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Thermodynamics: A Dynamical Systems Approach—W. M. Haddad,

V. S. Chellaboina, and S. Nersesov (Princeton, NJ: Princeton Univ.
Press, Princeton Series in Applied Mathematics, 2005). Reviewed by
Jan C. Willems

I. INTRODUCTION

Thermodynamics, the science of heat and work and hot and cold,
puts forward a number of principles that have far reaching conse-
quences in physics and engineering. Central to thermodynamics are
two laws. The first law states that energy is conserved. Energy can be
transformed from one form to another, but it cannot be destroyed nor
can it be created. There are many equivalent statements of the second
law. The most common one is that the increase of entropy is larger
than the heat delivered to the system divided by the temperature.

These laws bring good news and bad news. The first law is a com-
forting thought in an economy of ever increasing energy bills. The
second law is, for sure, not a laughing matter. One consequence is that
we cannot let a physical system interact with its environment and make
it go through a time history that brings both the system and the envi-
ronment in the same condition at the end as they had in the beginning.
Another consequence of the second law is that in a system that does
not exchange heat with its environment, entropy is forever increasing.
Accordingly, in the words of Kelvin, the universe is destined to come
to a state of eternal rest. This consequence of the second law has come
to be known as the heat death of the universe.

The book under review starts off with a number of quotes about ther-
modynamics. One is by Einstein:

Thermodynamics is the only physical theory of a universal na-
ture of which I am convinced that it will never be overthrown.

Another is by Eddington:

The law that entropy increases—the second law of thermody-
namics—holds, I think, the supreme position among the laws of
Nature.

From an engineering point of view, the laws of thermodynamics have
far reaching consequences. For example, it is not possible to simply
transport heat from one place to another. We cannot achieve refriger-
ation by cooling one room and heating another. This transformation,
unfortunately, requires intervention of another energy source, at home
typically electricity. Another consequence is that, notwithstanding the
law of conservation of energy, not all forms of energy are equally valu-
able, with heat being the “lowest” form. As a result, it is unavoidable
that electrical power generation stations that burn oil or gas or coal or
nuclear fuel to produce electrical power, must also produce waste in
the form of heat. They usually dump this heat into the environment,
often causing unpleasant side effects for fauna and flora. The inability
to transform also this waste heat into electrical energy is not a matter
of unwillingness or of inefficiency, but an unavoidable consequence of
the laws of thermodynamics.

From the pedagogical point of view, thermodynamics is a disaster.
As the authors rightly state in the introduction, many aspects are “rid-
dled with inconsistencies.” They quote V. I. Arnold, who humbly con-
cedes that “every mathematician knows it is impossible to understand
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an elementary course in thermodynamics.” Nobody has eulogized this
confusion more colorfully than the late Clifford Truesdell. On page 6
of his book The Tragicomical History of Thermodynamics 1822—1854
(New York: Springer Verlag, 1980), he calls thermodynamics “a dismal
swamp of obscurity.” Elsewhere, Truesdell, in despair of trying to make
sense of the writings of some local heros as De Groot, Mazur, Casimir,
and Prigogine, suspects that there is “something rotten in the (thermo-
dynamic) state of the Low Countries” (see page 134 of Rational Ther-
modynamics, New York: McGraw-Hill, 1969).

The following seem to be stumbling blocks.

i) The notion of entropy that enters in the second law. It is not a
directly measurable physical quantity, contrary to temperature
or pressure or volume. It somehow needs to be deduced from the
laws of the system. Given the physical laws of a system, what is
it then equal to? What is it a function of, i.e., what is its domain?
Is it uniquely defined?

ii) The strange use of derivatives, with differentiation often applied
to functions whose domain is unspecified, or with respect to vari-
ables that do not belong to the domain. As Truesdell notes, in
thermodynamics even derivatives look different, and statements

like
(SI‘E‘VQ _ 85
w -t <av) .

are not uncommon. Such notation poses challenges, especially
to eager students who have just passed a course on “Functions
of Many Variables.”

iii) The many vaguely defined terms and functions, as “entropy,”
“enthalpy,” “Gibbs free energy,” “Helmholtz free energy,” “ex-
tensive,” and “intensive,” “reversible,” and “irreversible,” etc.

iv) The tradition of invoking probability theory at random moments
in an argumentation. Once one is thoroughly confused, one is
invariably presented with a justification based on statistical me-
chanics. This in keeping with the basic debating principle that
the most effective way of “explaining” something that is badly
understood is by invoking something that is even worse under-
stood. When the going gets tough, the tough get going.

v) The penchant for the big idea. The second law is often called
the “most metaphysical of all physical laws.” This has allowed
thermodynamics to be used as support by the left as well as by
the right, by believers as well as by nonbelievers, by creationists
as well as by evolution theorists, and, I suspect, that intelligent
designers will also find arguments in thermodynamics for their
point of view. And when Shannon! chose to use the term “en-
tropy” for “amount of information,” this was like pouring oil on
Maxwell’s demon’s eternal fire.

The book under review uses a rigorous mathematical format to
thermodynamics. The logical line is refreshingly clear. The basic
setting is the input/state/output formulation of dynamical systems
theory, combined with interconnection laws among subsystems (called

My greatest concern was what to call it. I thought of calling it “informa-
tion,” but the word was overly used, so I decided to call it “uncertainty.” John
von Neumann had a better idea, he told me,*You should call it entropy, for two
reasons. In the first place, your uncertainty function goes by that name in statis-
tical mechanics. In the second place, and more important, nobody knows what
entropy really is, so in a debate you will always have the advantage.” (Claude
Shannon, as quoted in M. Tribus and E. C. Mclrvine, Energy and Information,
Scientific American, 224, Sep. 1971, pp. 178-184.)

0018-9286/$20.00 © 2006 IEEE



1218

compartments). The construction of the internal energy and the entropy
is solidly founded on the theory of (cyclo-)dissipative systems and
storage functions. Stability results invariably use rigorous Lyapunov
theory arguments. Throughout, a definition/lemma/proposition/the-
orem/proof/corollary format is adopted. No statistical arguments are
used. The difficulties referred to above are absent.

There have been previous attempts to give thermodynamics a solid
mathematical underpinning. One notable program that set this as the
goal is the work by the school of Noll, Coleman, Gurtin, et al. docu-
mented in a series of publications in the journal Archive for Rational
Mechanics and Analysis in the 1960s and 1970s (see also Truesdell’s
1969 book referred to above). The present book is similar in philos-
ophy. However, since it is based on input/state/output representations
of dynamical systems, it has altogether a different flavor.

II. CONTENTS

The book consists of eight chapters. Chapter 1, the introduction, sets
the stage. It contains a historical introduction which discusses clas-
sical thermodynamics as laid out through the work of Carnot, Clau-
sius, Kelvin, Planck, Gibbs, and Carathéodory. The authors are, right-
fully so, very sceptical of the coherence of classical thermodynamics.
They then present their central thesis: that a state space formulation
of dynamics, combined with interconnected nonlinear compartmental
systems ensures a consistent model for heat and energy flow.

Chapter 2 is a mathematical introduction. The nomenclature around
dynamical systems (“flows”) of the form (d/dt)z(t) = w(z(t)) is
given. Of special interest are state spaces R?. that are non-negative or-
thants of finite dimensional vector spaces. Various Lyapunov stability
theorems are proven. The authors then turn to concepts surrounding
input/state/output systems. This is followed by a number of abstract
concepts, as reversibility and recoverability. These concepts pertain to
general dynamical flows and appear to be original. In later chapters,
these notions are used in an effective way in the context of thermody-
namics. They finally turn to volume preserving flows and Poincaré’s
recurrence theorem. All this is introduced on a very general level (the
state spaces, for example, are assumed to be a Banach space, but the dy-
namics are fully nonlinear). The notation is somewhat heavy, and many
of the definitions are rather involved. It is not an easy chapter to read.
It is not uncommon for applied mathematics books to get the mathe-
matical background out of the way before proceeding with the main
subject matter. However, it is, in my opinion, never a reader-friendly
idea to frontload a book with a chapter devoted to mathematical con-
cepts and notation.

The third chapter, entitled A Systems Foundation for Thermody-
namics, is the core of the monograph. In it, the basic mechanism how
thermodynamic subsystems are viewed to interact among each other
and with the environment is explained. This setup is shown in the
figure below.

/
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The system is composed of a (finite) number of interacting sub-
systems, called compartments: G, ..., Gy, ..., G, ..., Gq. The sub-
system (; receives heat from the environment at rate S; (the sign de-
termines whether heat flows in or out). Further, the system G; receives
heat from the system G; at arate ;; > 0, and dissipates heat at a rate
a;; > 0. The subsystem G; has internal energy E; > 0. It is assumed
that this energy E; € Ry is the state the ith compartment, leading to
the overall state £ = (E4,...,E;, ..., Ej,..., Ey). The heat flow
rates o;; are all assumed to be functions of the full state E. This leads
to the following system of differential equations describing the inter-
connected system.

dE Z (J'l‘j(E)— Z J]’i(E)—(TZ'i(E)—l—Si.

dt /. L
J=1,3#1 J=1,5#

These equations are coupled, because E involves all the subsystem en-
ergies L.

I was a little bit puzzled by some elements in this basic model.
For example, I would have simply replaced S; by S; — o;;. The fact
that the authors have both terms separately in the equations is used in
their stability proofs. However, I feel that it is a bit artificial from the
physical point of view. It may also have to do with their input/output
point of view, since the separation allows to think of S; as an input,
and of o;; as an output. I will come back to this point in Subsec-
tion 3-D. In the same vein, I did not appreciate the need to introduce
both ¢;; and o j;. It is unclear to me why, if heat flows between the com-
partments ¢ and j, we should see this as the difference of a non-neg-
ative flow from ¢ to j minus a non-negative flow from j to i. An-
other element which I found a bit confusing is the fact that the heat
ﬂows o;; were assumed to be a function of the whole state vector

= (Fy,...,Ei,...,E;,..., E;). 1 realize that this gains gener-
allty, but it seems to me that true compartmental thinking would have
stuck with o;;( E;, E;). But, all by all, these shortcomings are minor,
and the model used is in the end quite convincing.

After having set up their model, the authors prove that the inter-
connected system is conservative with storage function ) ;_, F; and
supply rate .7 (S; — 04;(E)), meaning that along solutions of the
dynamical equations, there holds

0ii(E)).

ZE S5, -

=1 =1

Under some additional reasonable assumptions (called “axioms” in
the book) on the o;;’s, it is further proven that for cyclic processes:
E(tinitial) = E(tterminal ), there holds

Lorminal _2
S ‘S‘Z

2 Fre

Here, c is an arbitrary positive constant that expresses the fact that en-
ergy is only defined up to an additive constant. Next, the theory of
(cyclo-)dissipative systems is used to show the existence of a state func-
tionE — &(FE), the entropy function, satisfying

"“dt< 0.
t

initial

>Z Ean

Subsequently, it is proven, by considering the available and the required
entropy, and using some intricate clever analysis, that the above in-
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equality defines the entropy uniquely up to an additive constant, and
that it is given by

q
S(E)=) &i(E)
=1

with

Gl(El) =1n(E; + C).

It is then concluded that E; + ¢ is the temperature of the ith compart-
ment and, hence, that

d6;

Ti=——.
dE;

The authors also introduce a new notion related to entropy, called the
ectropy. This concept is original to this book and is a true dual to en-
tropy in the sense that entropy increases in an adiabatic (no heat ex-
change with the environment) regime if and only if ectropy decreases
in that regime. Unlike entropy, however, ectropy seems to be a nat-
ural candidate (quadratic) Lyapunov function for analyzing stability
and obtaining energy equipartition of thermodynamic systems using
Lyapunov and invariant set theory.

In the remainder of the chapter, the authors demonstrate that their
thermodynamic system has the desired qualitative properties. They
prove that both the entropy and the ectropy are continuous (which
is not automatic, and the proof makes very effective use of systems
thinking, since it uses local controllability). They prove stability and
asymptotic energy equipartition (nice!), and discuss irreversibility
and the arrow of time. An interesting result here is that their system
satisfies Gibbs’ principle, which states that in order for a state to be
an equilibrium in an isolated system, it is necessary and sufficient that
motions that do not alter the energy should not increase the entropy.
Finally, they discuss the feedback interconnection of two thermody-
namic systems. The chapter ends with an analysis of the monotonicity
of the energy function during transient motions.

The fourth chapter of the book is a refinement of the third. In the in-
terconnected system of the third chapter, the energies of the subsystems
are equal to their temperatures. In the fourth chapter, this assumption is
relaxed, and it is assumed that the energies are proportional to the tem-
peratures, the proportionality constant being equal to the specific heat
of the subsystem. An analysis, similar to the one performed in chapter
3, now leads to expressions for the entropy of the form

q
S(E)=) 6&i(Ei)
=1

with

6,‘(E,‘) = /i 111(,5",;E,j =+ C).

with the 3; the reciprocal of the specific heat of the ith compartment.
This structure is then applied to a closed system in which each of the in-
dividual compartments consists of an ideal gas separated by diathermal
walls (walls through which energy can, but matter cannot diffuse). They
then recover the essential features of Boltzmann thermodynamics in a
deterministic setting.

Until now, purely heat transfer phenomena were studied. Work (e.g.,
mechanical or electrical work) did not enter the analysis. In Chapter 5,
the compartmental system of chapter 3 is generalized to incorporate
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mechanical work in the form of changes in the volume of each of the
compartments (see the figure below).

The equations now become slightly more complex, and involve, in
addition to differential equations for the change of energy, also differ-
ential equations for the change of volume of each of the compartments.
This means that the basic equation of Chapter 3 is now complemented
with the equation

d dwi(E7‘/r) - S'Lui

Sy Dwn e V) T Pwiyy
(]t‘/’l ‘L

E;+c

where d.,; denotes the rate of work done by the ith subsystem on the
environment, and Sy the rate of work done by the environment on the
ith subsystem. This leads to classical expression for the rate of work
done on the 7th subsystem equal to P;(d/dt)V;, with the pressure equal
to (E; + ¢/V;). They prove conservation of energy, the existence of an
internal energy function, the existence of a unique entropy function,
and the second law. The entropy is now, up to a constant, given by

S(E.V)=) 6&i(E.V)

with

S,(E,Vi)=(E;, +c)+InV,.

The presence of both heat transfer as well as work done on and by
the environment of the thermodynamic system now allows to investi-
gate the full range of thermodynamic phenomena, as far as the limita-
tions in transforming heat into work are concerned. In particular, they
prove the equivalence of the Kelvin—Planck statement and the Clausius
statement of the second law. The Kelvin—Planck formulation states that
a process that completely transforms heat into work is impossible. The
Clausius formulation states that a process whose only final result is
to transport heat from a lower to a higher temperature is impossible.
The equivalence of these statements are proven through the analysis
of the efficiency of a Carnot cycle, that is, a cyclic process consisting
of four regimes: Beginning, from an initial state, with an adiabatic (no
heat transfer with the environment) regime, followed by an isothermal
(constant temperature) one, followed by again an adiabatic one, and
then again an isothermal one, bringing the system back to the initial
state.

In the next chapter, the system of Chapter 3 is analyzed under the
assumption that the dynamical equations are linear, leading to the dif-
ferential equations

d

—FE=WE-DE+S

dt +
with E € R% the vector of energy states, and S € R the vector
of heat supplies, W € R?*? the matrix expressing the rate of heat
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transfer between the compartments, and D € R7*? the diagonal matrix
expressing the rate of heat dissipation. The analysis now leads to the
theory of non-negative matrices, and special attention is paid to the case
of strong coupling between the subsystems, i.e., when ¢;; — oo in an
appropriate sense.

In Chapter 7, the system of Chapter 3 is generalized to the case in
which there are an infinite number of subsystems, parameterized by a
spatial variable » € 20, with ¥ a compact connected subset of a finite
dimensional real vector space with a smooth boundary. This leads to
continuum thermodynamics, partial differential operators, and integral
expressions over ‘U for the energy and entropy functions.

Chapter 8 contains the conclusions. It is of interest to list the main
conclusions the authors draw from their work. In the context of the
model from Chapter 3, they reiterate the main postulates that went into
their model

i) if the energies in connected subsystems are equal, energy ex-
change between these subsystems is not possible;

ii) energy flows from subsystems with higher energy content to sub-

systems with lower energy content.

The following conclusions were arrived at, and proven, using a rig-
orous theorem/proof format.

i) Conservation of energy.

ii) The energy in an isolated system is constant.

iii) In an adiabatic regime, the entropy is nondecreasing.

iv) Therefore, tends to a maximum.

v) In an isolated system, the energy tends to equipartition.

vi) Although the total energy in an adiabatic regime is conserved,

the usable energy is diffused.
vii) A state is an equilibrium state of an isolated system if and only
if states of equal energy do not have a larger entropy.
viii) The entropy corresponding to zero temperature can be taken to
be zero.
These conclusions are nicely summarized as follows.

* Ist Law: You cannot win, you can only break even.

* 2nd Law: You can break even only at absolute zero.

* 3rd Law: You cannot reach absolute zero.

III. REMARKS

This book review gives me an occasion to put forward a few personal
views on systems theory and modeling of physical systems on the one
hand, and dissipative systems and its relation to thermodynamics on
the other hand.

A. The Second Law

The second law of thermodynamics is often presented as some sort
of mystery. Surely, it is a deep law, with far reaching consequences,
but it is not an enigma. And it certainly is of no help to introduce the
presumed probabilistic behavior of the micromicroworld in order to
explain things which in the end hold in our deterministic macroscopic
world. To the contrary, also here, probability is bound to obfuscate the
situation.

My own favorite example to illustrate the fact that there is something
in nature beyond conservation of energy, is the exceedingly well-known
diffusion equation model for heat transport in a uniform bar (see the
figure below).

q(x,t)

!
__

e
T(x,t)
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Using Fourier’s law of heat conduction, or simple intuition, it is
readily seen that a reasonable model for the relation between the rate
of heat exchanged with the environment (z is space, ¢ is time), g(x, t)
(chosen > 0 when heat is absorbed by the bar), and the temperature,
T'(x,t),is given by the PDE

0 o2
P 07T =7 O?T +4q
where p is (proportional to) the specific heat coefficient of the material,
and v the heat diffusion coefficient. Once we accept this equation as
a description of reality, we can quickly arrive at a statement like the
second law, as follows.

Assume that the length of the bar is L, that the temperature at the
ends is fixed to 1y, and there is no heat transport at the ends. This leads
to the boundary conditions

g g
aT(-,O) = ET(L) =0.
Assume that the units have been chosen suchthatp = 1,y =1, L = 1.

It is easily seen that for all (T, ¢) : R x [0, 1] — R+ X R that satisfy

the PDE and boundary conditions, there holds

T(-,0)=T(,L)=To,

d 1 1
), T(x,t)dx = /U q(x,t)der.
The right-hand side fol g(x,t) dx is the power delivered to the bar at
time ¢. Therefore, fol (T(x,t)dx satisfies the requirement to be the
stored energy. It is readily shown that it is, up to an additive con-
stant, the unique time function whose derivative along solutions equals
fol q(=,t) dx. Therefore, it is the stored energy.

It requires only alittle bit more effort to show that (7', ¢) also satisfies

1 1 2
4 InT(x,t)dx :/ < L T(:v,f)) dx
0

dt J, T(x,t) Oz
Yg(a.t)
+ dx.
| s

Where

1

d b g(a,t)
— InT(x,t)de > :
dt /, n il ) de 2 /o T(x,t)

dax.

Therefore, fo] InT'(x, t)dx satisfies the requirement to be the entropy.
It can also be shown that it is, up to an additive constant, the unique
function whose time derivative is > | 01 (¢(x,t)/T(x,t))dx. Therefore
fol In T(x, t)dz must be the entropy.

Now, assume that we take the heated bar through a tortuous history
starting at time tipitial in a temperature distribution T'(-, tinitial)
and ending at time tterminal > tinitial in the same temperature
distribution T'(-, tterminal) = Z'(*, tinitial ). During the time interval
[tinitial> tterminal], all sorts of things could happen. At some time ¢
and at some place x along the bar, ¢(x, t) could be positive, at another
place and the same time it could be negative, at another time and the
same place it could be zero, etc. But, whatever happens, there will hold

tterminal 1
/ </ q(;v,t)da:) dt=0
¢ 0

initial
and
tterminal 1 .t
/ </ ,‘f(*’ )d;r> dt < 0.
tinitial 0 T(I’t)

Now, it is easy to see that these two relations combined imply that

MaXze[0,1],t€ initialstrerminal] {T(x,t)|q(x,t) > 0}
> Hlinme[OJ]‘te[f’init,inl=ftm-minal]{T(;lj'/ t) | q(x, t) < 0}‘
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This is Clausius’ version of the second law. It is appealing since it does
not involve the entropy.

The equality
tterminal 1
/ </ q(x, t)daz) dt=0
t 0

initial

states that the net effect of the (7', ¢) history is to transport exactly the
same amount of heat from places and times where it is delivered by
the environment to the bar to places and times where it is delivered
by the bar to the environment. Energy, heat in this example, is merely
redistributed. However, the inequality

MaXze[0,1],tE tinitialstrerminall {T(x,t)|q(x,t) > 0}
2 Ininre[ovl]vte[tinitial)tterminal]{T(I7t) | q(x.t) <0}

cautions that the coldest point where heat flows into the bar cannot have
a higher temperature that the hottest point where heat flows out of the
bar. In other words, the bar cannot be used to transport heat from cold
to hot.

B. Dissipative Systems

The book is basically concerned with rather concrete physical sys-
tems, say interacting gasses or materials, or interconnected systems
with simple subsystems and specific interactions. In these situations,
the authors show how to construct the internal energy and the entropy
uniquely. However, one of the main messages of thermodynamics is its
generality: The laws apply just as well to something like a simple ideal
gas or a uniform material, as to a complicated combination of elec-
trical apparatus, mechanical devices, thermal components, and chem-
ical reactions, as to the efficiency of a power station involving burners,
boilers, turbines, condensers, generators, etc. Perhaps an abstract dis-
cussion in terms of “blackboxes” could have helped in bringing out this
generality.

Consider, as an abstract view, the situation described in the following
figure.

Q,,T)
(Q,,T,) —™
L4 Thermodynamic w
thermal side ° System [ .
work side

Q.,T.

This thermodynamic system has two sides. On the heat side, there are
many terminals (for simplicity, we assume a finite number, n, of such
terminals). Along the ith such terminal, heat is supplied to the thermo-
dynamic system at a rate (); with temperature 7, and at the work ter-
minal, work is performed at a rate . The arrows on the heat and work
terminals indicate the positive direction of the heat flow: heat flow is
counted positive if it flows from the environment into the system. Work
is counted positive when it flows out of the system into the environment.
Consequently, at any time, any of the (J;’s or the W could be positive,
negative, or zero. These arrows have nothing to do with inputs and out-
puts, as they are understood in systems theory. The chosen convention
stems from the fact that one likes to think of a thermodynamic engine
as a machine that transforms heat into work. For example, a plant that
burns coal to boil water into steam under pressure that spins a turbine
that drives an electric generator that produces electrical power. How-
ever, in a typical situation such an engine also has cooling terminals,
where the heat flows out. In fact, thermodynamics obliges heat to flow
out at some places.

1221

The heat terminals could be places where an exothermal chemical
reaction takes place, or where heat is supplied by transporting mass in
and out, or where heat supplied through a heating coil, etc. The impor-
tant assumption is that heat is always supplied at a particular temper-
ature. It seems to be a physical law that heat flow goes along with a
temperature. There cannot be one without the other.

A typical thermodynamic engine will also have many work termi-
nals, where work is done in the form of mechanical or electrical work,
etc. However, in order to formulate the first and second law of thermo-
dynamics, we do not need to distinguish between the different work
terminals, and so, for simplicity, we have lumped them all into one.
This lumping cannot be done on the thermal side, because of the re-
quired pairing of heat flow with temperature.

The internal dynamics of the thermodynamic system result in the
fact that only a certain family of trajectories

tER— (W), Q1(1), Tu(t), Q2(), To(t), ..., Qu(t), Tu(t))
ERxX (RxRy)"

is compatible with the laws of the engine. The totality of all such
time trajectories is called the behavior of the engine. We denote it by
Bihermodynamic-

It may not be a sinecure to come up with a representation of
Bihermodynamic in the form of, say, a system of differential equations.
But the laws of thermodynamics allow us to make some universal
statements about this behavior. Whatever the internal mechanism of
the engine that leads to Bihermodynamic 18, it will have to satisfy certain
universal restrictions. Otherwise, the dynamics that led to the behavior
are a physical impossibility. These restrictions are of course, the first
and second law of thermodynamics. However, it is not a trivial matter
how to formulate them. As is often the case in mathematics, one can
formulate a number of versions of these laws, versions that can be
shown to be more or less equivalent under certain reasonable, but not
compelling, conditions.

In order to articulate these difficulties, it is best to backtrack even
further, to the context of dissipative and conservative systems.

Consider the system shown in the figure below.

Dissipative -
System rate of supply
absorbed

Assume that it exchanges a real valued quantity with its environment,
at a rate s, counted positive when it flows into the system. This quan-
tity is called the supply rate. The laws of the system allow a family of
possible trajectories s : R — R, expressing how the system exchanges
supply with its environment. Denote the set of all trajectories that are
compatible with the laws of the system by 5. We also assume that the
laws of the system do not change in time, i.e., that the system is time-in-
variant, formally that s(-) € B implies s(- + t) € Bforallt € R.

When would we wish to call B dissipative ? The answer is not evident:
either we may want to impose restrictions directly on the behavior 5,
or we may want to postulate the existence of a storage (we will soon
explain what we mean by a storage), or something else. What restriction
does dissipativeness impose on 37 A logical definition is obtained by
putting restrictions on the periodic responses (only). Thus, we arrive
at the following definition. 1 is said to be dissipative if s € B and s
periodic imply

/OT s(t)dt > 0,
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where T is the period. It is said to be conservative if instead

.
/ s(t)dt = 0.
J0

The interpretation of the inequality is clear: in a dissipative system no
supply can ever be gained in a cyclic motion. In a conservative system,
the account is balanced: all the supply that went in, came out.

We now turn to the storage. This is defined as follows. Start from
the behavior B. Associate with it an extended behavior Bextended cOn-
sisting of a time-invariant family of maps (s, V) : R — RZ, such that
after projection on the s variable, we get I3 back, i.e.,

B = {s|there exist V such that (s,V) € Bextended }-

Call V' a storage if the dissipation inequality

*tterminal
‘/r(tt,erminal) - V_(tinitial) S / 5(t)dt

tinitial
holds for all (s,V) € Bextended and for all tinitial < trerminal. In
other words, the difference of the initial storage minus the final storage
cannot exceed the supply absorbed during the time interval starting at
the initial time and extending to the terminal time.

Note that a quick unburdened application of the dissipation in-
equality along a periodic motion (s, V') suggests that the existence of a
storage implies dissipativity. The converse seems more difficult, since
it requires a clever construction of the extended behavior Bextended -
And indeed, under mild conditions, it can be shown that a system
B is dissipative iff there exists an extended behavior Bexicnded With
a storage that satisfies the dissipation inequality, and conservative
iff there exists a storage that satisfies the dissipation inequality with
equality. Further, for all but very simple systems, the storage is in an
essential way not unique (more than up to an additive constant) in the
dissipative case, while in the conservative case, it is unique.

It would take us too far to spell out in this book review the mild
conditions under which this equivalence holds. They have to do with

i) controllability, ensuring the existence of ‘enough’ periodic tra-
jectories, so that periodic motions become representative of the
whole behavior B, and

ii) observability (of V from s, or something like that, so that prop-

erties of BB can be lifted to Bextended )-
These conditions may be termed mild, but they are not compelling.

Using these notions of dissipative and conservative, we come to a
formulation of the laws of thermodynamics as they apply to the abstract
system introduced in the beginning of this subsection. The formulations
ask for conservativity and dissipativity of Bihermodynamic, as follows.

i) Bihermodynamic 18 conservative with respect to the supply rate
(S0, Qi) — W,

i) Bihermodynamic 18 dissipative with respect to the supply rate
=22 (Q:/T).

The associated storages are respectively the internal energy and the
negative of the entropy.

We reiterate that as far as the definitions are concerned, the state-
ments in terms of periodic trajectories are but one choice. One could
equally well focus on the storage in the very definition of dissipative-
ness, with perhaps more restrictions imposed on them than we have
done. Or we could assume an equilibrium, and focus on trajectories
from and to this equilibrium. Or one could depart from a set of “ob-
servables,” including or implying the supply rate, and demand dissipa-
tion along periodic motions of these observables. However, there are
also formulations possible that exploit the fact that in thermodynamics
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two related supply rates, (>, Qi) — W and — Y7  (Q/T;), are
considered both at once, etc.

Note that what I have just called a “dissipative” system is what the
book under review, and I elsewhere, call a “cyclo-dissipative” system.
The difference in the end has to do with the question if we want the
storage to be non-negative (more precisely, bounded from below). Is
a storage necessarily bounded from below? It seems not. For instance,
since entropy is often a logarithm, we will not have boundedness from
above or below for entropy. How about energy? Electrical engineers
think of energy as something that is non-negative, and rightfully object
to calling a negative inductor “passive,” even though it looks passive in
a periodic regime. However, in mechanics, energy is often not bounded
from below (consider, for example, a particle or a planet orbiting in
an inverse square law potential field). When the theory of dissipative
systems is employed in stability analysis, non-negativity of the storage
is natural. But sign definiteness of the storage is a subtle matter from a
physical point of view, and should certainly not universally be adopted.

C. Interconnected Systems

One of the important features of dissipativity is its behavior under
interconnection. We illustrate this by means of a very simple example
of an interconnection of two systems of the type considered above, in
the spirit of what the authors dealt with in Chapter 3 of the monograph.
Consider two interconnected vessels, as shown in the figure below.

(Q,,T,)| Material at Material at (Q,T,)
—»| temperature temperature fe——
T, T,

The vessels, respectively at temperatures 7' and 7%, receive heat
from the environment at these temperatures 77 and 7%, and rates (J1
and (J-. In addition there is heat diffusion from vessel 1 to vessel 2 at
rate proportional to 71 — 7% (this may, hence, be positive or negative).
Under reasonable and intuitive assumptions, the relation between the
T, Ts, Q1,2 can be taken to be

d
poTi=Q1 - (T = T»)
d

P2 To = Q2 = YTz —Tv)

with p1, p2 are (proportional to) the specific heat coefficients of the
material in the vessels, and ~ is the heat diffusion coefficient between
the vessels. A simple calculation shows that

1
é(PlTL + p2T2) = Q1 + Q2
d N S S
%(/}1 111T1 +/);z 1IIT2) = Tl + TQ + )TlTQ <1_l Tz)
Q1 |, Q2
> — .
A + T,

This shows that the interconnected system obeys the first and
second law with internal energy (p171:i + p2T2) and entropy
(p1lnTh + p21InTs).

The question occurs if we can view this system as the interconnec-
tion of two systems, both satisfying by themselves the laws of thermo-
dynamics, and which, with the appropriate interconnection constraints,
correspond to the interconnected system.

Before getting into interconnections, consider the simple system
shown below.
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Q,T)

Material at
temperature [

I

This system has only one heat terminal, that feeds into a vessel at
temperature 1. Assume that the dynamical equation is

d, /
PET =Q,
where p is (proportional to) the specific heat coefficient of the material
in the vessel.

Is this a thermodynamic system? F = pT leads to the first law with
internal energy pT’, unique up to an additive constant. It requires a bit
more effort to show that the second law imposes to the condition

[Q'>0 and T'>T] or [Q <0 and T <T]J

and leads to S = p In T for the entropy (again unique up to an additive
constant). For then

d d Q/ Q/
—S =p— = = > —.
i’ =Pt =F 2y

The complete dynamical equations are, therefore

d..
PET—Q

[ >0 and T'>T] or [Q <0 and T <TJ.

So, in addition to an equation expressing the rate of change of the tem-
perature, the second law imposes the impossibility to transport heat
from cold to hot. This simple example points to the essence of thermo-
dynamics. Bringing in heat from the outside at any temperature does
not violate the law of energy conservation. However, it is impossible to
bring in heat at a temperature that is colder than the temperature of the
vessel. This violates the second law.

In order to deal with the interconnection, consider first the vessel
shown in the figure below, a simple generalization to two heat terminals
of the vessel with one heat terminal considered below.

(Q’,T°) | Material at Q>,T)
» temperature fe
T

Take as dynamics

d ! ~/!

—T =

P Q+Q

[Q">0 and T' >T]

[Q" >0 and T" >T]

or [Q'<0 and T <T]J
or [Q"<0 and T" <TJ.

Then, with internal energy E = p1’ and entropy pln T, the first and
second laws follow.

We obtain the original interconnected system by interconnecting two
such vessels as shown in the figure below.
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Q,T) (Q3},T}) Q3,T3) Material at
temperature

I,

Material at «Q :.'l‘2 )
temperature

I

Take the relations between the variables Q1,T1, Q1,7 of the first
vessel to be

=T =Q1 + Q}
[Q1 >0 and Q) =~(T| —T1)] or
<0 and T{=Ti].

Similarly, take the relations between the variables Q2, 1>, Q5, T5 of
the second vessel to be

/)
po—To =Qa 4 Qb
dt

[Q2>0 and Q5 =~(T3
[Q2 <0 and Ty = Tu].

—T13)] or
Next, verify that the interconnection laws

Ti=T, and Q,+Q,=0

lead, after elimination of T}, T3, Q, @5, to the correct equations

d
pr—=To = Q2 —~v(T> — T1)

d
=D =Q1 — (T = Tz), p2
dt

dt

for the interconnected system.
From the earlier analysis, we may conclude that both vessels indi-
vidually satisfy the first and second law. This yields

1 ]
P1 %ﬂ =Q +Q}
d Q1 | Q
el > @b =1
gtz e+
d
p2a =02+ Q5
d Q2 Q5
—p2 b > = —.
dtp“ In7s > T + T

Adding and using the interconnection constraints yields

d
d—f(P1T1 + p2T2) = Q1 + Q2

d Ql Q2
dt(plthl —|—p21111_2) ) —|— D

These are the first and second law as they pertain to the original inter-
connected system. The basic principle is that the interconnected system
obeys the laws of thermodynamics because the subsystems do. The in-
ternal energy and the entropy are the sum of the internal energies and
entropies of the subsystems.

This is in fact a fully general principle. Conditions for an intercon-
nection of systems (see the figure below, but view this, hierarchically,
as a complex interconnection of numerous subsystems), to satisfy the
laws of thermodynamics if the interconnected systems do, are readily
obtained.
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Q,,T,)

VY 1\1\

W, . w,

W=W,+ W,

The basic constraints are similar to those that were put in evidence
in the simple example given above. For each interconnected thermal
terminal the interconnection constraints should imply equal that the
temperatures are equal and that the heat flows sum to zero. The work in-
terconnections should imply that the rate of work performed by the in-
terconnected system is equal to the sum of the rates of work performed
by the subsystems. There could, of course, be all kinds of mechan-
ical interactions between the subsystems, but these should be neutral,
meaning work into one equals work out of the other.

It is easy to see that this leads to an interconnected system with as
total internal energy and entropy, the sum of the internal energies and
entropies of the subsystems. In thermodynamic parlance, this states that
the energy and entropy are extensive quantities, quantities that add: the
entropy of the whole is the sum of the entropies of the parts, just as
volume and mass and charge, in contrast to intensive quantities, quan-
tities that do not add, as temperature and voltage and position. This
extensivity of entropy can have important consequences as far as the
calculation of the entropy is concerned. Zooming in on simple subsys-
tems often even yields uniqueness of the entropy function, by tearing
the interconnected system into simpler subsystems, each of which has
a unique entropy function.

D. Inputs, Outputs, and States

Throughout the 20th century, mainstream systems theory has been
developed in an input—output mode of thinking. Starting with the work
of Heaviside, via the impedance description of circuit theorists, to the
cybernetic stimulus/response view of Wiener, generations of systems
theorists have been trained to think of a system as an input—output map.
This point of view is still very prevalent in, for example, system iden-
tification, where the statement that a system is an input—output map is
commonplace.

Of course, a system is patently not an input/output map. For all but
the most simplistic examples, the output also depends on the initial
conditions, and it is often the response to the initial conditions that is
of main concern. The fact that initial conditions in the form of state
variables are automatically incorporated in state models is for sure one
of the main reasons of their deep influence in the field. As such, I regard
Kalman’s input-state—output framework to be the first model structure
that is adequate for the dynamical description of a reasonably general
class of physical systems. The authors of the monograph under review
are clearly adherents of this point of view. And indeed, it is the use
of the input—state—output setting that has enabled them to present their
rigorous theory of thermodynamics.

Nevertheless, the input—output partition of the variables of interest is
often hard to maintain from a physical point of view. Why should it be
a universal fact that some variables act as causes, and some as effects?
The input—output picture may be appropriate for signal processing, but
a physical system is not a signal processor. A law of physics states that
certain outcomes are compatible, that certain combinations of values of
physical variables can occur simultaneously, but not that one variable
causes another.
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Consider, as an example, the simple system discussed in Subsec-
tion 3-C, with only one heat terminal, shown again in the figure below.

Material at Q1)
temperature fe
T

The dynamical equations consist of the differential equation

—_T = Q’
combined with
[Q'>0 and T'>T] or [Q <0 and T <TJ.

This defines, as we have seen, a thermodynamic system. The external
system variables are Q', 7". They are both, in a sense, free inputs, but
only to some extent. ' > 0 cannot let 7 become larger than 7", T >
T’ implies Q' < 0, etc. The question of what causes what should
not be posed. This exceedingly simple example shows that the laws
of thermodynamics are at odds with input/output thinking. In physical
systems, there are certain related variables which the model aims at, but
there is no point is insisting on a partition of these variables in inputs
and outputs, causes and effects.

The drawback of input—output thinking comes forward very point-
edly when considering interconnected systems. The view that inter-
connections should be modelled as an input-to-output assignment is
contradicted by almost all physical examples. Consider once again the
system discussed in Subsection 3-C, viewed as the interconnection of
two systems.

«Q l’T ) | Material at Material at «Q 2,T 5 )
—___»| temperature temperature fe——
T, T,
Q,T) Material at Q3,T}) Q3,T3) Material at Q,T,)
——»| temperature — . temperature e ——

T, T,

As we have seen, the interconnection law that governs the intercon-
nection of the two vessels shown above is

Ti=T, Qi+ Qy=0.

So if, for some reason, we have decided to consider 7' an input and @}
an output for the first system, and, likewise, by symmetry considera-
tions, 7 an input and ()%, an output for the second system, we see that
the interconnection law demands equating two inputs and putting the
sum of two outputs equal to zero. Exactly what is forbidden in the usual
input/output thinking. It turns out that this situation, equating similar
variables (pressures, positions, voltages, etc.) and putting the sum of
similar variables (flows, forces, currents, etc.) equal to zero, is the rule
in physical interconnections, and the input-to-output assignment is the
exception. Interconnection of physical systems means variable sharing,
not signal transmission.
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In Subsection 3-B, we have seen that, in order to discuss dissipative
systems, it is very reasonable to consider the behavior that consists of
all possible supply rate trajectories s : R — R. The question of how
supply flows in and out leads to our “no frills” definition of dissipa-
tivity. Obviously, the question if s is an input or an output is absurd. In
its very essence, the situation in thermodynamics is precisely this one:
it is a theory that studies the behavior defined by all trajectories

(s1.52): R— R,

with s1 = (30, Qi) — W, and 52 = 377 (Q:/T)), and the W’s
and (Q;,T;)’s constrained by Bihermodynamic. Asking if s or s is an
input or an output is again absurd.

We have also seen in Subsection 3-B that it is not necessary to intro-
duce a state in order to discuss the storage. However, it is a good ques-
tion to ask whether, if there exists a storage at all, there always exists a
storage that is a state function. For physical systems, state (“memory’’)
is a much more fundamental concept than input (“cause”) or output
(“effect”).

IV. CONCLUSION

Thermodynamics is, by its very essence, a theory of open systems.2
It puts limitations to the way in which physical systems are able to ex-
change energy and heat with their environment. “Flows” are totally in-
capable of dealing with thermodynamics. Notwithstanding the fact that
systems and control theory has grown into the field that deals with open
systems in a fundamental way, there have been very few publications
that discuss thermodynamics from a modern systems theory perspec-
tive. The monograph under review appears to be the first book to do so.
As such, it is a most welcome contribution.

2Thermodynamicists and systems and control theorists differ in what they
mean by open and closed. In thermodynamics, it is common to call systems
that exchange matter and energy with their environment, open. Systems that
exchange energy but not matter, are called closed, and those that exchange nei-
ther energy nor matter are called isolated. In systems and control theory, on the
other hand, a closed system is, very roughly speaking, one whose past trajec-
tory defines the future trajectory uniquely. Closed systems can be described by
a flow (d/dt)x = f(x), combined with, perhaps, an output equation. This is
more akin to what thermodynamicists call an isolated system. In the conven-
tional input/output thinking, a closed system is one that evolves without inputs,
while an open system is one that is influenced by external inputs. We use “open”
and “closed” in the systems and control sense.
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Thermodynamics is also a theory of interconnected systems. An es-
sential aspect is that if we combine simple physical systems that indi-
vidually satisfy the laws of thermodynamics, we obtain a more com-
plex system that also obeys these laws. This is a recurrent theme in this
book.

Hence, both open and connected, the features that make systems
theory into a discipline of its own, are key elements of this book. As
such, this monograph makes a very substantial contribution to the field.
Not only by the originality of the approach and the results, but also by
the systems point of view as the basis for thermodynamics.

In my opinion, a shortcoming of this monograph is the lack of con-
crete physical examples. Of course, most readers will have no diffi-
culty to construct some, but I do not think that this should have been
left to the readers. I believe that the basic set-up in chapter 3 could
haven been clarified by considering classical examples, as ideal gasses
in their proverbial vessels, each governed by PV = RNT, with P the
pressure, V' the volume, 7" the temperature, N the number of moles of
the gas, and R the universal gas constant. By letting these vessels be in
thermal contact with each other and with their environment, one would
have had a nice concrete example of the situation covered in Chapters
3 and 4. By letting the vessels also be in mechanical contact, influ-
encing each other’s volumes and pressures, one could have obtained a
good example of how to visualize the situation covered in Chapter 5.
For Chapter 7, heat diffusion in a (uniform and nonuniform) bar would
have been a good example.

The book takes the orthodox pedagogical approach in explaining
the laws of thermodynamics by going from the simple to the complex:
First, heat transport in a finite number of compartments with identical
substances, then heat transport with non-identical substances, then heat
transport combined with work, and finally an infinite number of com-
partments. I would have topped this off with a fully abstract discussion
of thermodynamics in the context of dissipative systems and intercon-
nections, along the lines of what I pointed to in Sections 3-B and 3-C.

This book is a scholarly one. It is also a courageous one. It comes in
a time that research is dominated by impact factors, citation analysis,
and what have you. As such, a book that is not along the beaten path of
the trumpeted newest research themes, and deals with a classical poorly
understood, but exceedingly important subject, is very welcome. The
authors of this monograph should be commended in their aim to explain
an important domain as thermodynamics from a systems theory point
of view to the community.



