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Equations (3)-(5), (8), and either (6) or (7), since V;(t, . , O ) =  
V:(r,O, -), form the optimal filter  which can  be processed  by  specifying 
the  initial conditions i ( to ,o)  and V;(r@o,a), O<o,  a<a,. 

If, on the other hand, Liang’s (IO) and ( I  1) are applied to the system 
defined  by (1) and (2), one gets 

Liang’s (12) is incorrect because the relations  describing  a  system, 
such as (1) and (2), as well as the estimate and estimation error 
equations, are all  valid  for f >ro  (see (4), (7) and @)).I Therefore, 
introducing a  delay,  say a, in any of these equations, which  Liang has 
done, simply  implies that these equations are now  valid for r - a >lo 
instead of f > r,,. Further, using  this  procedure, one obtains the relation 
for the estimation error x(t -a,O)=(x(r-a) -x(r -a,O)}  for t-a>t, , .  
However, the equation for estimation error needed,  besides the one for 
i ( f , O )  = { x(t ) -  i ( t , O ) } ,  to derive the expression  for the evolution of 
covariance V;(t,o,a), is i ( t , a ) = { x ( t - a ) - - ( r , a ) )  for t > r o  This error 
probably stems from a similar error made  in [5] where the relations for 
computing the smoothed estimate and covariance are inaccurate as 
reported. 

It is  evident that (12) and (13)  form  only a part of the optimal filter 
given  by (3)-(8). Some of the reasons for the inaccuracies are stated in 
what follows. 

Remark I :  Using the following  definitions of Liang,  which are a bit 
confusing, 

i ( t - q ) = x ( r - q ) - i ( t - q )  ( 14) 

~ [ i ( r - a i ) + i ( t - a i ) , r - a i ] = E { f ; [ ~ ( f - a i ) + X ( t - a , ) , r - a , ] / Z ( t ) }  

(15) 

when the system is linear, then (15), with the aid of (14), yields 

j j [ ~ ( t - ~ ) + i ( t - a i ) , t - ~ a , ] = E ( ~ ( r - ~ i ) x ( t - a a , ) / Z ( t ) }  

=F, ( r -q ) i ( t -a , / t )  

=&( t -q )X( t ,a i )  ( 16) 

rather than 

f i [ i ( t - a , ) + i ( t - a i ) , t - a i ] = ~ ( r - a i ) x ( t - a , / t - a i )  

=F,(t-q)X(t-ai ,O) (17) 

for i =  1,2,. . . , N. Evidently, the results  such as given  by (17) have been 
employed  in  arriving at the estimation  schemes.’ 

Remark 2: Keeping in view the above remark, it is obvious from 
Liang’s algorithms (see also [5, p. l l lD that no provision  is made for 
computing the smoothed estimate i ( t , u )  and covariance V;(t,u,a), O<O, 
a <aN. This is due  to the fact that the cost function which should have 
been minimized is [I],  [4] 

instead of 

Here,  without any loss of generality, the weighting  matrix  is  taken to  be 
an identity matrix. 

Remark 3: In contrast to nondelay systems, whch are governed  by 
the conditional probability density function p ( x ;  r / Z ( f ) ) ,  time delay 
systems are characterized  by the conditional probability density func- 
tional p ( x (  - s),O Q S  <aM; t/Z(r)) [6]. Therefore,  trying to manipulate 
the conditional probability density function for systems without time 
delays to yield  results for delay  systems contributes to most of the 
inaccuracies  in the results  presented  by  Liang.  Moreover, if the system 
does not involve any delay, then the estimator for time  delay  systems 
must reduce to a combined filter and smoother [I], [6] but  not  just  to the 
filter for nondelay systems. 

Remark 4: Since the suboptimal filters for nonlinear continuous sys- 
tems, as well as the optimal filter  for  linear  systems  with  time  delays 
have  been  previously reported in the literature [I]-[4], Liang  would have 
realized that his  results  were in error had he  referred to these  publica- 
tions,  or, at least, to [I]. 

Remark 5: Liang erred in stating that the results for correlated state 
and observation  noise  processes are not available [6]-[8]. With regard to 
the  algorithm for correlated noise  processes, it has the same drawbacks 
as the one for the uncorrelated case, and hence the preceding remarks 
are also applicable. 

Remark 6: The estimators of Liang,  excluding (12)’, are of a  similar 
type as the suboptimal algorithm  presented in [9], because the implicit 
constraint1 is that the delayed states x ( t -  ct,), i =  1,2; . . , N, act as 
forcing functions with 

x ( t - a , ) - X ( t - q , O ) .  (20) 

The estimators therefore are not exact and/or new but grossly subopti- 
mal  even for the linear  case. This is  also  the  reason for the estimators to 
agree  with the ones for systems  involving no delay. 
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Correction to “An Invalid Norm Appearing  in Control and 
Estimation” 

T. H. KERR 

Abstruct-Two counterexamples are  presented in the above amespon- 
dence [I] to demonstrate that 11A113. the minimum of the standard c o l u m n -  
sum norm (llA1ll) and the row-sum norm (llA113, is not a valid n o m  
While these observations are correct, there is an error in [I] in the 
argument used to justify the use of / ( A  [ I 3  as a convergence  test. ’Ibis error 
is corrected here. 
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For  a valid justification  that  the use of llA1I3 in a convergence test is 
acceptable (where IIA1I3 min(~~A~~l, llA112}), the three contiguous 
Sentences  following (14) in [l] that discuss the Hilbert norm (or induced 
Euclidean norm) IIA1I4 should properly read as follows. 

From [2] or [3, p. 
by both 

1831, the Hilbert  norm IIA 1 1 4  can be upper bounded 

(where n is the dimension of the square matrix A) .  From the above two 
inequalities, the following upper bound may be inferred. 

I I A I I ~ < ~ ’ / ~ . ~ ~ ~ ( ~ I A I I ~ , I I A I I ~ )  for all^ (17) 

(i.e., the minimum of two upper bounds is again an upper bound). Thus, 

it can be guaranteed via  (17) that if either IIA I l l  or IIA 1 1 2  is less than some 
specified criterion, say c ’ = ~ / n ’ / ~ ,  then 1 1 ~ 1 1 ~  is also less then e. 
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In the past decade, system theory has taken various paths of develop- 
ment. One  may identify among these the completion of Katman’s 
module-theoretic approach, generalizations to various algebras and  cate- 
gory-theoretic foundations,  the  structure theory of linear systems  in its 
various forms due  to Wonham and Morse, Brunovsky, Rosenbrock, 
Popov and Kalman, the pioneering work  on nonlinear systems due  to 
Brockett, Hermann, Sussmann and others, and more recently the dif- 
ferential and algebraic-geometric investigations motivated by the identi- 
fication problem. As new facts  are being added at an exciting pace, it 
becomes increasingly necessary to provide textbook treatments of the 
subject that unify the various results, both for pedagogml reasons and 
to reveal common threads of ideas that may otherwise be overlooked. 
The work of Padulo and Arbib is an  introductory book  on  system theory 
written with this aim in mind. At the time of writing this review, this 
book had been available for four years. Before then, since 1970 or so, 
researchers and  students in the field have had access to the standard 
treatises [I]-[3] and the monograph [4]. We make here some inevitable 
comparisons. 

First, the authors’ approach is unusual in that they have set  out to 
include practically all the relevant mathematical background either as 
part of the text or as guided exercises. This partly explains the length of 
the book. Secondly, they make effective use of discrete-time systems to 
illustrate the basic ideas before transferring these to  a continuous-time 
setting. 

The first chapter  introduces the concept of state  and defines in crisp 
notation the notions of stationarity, causality, and system representation. 

The second chapter deals with generators of state  transition.  Here  the 
authors also introduce the elements of linear algebra to describe smooth 
systems  with several degrees of freedom. The examples used are mostly 
from circuit theory and elementary mechanics. 

The third chapter begins with the idea of input-output  map and 
linearity. The  authors then define linearization of  maps and apply it to 
systems. 

The fourth  chapter begins with the fundamental ideas of control. 
Taking an automata-theorist’s viewpoint, the authors give most general 
definitions of the concepts of controllability, reachability, and dis- 
tinguishability, relate these to system interconnections and give tests in 
terms of system  response functions. They then speciahe these concepts 
to discrete-time linear systems. The  chapter closes  with a discussion of 
discrete-time transfer functions. All the relevant results on hear algebra 
and normed spaces used in proofs here are developed in  some detail. 

The fifth chapter is on continuous-time systems. Beginning  with the 
contraction mapping fixed-point theorem, the authors establish the basic 
result on integration of ordinary differential equations. They then restrict 
discussion to linear systems and close the chapter with a discussion on 
equivalence. 


