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Traditionally, network and system management are manually controlled processes. It 
usually takes one or more human operators to manage all aspects of a dynamically 
evolving computing system. The operator is tightly integrated in this management 
process, and his or her tasks range from defining high-level policies to executing low-
level system commands for immediate problem resolution. Although this form of human-
in-the-loop management was appropriate in the past, it has become increasingly 
unsuitable for modern networked computing systems.

Several trends shaping the development of IT infrastructures have aggravated network 
and system management:

 The rapidly increasing size of individual networks and the Internet as a 
whole

 Hardware and software components' growing degree of heterogeneity

 The emergence of new networking technologies, such as ad hoc 
networking, personal area networks, and wearable computing, which are 
being combined with established technologies such as the Internet and 
cellular-phone networks
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 Employees' growing need for mobile access to enterprise data

 The increased interdependency between business processes and the 
corresponding software products

 The idea of disappearing computing, which states that the growing 
number of computing devices pervading our everyday lives should be 
invisible to us

 The accelerated development of new technologies, which forces 
companies to restructure their IT systems more frequently

These trends indicate that IT infrastructures in large companies will grow even more 
complex in the future. How can we administer systems of this complexity adequately?

This question has stimulated a large interest in self-management technologies
technologies that help systems autonomously control themselves. It's not realistic for 

human operators to maintain control over a system that consists of thousands of 
networked computers, mobile clients, and numerous application servers and databases. 
We must redefine human operators' roles so that instead of being involved in the decision 
process in an interactive and tightly coupled fashion, operators define general goals and 
policies for system control.1 But is self-management the solution? Only if we can first 
solve several open problems.

Current challenges

The Autonomic Computing Initiative (see the related sidebar) divides self-management 
into four functional areas:2 

 Self-configuration: Automatically configure components to adapt them to 
different environments.

 Self-healing: Automatically discover, diagnose, and correct faults.

 Self-optimization: Automatically monitor and adapt resources to ensure 
optimal functioning regarding the defined requirements.
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 Self-protection: Anticipate, identify, and protect against arbitrary attacks.

Because we can't realize these goals in one step, the ACI also defines five evolutionary 
levels: Level 1 (basic) is the current state of the art in network management, where human 
operators manage individual components more or less manually. Levels 2 4 define 
intermediate stages in the evolution of IT systems toward completely autonomous 
systems, which constitute Level 5 (autonomic).

Autonomic elements are an autonomic system's building blocks. An autonomic element 
consists of a managed element and an autonomic manager controlling the managed 
element. The managed element can be a single resource (hardware or software) or a 
combination of different resources. Essentially, an autonomic element consists of a closed 
control loop (Figure 1). Theoretically, closed control loops can control a system without 
external intervention and can keep it in a specified target state. This concept is vital for 
the ACI because it introduces the desired autonomy.

Figure 1. An autonomic element's closed control loop. 

The vision of self-management at the autonomic level is far-reaching and presents many 
challenges. Researchers have already solved some problems by introducing techniques 
that help instrument and monitor resources3 and that use autonomous mobile agents for 
proactive management.4 However, many issues involved with rendering management 
tasks autonomous are still largely unresolved.

The biggest challenge is building closed control loops the most important concept of 
self-management. The basic idea of control loops is well known from a wide variety of 
technical applications a thermostat (consisting of a temperature sensor and a coupled 
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flow control valve) and a car's antilock breaking system are just two examples. Closed 
control loops can control a system parameter on the basis of some predefined set point 
and constant observation of the parameter's current value (feedback). So, for a thermostat, 
a human manually defines the set point (desired temperature), and the thermostat 
measures the temperature and reacts by controlling the flow of heat (using the valve). An 
ABS detects if a wheel locks and reacts by reducing the breaking power on that wheel 
until it's spinning again. The fact that automotive companies spend considerable resources 
developing and calibrating their ABS systems for each car model shows that this is 
nontrivial in a more complex environment with numerous external influences.

However, modern distributed computing systems are several orders of magnitude more 
complex than our two examples. An ABS is tailored for a specific task for which all 
possible states and external influences are completely specified. In general, this isn't the 
case in computer systems because they usually comprise numerous heterogeneous 
components.

In fact, the name autonomic computing is inspired by the human body's autonomic 
nervous system, which controls bodily functions such as respiration and heart rate without 
requiring conscious action by the human being. This is exactly the aspiration behind the 
ACI with respect to controlling a distributed computing system's numerous software and 
hardware components. Application servers, databases, and communication infrastructures 
should control themselves without any manual, external intervention. The core problems 
in this respect are

 The lack of a widely accepted and concise definition of what self-
management actually means

 The lack of appropriate standards for unifying the process of self-
management, describing self-managing systems, and achieving 
interoperability in open distributed systems

 The absence of mechanisms for rendering self-managing systems adaptive 
and for enabling them to learn

 The fact that modern distributed systems tend to be inherently interwoven, 
which potentially creates an overwhelming complexity
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The ACI's current definitions and notions lack the necessary clarity. Although the four 
functional areas represent a useful categorization of self-management subareas, the 
differences between them are somewhat fuzzy. For example, distinguishing between a 
faulty system and a system that's in a suboptimal state isn't always easy. While a faulty 
system would be subject to self-healing, a suboptimal system should self-optimize. What 
exactly distinguishes self-healing from self-optimization? And how do they relate to self-
configuration? It's vital to answer such questions before comparing and categorizing the 
plethora of existing systems and approaches.

Other concepts that exist in the research community are self-adaptation and self-
organization. Although we might intuitively regard them as being more general than the 
concept of self-management, finding a clear definition of these terms is extremely 
difficult if not impossible because the concepts behind them are still only partially 
understood.

Furthermore, we should compare the newly shaped concepts of self-management with the 
classic notions of dependable and fault-tolerant systems5 as well as self-stabilizing 
systems.6 These areas have already produced concepts and technologies that fall within 
the self-management domain. For example, leasing resources is a simple yet powerful and 
widely used mechanism for garbage collection in systems subject to partial failure. The 
system automatically frees a leased resource (such as a memory block) when the 
leaseholder (such as a process) doesn't actively renew it in time. So, the resource will 
always eventually be freed even if its holder crashes. Are lease-based systems self-healing 
or self-optimizing?

System description and interoperability

Autonomously managing a complex distributed computing system requires adequate 
means for describing the system as well as its current and desired states. This requires 
describing, for example,

 The system architecture

 Management policies

 Some kind of rule base for inferring concrete controlling measures from 
the currently perceived system state

 Service-level agreements and quality-of-service contracts that specify 
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Formalisms and tools exist for each of these areas. However, we still need global 
standards to ensure interoperability, at least on a syntactic level. Some approaches exist in 
the research community to describe an adaptive system on the basis of Architecture 
Description Languages.7 9 In the commercial sector, Microsoft promotes its Dynamic 
Systems Initiative,10 which builds on the System Description Model. However, static 
descriptions aren't adequate for autonomous adaptive systems. Self-adaptation requires 
the system to also adapt the rules underlying the adaptation. For a system to be able to 
adapt to potentially unknown, dynamic environments, it must be able to learn while being 
applied in a productive environment. This, of course, also has consequences for potential 
description techniques.

Additionally, we need standards for capturing relevant data from a running system. This 
involves issues such as instrumentation, interface formats, and data exchange formats. 
Fortunately, existing standards can help, such as the Open Group's Application Response 
Measurement API11 or the Distributed Management Task Force's Common Information 
Model.12 

Learning systems

Human operators add a quality to management systems that current artificial systems can't 
match humans can handle unknown situations and learn from their experiences. They 
can categorize newly emerging faults and integrate this new knowledge into their 
repertoire for the future. If we eventually remove the human operator from the 
management control loop, then the management system must be able to similarly learn 
from its experiences and improve its capabilities. The increasing dynamics of distributed 
computing systems and the growing tendency to regularly restructure them require a 
management system that's highly flexible and adaptable. The system must not only adapt 
quickly to an existing static system but also autonomously customize itself to frequently 
occurring changes.

Artificial systems have yet to achieve the degree of dynamic adaptation and learning 
required for self-management. As a first step, Yixin Diao and colleagues have shown that 
you can optimize a running database system for e-commerce applications with respect to 
the system's response time.13 They describe the dependencies of configuration parameters 
using a rule base. However, if the rules remain static, the system can't adapt to changes in 
its environment. Such a system doesn't exist in isolation. The complex interactions with 
other software and hardware components and dynamically changing usage patterns can 
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produce a plethora of different working conditions. How does the system react if we add 
other applications besides the e-commerce system? How does the self-optimization 
module react if, for example, we need to optimize both memory usage and response time? 
Optimizing both of these parameters together probably isn't equivalent to optimizing both 
in isolation, so a new configuration and optimization problem emerges concerning the 
rule base.

Interwoven systems

In many respects, the comparison to the human body's autonomic nervous system is quite 
fitting. A healthy human body preserves an equilibrium involving all subsystems. The 
common goal of all the processes in our body is survival. To achieve this, nature has 
developed an enormous complexity that lets our body react appropriately to a wide 
variety of different external stimuli. Our immune system, for example, can successfully 
detect and eliminate even unknown, malicious substances. Moreover, in doing so, it 
strengthens its resistance to future infections. This system is a complex closed control 
loop with numerous subordinate control loops including temperature regulation, 
respiration, and metabolic functions. Many of those systems interact in ways that we still 
don't understand. An attempt to isolate one subsystem to study and understand it better 
normally fails because in doing so we ignore important interactions with other 
subsystems. This is the nature of a complex system: The whole is more than the sum of its 
parts. A classic reductionist approach isn't guaranteed to lead to a better understanding of 
the overall system.

Modern distributed computing systems also exhibit an interwoven structure. Different 
subsystems such as operating systems, communication networks, and application 
components depend on each other in many ways. A large portion of these dependencies 
are indirect and neither explicitly planned nor obvious. It's a commonly perceived 
problem that the overall system tends to behave in ways that we don't expect when 
analyzing the subsystems in isolation.

This leads to a fundamental problem for self-management. According to IBM's vision, an 
autonomic system might comprise thousands of closed control loops in different 
subsystems.14 Separate control loops might control different aspects of the same 
subsystem. For the purpose of a modular design and the separation of concerns, it seems 
sensible that each manufacturer of a hardware or software component is in charge of 
developing the control loops for its own components. However, owing to the overall 
system's interwoven structure, these control loops will influence each other. Changes to 
one subsystem imply direct or indirect changes to other subsystems because they change 
the current system state that's perceived by numerous separate control loops.
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For example, let's assume that Diao's system13 improves the database's response time by 
employing a control loop that increases the size of the in-memory buffer for caching data 
if necessary. Let's further assume that, concurrently, the operating system runs a control 
loop for optimizing memory usage. This control loop monitors the amount of free 
memory, and if it detects a shortage, it uses a standard application-side interface for 
telling applications to reduce their memory usage. This system, consisting of the database, 
operating system, response-time control loop, and memory control loop (depicted in 
Figure 2), can produce an undesirable oscillation. The two optimization criteria directly 
conflict with each other: Caching large amounts of data in memory achieves a good 
response time, while keeping memory usage low results in higher response times. One 
action triggers the other, so they'll repeatedly increase and decrease the size of the in-
memory database cache. This thrashing will likely decrease overall system performance 
considerably and might increase response time. So, the response-time control loop 
triggers an even greater increase of the cache size to react to this condition. This feedback 
loop will eventually lead to a new emergent behavior of the system: complete failure.

Figure 2. Indirect interaction between two separate control loops, causing undesirable 
oscillation. 

The two control loops of our fictional example must be able to reach an agreement. We 
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need to combine the optimization criteria that were previously independent into a 
compromise that's suboptimal with respect to the individual criteria. How can we achieve 
this? Do the two control loops have to "know each other" in advance, or is a direct or 
indirect mutual adaptation possible? Does this mutual adaptation scale with the number of 
control loops in the system? How can the system detect and handle hidden dependencies 
that extend over several indirections? How can we ensure that the "collective optimization 
criteria" of all control loops lead to a desirable system state? What effects do faulty 
control loops have in the presence of feedback effects that are possibly nonlinear (such as 
the oscillation build-up in the example)?

The interwoven structure of modern distributed computing systems is definitely the most 
important yet least-studied problem of self-management. It's unclear if real-world systems 
can be partitioned into completely independent subsystems to handle their interwoven 
structure adequately. This would require a complete analysis of the running system in the 
face of frequent changes. Even if such a separation were possible, the resulting 
independent subsystems might still be too large and their internal dependencies too 
complex. Static dependency checks based on architectural descriptions (similar to those 
found in modern compilers) are insufficient because computer systems evolve 
dynamically over time and their structure is subject to frequent changes.

Current initiatives and new approaches

Many current initiatives related to self-management take a practical approach, hoping to 
produce results fast. For example, several approaches to building closed control loops for 
online optimization exist. Diao and colleagues have demonstrated that a database system 
can self-optimize by describing parameter interdependencies in a rule base and by 
running an online optimization algorithm.13 The simplex-based online optimization finds 
new parameter settings and applies them to the running system. The optimization 
algorithm uses the system reaction to evaluate the new parameter settings' quality. 
Sandeep Uttamchandani and his colleagues also use a rule base for deriving management 
actions.15 The management system records and uses system behavior implications to 
select appropriate rules for the following actions. Boudewijn Haverkort employs a mix of 
online and offline optimization by testing possible adaptations against a system model 
before actually applying it to the running system.16 

These systems demonstrate that self-optimization and self-configuration for isolated 
subsystems, with respect to specific properties, is possible. Of course, they rely on 
accurate system descriptions and powerful, static rule sets. Adaptive rule sets are still an 
open issue. Moreover, the case studies presented involve a single isolated subsystem, such 
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as a database or proxy server.

Rejuvenation17 is a more radical approach that builds on controlled, possibly partial 
reboot or reset of a system. It uses Markov-chain-based fault prediction to select the right 
time for rejuvenation and thus for self-repair.

It's impossible to present a complete overview of self-management-related systems, but 
these approaches represent the mainstream. Applying prediction algorithms and online 
optimization techniques to achieve closed-loop management is possible with current 
technologies, although this application has yet to prove its success in large-scale 
interwoven systems.

To create truly autonomous systems, scientists must consider much more radical 
approaches and shift to unconventional paradigms. Here, we briefly review some of these 
approaches for more intelligent IT solutions. Some are quite visionary and, at first glance, 
not in line with the goals we've presented. However, they point to valuable research fields 
that could lead to a better understanding of and eventually new approaches to self-
management.

Process-control programming

In 1995, Mary Shaw introduced an alternative programming paradigm inspired by process 
control loops.18 In this paradigm, the programmer doesn't divide a program into 
components in the sense of object-oriented programming. Instead, he or she uses 
abstractions known from control theory. A program is divided into a process and a 
controller. The process's interface provides access to the input and controlled variables 
and encapsulates the sensors for capturing relevant process variables. The controller 
contains the control algorithm and provides access to the set point. In Figure 1, the 
Decision module is the controller and the Resource module is the process. The controller 
and the process are connected and represent a dataflow architecture with feedback 
(controlled variable). Shaw shows that using these abstractions, we can more intuitively 
model a classical control process, such as a car's cruise control. Furthermore, this 
approach separates the main process's basic operation from the compensation for external 
disturbances. The task of building control loops in self-managing systems might require 
similar paradigms.

Self-stabilizing systems

Self-stabilization is an established area that shares some concepts with self-management. 
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Edsger Dijkstra first introduced the notion in 1974, defining a system as self-stabilizing if 
"regardless of its initial state, it is guaranteed to arrive at a legitimate state in a finite 
number of steps."19A self-stabilizing system can recover from arbitrary transient faults 
within a finite time, provided that no further faults occur before the system is stable again. 
In contrast to that, systems that aren't self-stabilizing might stay in illegitimate states 
forever, even if no further faults occur. Depending on the definition of "fault," classical 
self-stabilizing systems can be associated with self-healing or self-optimization. Self-
stabilizing systems exhibit striking properties:

 They don't need any initialization because they stabilize from any (even 
illegitimate) state.

 They don't need to detect a fault to recover from it. Instead, self-stabilizing 
systems constantly push the system toward a correct state.

 They recover from arbitrary transient faults with a uniform mechanism.

Furthermore, general approaches exist to make algorithms self-stabilizing.20 However, 
running self-stabilizing algorithms in parallel can raise problems similar to those that 
arise in the case of control loops. Shlomi Dolev has introduced sufficient preconditions 
for the composition of self-stabilizing algorithms:20 

 The algorithms that are subject to composition must periodically have the 
chance to execute.

 There must not be a cyclic dependency between the algorithms' states.

In practice, guaranteeing the second condition is difficult owing to the interwoven nature 
of distributed systems. Recently, William Leal and Anish Arora21 published some new 
ideas on how to achieve scalable self-stabilization via composition. Their approach is 
based on correlation and corruption relations that make the dependencies explicit.

Soft systems and homeostasis

Shaw also points to the fact that it's necessary to design software to be "soft" and flexible 
instead of "brittle" and rigid.22 Traditionally, the system states upon which an application 
should act are completely specified and thus rigidly defined. Programs must be verifiable 
and are viewed as either correct or incorrect. In modern distributed systems, however, 
knowledge about the conditions under which a software component must run is inevitably 
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incomplete. Programs that work under rigidly defined conditions are brittle and tend to be 
inflexible regarding acceptable working conditions. Slightly different conditions cause 
such programs to fail. Shaw thus introduces the notion of sufficient correctness the 
definition of the current and desired state and of normal and faulty behavior should be 
fuzzy rather than precise. We need a region of degraded but still acceptable behavior to 
resolve the sudden transition between the healthy and faulty state that causes brittleness.

In addition, Shaw proposes putting homeostasis at the center of software design. A 
homeostatic system doesn't detect and explicitly repair faults. Instead, it constantly drives 
a system toward an acceptable state by continuously executing controlling actions in the 
background rather than triggering them only to repair a fault. This idea resembles that of 
self-stabilizing systems. Even though Shaw's idea isn't directly applicable in practice, it 
represents a new way of thinking about software. While the ACI leaves out any concrete 
ideas about how we should internally shape self-managing software, the principles of soft 
and homeostatic systems present a more tangible paradigm to building autonomic 
systems. Running homeostatic processes in the background becomes more feasible as the 
hardware becomes more powerful. For example, because everyday office applications 
don't require all the resources of modern desktop PCs, other operations (such as hard-disk 
indexing or cleanup operations) can use spare CPU cycles without interfering with the 
computer's normal operation.

Swarm intelligence

Many self-organizing biological systems23 are based on the principle of swarm 
intelligence. In an SI system, intelligent behavior emerges from the numerous interactions 
of simple subcomponents. Prominent examples include ants, bees, fish, and birds. The 
idea that subcomponents are extremely simple but the overall system manages itself 
adaptively is tempting from the computer science perspective. However, engineering such 
a system is extremely difficult24 because we don't fully understand the mechanisms 
responsible for the complex behavior of swarms. Such systems' high-level properties 
(such as foraging and nest building) are called emergent because they're not a direct 
consequence of the individuals' properties. So, specifying a desirable high-level behavior 
and mapping it to the lower-level components' behavior isn't straightforward.25 

One of the many mechanisms at work in natural swarms is the use of pheromone trails to 
select the shortest path between two locations. Ant colonies apply this principle, which 
has inspired a new research direction called ant colony optimization.26 Network routing27 
and fault management28 apply ACO.
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ACO and similar SI principles could become a vital ingredient in self-management, but 
first we need to solve the basic problem of purposefully engineering SI systems. The 
following sections present some encouraging steps toward this goal.

Self-structuring

Redhika Nagpal, Attila Kondacs, and Catherine Chang show how numerous low-level 
actors can form 2D shapes29 on the basis of a high-level description and without any 
central control. This shows that we can describe the collective, complex behavior of 
numerous interacting entities on a high level. The system can then map the description to 
low-level instructions for the interacting entities. Although this is a rather theoretical 
result, it represents an important step toward appropriate mechanisms for describing the 
collective behavior of the subcomponents in a SI-based distributed computing system. 
Following that same path might eventually lead to high-level design mechanisms that 
make the interwoven structures described earlier manageable for the designers of self-
managing systems.

Cell-based programming models

Selvin George, David Evans, and Lance Davidson present a basic approach to designing 
self-healing structures.30 They create structures from artificial cells that follow simple 
programs. These structures can heal externally imposed defects by "killing" individual 
cells. The authors achieve this using a mechanism that's based on the diffusion of artificial 
chemicals: Cells emit these chemicals and detect their concentration to react upon it. Cells 
are only loosely coupled, and the interactions are local and indirect. This approach 
presents one possible biologically inspired structure of self-healing, distributed computing 
systems.

Learning from the immune system

Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji describe a new approach for 
developing security systems31 based on principles resembling those found in biological 
immune systems. They use the body's ability to distinguish its own substances from 
external and potentially threatening substances as an inspiration for their system. Their 
computer immune system identifies malicious sequences of system calls. Using a database 
with known friendly and hostile sequences of system calls, the security system can 
identify similar patterns, categorize them, and eventually permit or prohibit them. The 
security system inaccurately categorizes between 1 and 20 percent of the calls. Owing to 
this wide range in accuracy, the system isn't ready to be applied in practice. However, it 
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demonstrates one possible realization of a self-protecting system.

Conclusion

Despite growing efforts related to self-management and the availability of well-known 
theories in related fields, we've only scratched the surface of autonomic systems. The 
concepts we've discussed lay out a possible agenda:

When developing new services and applications subject to management, we need to tailor 
them for self-management. Inherently designing systems as control processes might offer 
a useful abstraction to achieve this. Rendering the applications homeostatic and soft 
enables them to tolerate a much wider range of operating conditions. Researchers might 
take this initial step in the near future, because some of the necessary concepts are already 
present.

The next evolutionary step might occur as SI mechanisms and biologically inspired 
technologies mature. If we gain a better understanding of the principles applied by nature, 
computing systems will become increasingly bionic. However, the paradigm shift in this 
step will be drastic because natural systems have a completely different structure from 
contemporary computing systems. They rely on massively redundant subcomponents and 
probabilistic behavior (for example, ACO).

Clearly, this agenda for the evolution of self-managing systems requires an 
interdisciplinary effort. We expect scientific disciplines such as biology, complex systems 
research, physics, and sociology to contribute vital concepts that will enable computer 
science to overcome the inherent problems of self-management.
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The Autonomic Computing Initiative

Concepts for building dependable systems that tolerate errors and ensure robust and stable 
systems have existed for almost 40 years.1 The IEEE and IFIP initiated corresponding 
task forces in 1970 and in 1980, respectively. Recent efforts, however, define far more 
ambitious goals by propagating self-management as their ultimate objective.

IBM started the Autonomic Computing Initiative2 in 2001 and leads the trend toward self-
managing systems. The ACI sketches a far-reaching vision with the ultimate goal of 
rendering IT systems completely self-managing. The basic concepts of the ACI aren't 
new, but they represent a good basis for comparing and categorizing different approaches. 
We thus use it as a reference model for discussing open issues in self-management.
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