

Quantum Electronics and Laser Science (QELS)

Sponsored by

APS/Division of Laser Science IEEE/Lasers and Electro-Optics Society Optical Society of America Articles in this publication may be cited in other publications. In order to facilitate access to the original publication source, the following form for the citation is suggested:

Name of Author(s), Title of Paper, OSA *Trends in Optics and Photonics (TOPS) Vol. 89, Quantum Electronics and Laser Science (QELS)*, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC 2003), pp. xx-xx.

TOPS Vol. 89: QELS Technical Digest, Postconference Edition

ISBN

1-55752-749-0

LCCN

2003104255

Institute of Electrical and Electronics Engineers

Catalog Number

CH37420-TBR

Copyright +2003, Optical Society of America

Individual readers of this publication and libraries acting for them are permitted to make fair use of the material in it, as defined by Sections 107 and 108 of the U.S. Copyright Law, such as to copy an article for use in teaching or research, without payment of fee, provided that such copies are not sold. Copying for sale or copying for use that exceeds fair use as defined by the Copyright Law is subject to payment of copying fees. The code 1-55752-739-3/\$15.00 gives the per-article copying fee for each copy of the article made beyond the free copying permitted under Sections 107 and 108 of the U.S. Copyright Law. The fee should be paid through the Copyright Clearance Center, Inc., via their website at www.copyright.com.

Permission is granted to quote excerpts from articles in this publication in scientific works with the customary acknowledgment of the source, including the author's name, name of the publication, page, year, and name of the Society. Reproduction of figures and tables is likewise permitted in other articles and books provided that the same information is printed with them, and notification is given to the Optical Society of America. Republication or systematic or multiple reproduction of any material in this proceedings, including contents and abstracts, is permitted only under license from the Optical Society of America; in addition, the Optical Society may require that permission also be obtained from one of the authors. Electrocopying or electrostorage of any material in this publication is strictly prohibited. Address inquiries and notices to the Rights & Permissions Office, Optical Society of America, 2010 Massachusetts Avenue, NW, Washington, DC 20036. In the case of articles whose authors are employees of the United States Government or its contractors or grantees, the Optical Society of America recognizes the right of the United States Government to retain a nonexclusive, royalty-free license to use the author's copyrighted article for United States Government purposes.

The views and conclusions contained in this publication are those of the author(s) and should not be interpreted as necessarily representing endorsements, either expressed or implied, of the editors or the Optical Society of America.

Printed in the USA

QELS 2003

TABLE OF CONTENTS

<u>Sesson</u>	Article Title	Presider	Room Code
Code			
QMA,	Special Symposium on Laser Control on the Nanoscale: Atoms to Cells:	Sunney Xie	. 339-340
QMB,	Coherence in Atomic and Electronic Systems:	TBA	341-342
QMC,	Solitons:	David Reitze	. 343-344
QMD,	Special Symposium on Laser Control on the Nanoscale: Atoms to Cells:	Christoph Lienau	. 339-340
QME,	Generation and Detection of Single Photons:	Michel Brune	341-342
QMF,	High Intensity Nonlinear Optics:	Craig Siders	. 343-344
QMG,	Special Symposium on Laser Control on the Nanoscale: Atoms to Cells:	TBA	339-340
QMH,	Quantum Measurements & Quantum Imaging:	James Franso	341-342
QMI,	Nonlinear Optics in Fibers:	Alex Gaeta	343-344
QMJ,	Special Symposium on Laser Control on the Nanoscale: Atoms to Cells:	Duncan Steel	339-340
QMK,	Optical Entanglement and Nonlocality:	Shahar Dolev	. 341-342
QML,	Molecular Nonlinear Optics:	Wolfgang Rudolph	. 343-344
QTuA,	Nanoassemblies and nanowires:	A. Fiore	. 339-340
QTuB,	Cryptography and Novel Sources of Entangled Photons:	Martin van Exter	. 341-342
QTuC,	Field Enhancement from Metallic Nanostructures:	Steve Rand	343-344
QTuD,	Field Enhancement from Metallic Nanostructures:	Jean Greffet	339-340
QTuE,	Quantum Information Processing: Implementations:	Jelena Vuckovic	341-342
QTuF,	Nonlinear Optical Phenomena and Applications II:	G. Stegeman	. 343-344
QTuG,	Poster Session:		. Exhibit Hall
QTuH,	Nanophotonics of Plasmons & Polaritons:	Lukas Novotny	339-340
QTul,	Entanglement and Quantum State Reconstruction:	Boris Blinov	341-342
QTuJ,	Semiconductor Nonlinear Optics I:	S. Cundiff	343-344
QTuK,	Quantum Dots for Nanophotonic Applications:	Selim Unlu	339-340
QTuL,	Waveguides and PBGs:	D. Wiersma	341-342

QELS 2003

TABLE OF CONTENTS

Sesson	Article Title	Presider Room Code
Code		
QTuM,	Semiconductor Nonlinear Optics II:	Christos Flytzanis 343-344
JTuA,	Joint Attosecond Symposium I:	Jun Ye 316-317
JTuB,	Joint Attosecond Symposium II:	Tom Carruthers 316-317
JTuC,	Joint Attosecond Symposium III:	Paul Corkum 316-317
JTuD,	Ultrafast Laser Stabilization:	Franz Kaertner 316-317
JWB,	Micro-Photonic Bandgap Circuits:	David Nolte 316-317
JWC,	Photonic Bandgap Materials:	J. Pendry 316-317
QWA,	Poster Session:	Exhibit Hall
QWB,	Terahertz Nonlinear Optics:	Richard Averitt 343-344
QWC,	Novel Ultrafast Optics:	F. Leitensdorfer 343-344
,QThA	Nano-optics in II-VI Materials and Microcavities:	Bennett Goldberg 337-338
QThB,	Ultrafast Dynamics in Metallic Systems:	DaiSik Kim 339-340
QThC,	Photonics in Ordered and Disordered Structures:	Mordechai Segev 341-342
QThD,	Strongly Interacting Bosons and Fermions:	Immanuel Bloch 343-344
QThE,	Probing Excitons and Change Carriers in Quantum Dots:	G. Bryant 337-338
QThF,	Ultrafast Studies of Many-body Interactions:	Rudolf Binder 339-340
QThG,	Random Lasers:	V. Shalaev 341-342
QThH,	Precision Measurements and Spectroscopy with Cold Atoms:	Georg Raithel 343-344
QThI,	Ultrafast Dynamics in Quantum Dots:	Michael Woerner 339-340
QThJ,	Poster Session:	Exhibit Hall
QThK,	Soliton Photonics:	H. Cao 341-342
QThL,	Atom Transport and Coolings:	Elizabeth Donley 343-344
QThM,	Ultrafast Dynamics in Semiconductors:	David Citrin 339-340
QThN,	Left-handed Materials:	Vladimir Shala 341-342

QELS 2003

TABLE OF CONTENTS

<u>Sesson</u> Code	Article Title	Presider	Room Code
QThO,	Optically Trapped Bose and Fermi Gases:	Mikhail Lukin	343-344
QFA,	Photonic Crystals:	Yurii Vlasov	341-342
QFB,	Ultrafast Molecular Dynamics:	Erich Ippen	343-344
QFC,	Cavity and Chaos:	Mikhail Noginov	341-342
QFD,	Coherent Transient Phenomena:	T. Norris	343-344