.

[4] A.R. Omondi, Computer Arithmetic Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1994.

[5]1 B. Feher, “Efficient synthesis of distributed vector multipliers,” in Proc.
19th Symp. Euromicro Microprocessing Microprogramming, 1993, pp.
345-350.

[6] Stratix Device Handbook. Altera Corp., San Jose, CA, USA. [Online].
Available: http://www.altera.com

[7]1 Virtex-E 1.8 V Field Programmable Gate Array (2002, Nov.). [Online].
Available: www.xilinx.com

[8] AN279 Digital Downconverter (DDC) Reference Design (2003, Apr.).
[Online]. Available: http://www.altera.com/products/ip/dsp

[9] N. Shirazi, W. Luk, and P. Cheung, “Automating production of run-time

reconfigurable designs,” in Proc. IEEE Symp. FCCM, Apr. 1998, pp.

147-156.

IspXPGA Data Sheet [Online]. Available: http://www.latticesemi.com/

products/fpga/xpga/index.cfm

T. Courtney, R. Turner, and R. Woods, “Mapping multi-polynomial par-

allel CRC circuits to virtex FPGA using embedded MUXes,” in Pro-

clEEE Symp. FCCM, Apr. 2002, pp. 318-319.

Synplify Pro: The Industry #1 FPGA Solution (2003). [Online]. Avail-

able: www.synpilicity.com

[13] J. Hunter and J. V. McCanny, “Discrete Cosine transform generator for

VLSI synthesis,” in IEEE ICASSP, vol. 5, 1998, pp. 2997-3000.

Variable Parallel Virtex Multiplier (1999, Oct.). [Online].

Available: http://www.xilinx.com/ipcenter/catalog/logi-

core/docs/mult_vgen_v1_0.pdf

D. Li, “Minmum number of adders for implementing a multiplier and

its application to the design of multiplierless digital filters,” IEEE Trans.

on Circuits and Systems I, vol. 42, pp. 451-460, July 1995.

Q. Znao and Y. Tadokoro, “A simple design of FIR filters with

power-of-two coefficients,” IEEE Trans. on Circuits and Systems, vol.

35, no. 5, pp. 566-570, May 1988.

R. H. Turner, R. Woods, and T. Courtney, “Multiplier-less realization

of a poly-phase filter using LUT-based FPGAs,” in Proc. on Field Pro-

grammable Logic, Sept. 2002.

[18] T.Kean, B. New, and B. Slous, “A fast constant coefficient multiplier for

the XC6200,” in Field Programmable Logic and Applications, Darm-
stadt, 1996, pp. 230-241. Springer LNCS 1142.

[10]

[11]

(12]

[14]

[15]

[16]

(17]

