
IEEE DISTRIBUTED SYSTEMS ONLINE 1541-4922 © 2005 Published by the IEEE
Computer Society
Vol. 6, No. 1; January 2005

Self Management: The Solution to
Complexity or Just Another Problem?

Klaus Herrmann, Berlin University of Technology
Gero Mühl, Berlin University of Technology
Kurt Geihs, Berlin University of Technology

Traditionally, network and system management are manually controlled processes. It
usually takes one or more human operators to manage all aspects of a dynamically
evolving computing system. The operator is tightly integrated in this management
process, and his or her tasks range from defining high-level policies to executing low-
level system commands for immediate problem resolution. Although this form of human-
in-the-loop management was appropriate in the past, it has become increasingly
unsuitable for modern networked computing systems.

Several trends shaping the development of IT infrastructures have aggravated network
and system management:

 The rapidly increasing size of individual networks and the Internet as a
whole

 Hardware and software components' growing degree of heterogeneity

 The emergence of new networking technologies, such as ad hoc
networking, personal area networks, and wearable computing, which are
being combined with established technologies such as the Internet and
cellular-phone networks

IEEE Distributed Systems Online --January 2005
1

 Employees' growing need for mobile access to enterprise data

 The increased interdependency between business processes and the
corresponding software products

 The idea of disappearing computing, which states that the growing
number of computing devices pervading our everyday lives should be
invisible to us

 The accelerated development of new technologies, which forces
companies to restructure their IT systems more frequently

These trends indicate that IT infrastructures in large companies will grow even more
complex in the future. How can we administer systems of this complexity adequately?

This question has stimulated a large interest in self-management technologies
technologies that help systems autonomously control themselves. It's not realistic for

human operators to maintain control over a system that consists of thousands of
networked computers, mobile clients, and numerous application servers and databases.
We must redefine human operators' roles so that instead of being involved in the decision
process in an interactive and tightly coupled fashion, operators define general goals and
policies for system control.1 But is self-management the solution? Only if we can first
solve several open problems.

Current challenges

The Autonomic Computing Initiative (see the related sidebar) divides self-management
into four functional areas:2

 Self-configuration: Automatically configure components to adapt them to
different environments.

 Self-healing: Automatically discover, diagnose, and correct faults.

 Self-optimization: Automatically monitor and adapt resources to ensure
optimal functioning regarding the defined requirements.

IEEE Distributed Systems Online --January 2005
2

 Self-protection: Anticipate, identify, and protect against arbitrary attacks.

Because we can't realize these goals in one step, the ACI also defines five evolutionary
levels: Level 1 (basic) is the current state of the art in network management, where human
operators manage individual components more or less manually. Levels 2 4 define
intermediate stages in the evolution of IT systems toward completely autonomous
systems, which constitute Level 5 (autonomic).

Autonomic elements are an autonomic system's building blocks. An autonomic element
consists of a managed element and an autonomic manager controlling the managed
element. The managed element can be a single resource (hardware or software) or a
combination of different resources. Essentially, an autonomic element consists of a closed
control loop (Figure 1). Theoretically, closed control loops can control a system without
external intervention and can keep it in a specified target state. This concept is vital for
the ACI because it introduces the desired autonomy.

Figure 1. An autonomic element's closed control loop.

The vision of self-management at the autonomic level is far-reaching and presents many
challenges. Researchers have already solved some problems by introducing techniques
that help instrument and monitor resources3 and that use autonomous mobile agents for
proactive management.4 However, many issues involved with rendering management
tasks autonomous are still largely unresolved.

The biggest challenge is building closed control loops the most important concept of
self-management. The basic idea of control loops is well known from a wide variety of
technical applications a thermostat (consisting of a temperature sensor and a coupled

IEEE Distributed Systems Online --January 2005
3

flow control valve) and a car's antilock breaking system are just two examples. Closed
control loops can control a system parameter on the basis of some predefined set point
and constant observation of the parameter's current value (feedback). So, for a thermostat,
a human manually defines the set point (desired temperature), and the thermostat
measures the temperature and reacts by controlling the flow of heat (using the valve). An
ABS detects if a wheel locks and reacts by reducing the breaking power on that wheel
until it's spinning again. The fact that automotive companies spend considerable resources
developing and calibrating their ABS systems for each car model shows that this is
nontrivial in a more complex environment with numerous external influences.

However, modern distributed computing systems are several orders of magnitude more
complex than our two examples. An ABS is tailored for a specific task for which all
possible states and external influences are completely specified. In general, this isn't the
case in computer systems because they usually comprise numerous heterogeneous
components.

In fact, the name autonomic computing is inspired by the human body's autonomic
nervous system, which controls bodily functions such as respiration and heart rate without
requiring conscious action by the human being. This is exactly the aspiration behind the
ACI with respect to controlling a distributed computing system's numerous software and
hardware components. Application servers, databases, and communication infrastructures
should control themselves without any manual, external intervention. The core problems
in this respect are

 The lack of a widely accepted and concise definition of what self-
management actually means

 The lack of appropriate standards for unifying the process of self-
management, describing self-managing systems, and achieving
interoperability in open distributed systems

 The absence of mechanisms for rendering self-managing systems adaptive
and for enabling them to learn

 The fact that modern distributed systems tend to be inherently interwoven,
which potentially creates an overwhelming complexity

IEEE Distributed Systems Online --January 2005
4

The ACI's current definitions and notions lack the necessary clarity. Although the four
functional areas represent a useful categorization of self-management subareas, the
differences between them are somewhat fuzzy. For example, distinguishing between a
faulty system and a system that's in a suboptimal state isn't always easy. While a faulty
system would be subject to self-healing, a suboptimal system should self-optimize. What
exactly distinguishes self-healing from self-optimization? And how do they relate to self-
configuration? It's vital to answer such questions before comparing and categorizing the
plethora of existing systems and approaches.

Other concepts that exist in the research community are self-adaptation and self-
organization. Although we might intuitively regard them as being more general than the
concept of self-management, finding a clear definition of these terms is extremely
difficult if not impossible because the concepts behind them are still only partially
understood.

Furthermore, we should compare the newly shaped concepts of self-management with the
classic notions of dependable and fault-tolerant systems5 as well as self-stabilizing
systems.6 These areas have already produced concepts and technologies that fall within
the self-management domain. For example, leasing resources is a simple yet powerful and
widely used mechanism for garbage collection in systems subject to partial failure. The
system automatically frees a leased resource (such as a memory block) when the
leaseholder (such as a process) doesn't actively renew it in time. So, the resource will
always eventually be freed even if its holder crashes. Are lease-based systems self-healing
or self-optimizing?

System description and interoperability

Autonomously managing a complex distributed computing system requires adequate
means for describing the system as well as its current and desired states. This requires
describing, for example,

 The system architecture

 Management policies

 Some kind of rule base for inferring concrete controlling measures from
the currently perceived system state

 Service-level agreements and quality-of-service contracts that specify

IEEE Distributed Systems Online --January 2005
5

Standardized definitions

which requirements the system must fulfill

Formalisms and tools exist for each of these areas. However, we still need global
standards to ensure interoperability, at least on a syntactic level. Some approaches exist in
the research community to describe an adaptive system on the basis of Architecture
Description Languages.7 9 In the commercial sector, Microsoft promotes its Dynamic
Systems Initiative,10 which builds on the System Description Model. However, static
descriptions aren't adequate for autonomous adaptive systems. Self-adaptation requires
the system to also adapt the rules underlying the adaptation. For a system to be able to
adapt to potentially unknown, dynamic environments, it must be able to learn while being
applied in a productive environment. This, of course, also has consequences for potential
description techniques.

Additionally, we need standards for capturing relevant data from a running system. This
involves issues such as instrumentation, interface formats, and data exchange formats.
Fortunately, existing standards can help, such as the Open Group's Application Response
Measurement API11 or the Distributed Management Task Force's Common Information
Model.12

Learning systems

Human operators add a quality to management systems that current artificial systems can't
match humans can handle unknown situations and learn from their experiences. They
can categorize newly emerging faults and integrate this new knowledge into their
repertoire for the future. If we eventually remove the human operator from the
management control loop, then the management system must be able to similarly learn
from its experiences and improve its capabilities. The increasing dynamics of distributed
computing systems and the growing tendency to regularly restructure them require a
management system that's highly flexible and adaptable. The system must not only adapt
quickly to an existing static system but also autonomously customize itself to frequently
occurring changes.

Artificial systems have yet to achieve the degree of dynamic adaptation and learning
required for self-management. As a first step, Yixin Diao and colleagues have shown that
you can optimize a running database system for e-commerce applications with respect to
the system's response time.13 They describe the dependencies of configuration parameters
using a rule base. However, if the rules remain static, the system can't adapt to changes in
its environment. Such a system doesn't exist in isolation. The complex interactions with
other software and hardware components and dynamically changing usage patterns can

IEEE Distributed Systems Online --January 2005
6

produce a plethora of different working conditions. How does the system react if we add
other applications besides the e-commerce system? How does the self-optimization
module react if, for example, we need to optimize both memory usage and response time?
Optimizing both of these parameters together probably isn't equivalent to optimizing both
in isolation, so a new configuration and optimization problem emerges concerning the
rule base.

Interwoven systems

In many respects, the comparison to the human body's autonomic nervous system is quite
fitting. A healthy human body preserves an equilibrium involving all subsystems. The
common goal of all the processes in our body is survival. To achieve this, nature has
developed an enormous complexity that lets our body react appropriately to a wide
variety of different external stimuli. Our immune system, for example, can successfully
detect and eliminate even unknown, malicious substances. Moreover, in doing so, it
strengthens its resistance to future infections. This system is a complex closed control
loop with numerous subordinate control loops including temperature regulation,
respiration, and metabolic functions. Many of those systems interact in ways that we still
don't understand. An attempt to isolate one subsystem to study and understand it better
normally fails because in doing so we ignore important interactions with other
subsystems. This is the nature of a complex system: The whole is more than the sum of its
parts. A classic reductionist approach isn't guaranteed to lead to a better understanding of
the overall system.

Modern distributed computing systems also exhibit an interwoven structure. Different
subsystems such as operating systems, communication networks, and application
components depend on each other in many ways. A large portion of these dependencies
are indirect and neither explicitly planned nor obvious. It's a commonly perceived
problem that the overall system tends to behave in ways that we don't expect when
analyzing the subsystems in isolation.

This leads to a fundamental problem for self-management. According to IBM's vision, an
autonomic system might comprise thousands of closed control loops in different
subsystems.14 Separate control loops might control different aspects of the same
subsystem. For the purpose of a modular design and the separation of concerns, it seems
sensible that each manufacturer of a hardware or software component is in charge of
developing the control loops for its own components. However, owing to the overall
system's interwoven structure, these control loops will influence each other. Changes to
one subsystem imply direct or indirect changes to other subsystems because they change
the current system state that's perceived by numerous separate control loops.

IEEE Distributed Systems Online --January 2005
7

For example, let's assume that Diao's system13 improves the database's response time by
employing a control loop that increases the size of the in-memory buffer for caching data
if necessary. Let's further assume that, concurrently, the operating system runs a control
loop for optimizing memory usage. This control loop monitors the amount of free
memory, and if it detects a shortage, it uses a standard application-side interface for
telling applications to reduce their memory usage. This system, consisting of the database,
operating system, response-time control loop, and memory control loop (depicted in
Figure 2), can produce an undesirable oscillation. The two optimization criteria directly
conflict with each other: Caching large amounts of data in memory achieves a good
response time, while keeping memory usage low results in higher response times. One
action triggers the other, so they'll repeatedly increase and decrease the size of the in-
memory database cache. This thrashing will likely decrease overall system performance
considerably and might increase response time. So, the response-time control loop
triggers an even greater increase of the cache size to react to this condition. This feedback
loop will eventually lead to a new emergent behavior of the system: complete failure.

Figure 2. Indirect interaction between two separate control loops, causing undesirable
oscillation.

The two control loops of our fictional example must be able to reach an agreement. We

IEEE Distributed Systems Online --January 2005
8

need to combine the optimization criteria that were previously independent into a
compromise that's suboptimal with respect to the individual criteria. How can we achieve
this? Do the two control loops have to "know each other" in advance, or is a direct or
indirect mutual adaptation possible? Does this mutual adaptation scale with the number of
control loops in the system? How can the system detect and handle hidden dependencies
that extend over several indirections? How can we ensure that the "collective optimization
criteria" of all control loops lead to a desirable system state? What effects do faulty
control loops have in the presence of feedback effects that are possibly nonlinear (such as
the oscillation build-up in the example)?

The interwoven structure of modern distributed computing systems is definitely the most
important yet least-studied problem of self-management. It's unclear if real-world systems
can be partitioned into completely independent subsystems to handle their interwoven
structure adequately. This would require a complete analysis of the running system in the
face of frequent changes. Even if such a separation were possible, the resulting
independent subsystems might still be too large and their internal dependencies too
complex. Static dependency checks based on architectural descriptions (similar to those
found in modern compilers) are insufficient because computer systems evolve
dynamically over time and their structure is subject to frequent changes.

Current initiatives and new approaches

Many current initiatives related to self-management take a practical approach, hoping to
produce results fast. For example, several approaches to building closed control loops for
online optimization exist. Diao and colleagues have demonstrated that a database system
can self-optimize by describing parameter interdependencies in a rule base and by
running an online optimization algorithm.13 The simplex-based online optimization finds
new parameter settings and applies them to the running system. The optimization
algorithm uses the system reaction to evaluate the new parameter settings' quality.
Sandeep Uttamchandani and his colleagues also use a rule base for deriving management
actions.15 The management system records and uses system behavior implications to
select appropriate rules for the following actions. Boudewijn Haverkort employs a mix of
online and offline optimization by testing possible adaptations against a system model
before actually applying it to the running system.16

These systems demonstrate that self-optimization and self-configuration for isolated
subsystems, with respect to specific properties, is possible. Of course, they rely on
accurate system descriptions and powerful, static rule sets. Adaptive rule sets are still an
open issue. Moreover, the case studies presented involve a single isolated subsystem, such

IEEE Distributed Systems Online --January 2005
9

as a database or proxy server.

Rejuvenation17 is a more radical approach that builds on controlled, possibly partial
reboot or reset of a system. It uses Markov-chain-based fault prediction to select the right
time for rejuvenation and thus for self-repair.

It's impossible to present a complete overview of self-management-related systems, but
these approaches represent the mainstream. Applying prediction algorithms and online
optimization techniques to achieve closed-loop management is possible with current
technologies, although this application has yet to prove its success in large-scale
interwoven systems.

To create truly autonomous systems, scientists must consider much more radical
approaches and shift to unconventional paradigms. Here, we briefly review some of these
approaches for more intelligent IT solutions. Some are quite visionary and, at first glance,
not in line with the goals we've presented. However, they point to valuable research fields
that could lead to a better understanding of and eventually new approaches to self-
management.

Process-control programming

In 1995, Mary Shaw introduced an alternative programming paradigm inspired by process
control loops.18 In this paradigm, the programmer doesn't divide a program into
components in the sense of object-oriented programming. Instead, he or she uses
abstractions known from control theory. A program is divided into a process and a
controller. The process's interface provides access to the input and controlled variables
and encapsulates the sensors for capturing relevant process variables. The controller
contains the control algorithm and provides access to the set point. In Figure 1, the
Decision module is the controller and the Resource module is the process. The controller
and the process are connected and represent a dataflow architecture with feedback
(controlled variable). Shaw shows that using these abstractions, we can more intuitively
model a classical control process, such as a car's cruise control. Furthermore, this
approach separates the main process's basic operation from the compensation for external
disturbances. The task of building control loops in self-managing systems might require
similar paradigms.

Self-stabilizing systems

Self-stabilization is an established area that shares some concepts with self-management.

IEEE Distributed Systems Online --January 2005
10

Edsger Dijkstra first introduced the notion in 1974, defining a system as self-stabilizing if
"regardless of its initial state, it is guaranteed to arrive at a legitimate state in a finite
number of steps."19A self-stabilizing system can recover from arbitrary transient faults
within a finite time, provided that no further faults occur before the system is stable again.
In contrast to that, systems that aren't self-stabilizing might stay in illegitimate states
forever, even if no further faults occur. Depending on the definition of "fault," classical
self-stabilizing systems can be associated with self-healing or self-optimization. Self-
stabilizing systems exhibit striking properties:

 They don't need any initialization because they stabilize from any (even
illegitimate) state.

 They don't need to detect a fault to recover from it. Instead, self-stabilizing
systems constantly push the system toward a correct state.

 They recover from arbitrary transient faults with a uniform mechanism.

Furthermore, general approaches exist to make algorithms self-stabilizing.20 However,
running self-stabilizing algorithms in parallel can raise problems similar to those that
arise in the case of control loops. Shlomi Dolev has introduced sufficient preconditions
for the composition of self-stabilizing algorithms:20

 The algorithms that are subject to composition must periodically have the
chance to execute.

 There must not be a cyclic dependency between the algorithms' states.

In practice, guaranteeing the second condition is difficult owing to the interwoven nature
of distributed systems. Recently, William Leal and Anish Arora21 published some new
ideas on how to achieve scalable self-stabilization via composition. Their approach is
based on correlation and corruption relations that make the dependencies explicit.

Soft systems and homeostasis

Shaw also points to the fact that it's necessary to design software to be "soft" and flexible
instead of "brittle" and rigid.22 Traditionally, the system states upon which an application
should act are completely specified and thus rigidly defined. Programs must be verifiable
and are viewed as either correct or incorrect. In modern distributed systems, however,
knowledge about the conditions under which a software component must run is inevitably

IEEE Distributed Systems Online --January 2005
11

incomplete. Programs that work under rigidly defined conditions are brittle and tend to be
inflexible regarding acceptable working conditions. Slightly different conditions cause
such programs to fail. Shaw thus introduces the notion of sufficient correctness the
definition of the current and desired state and of normal and faulty behavior should be
fuzzy rather than precise. We need a region of degraded but still acceptable behavior to
resolve the sudden transition between the healthy and faulty state that causes brittleness.

In addition, Shaw proposes putting homeostasis at the center of software design. A
homeostatic system doesn't detect and explicitly repair faults. Instead, it constantly drives
a system toward an acceptable state by continuously executing controlling actions in the
background rather than triggering them only to repair a fault. This idea resembles that of
self-stabilizing systems. Even though Shaw's idea isn't directly applicable in practice, it
represents a new way of thinking about software. While the ACI leaves out any concrete
ideas about how we should internally shape self-managing software, the principles of soft
and homeostatic systems present a more tangible paradigm to building autonomic
systems. Running homeostatic processes in the background becomes more feasible as the
hardware becomes more powerful. For example, because everyday office applications
don't require all the resources of modern desktop PCs, other operations (such as hard-disk
indexing or cleanup operations) can use spare CPU cycles without interfering with the
computer's normal operation.

Swarm intelligence

Many self-organizing biological systems23 are based on the principle of swarm
intelligence. In an SI system, intelligent behavior emerges from the numerous interactions
of simple subcomponents. Prominent examples include ants, bees, fish, and birds. The
idea that subcomponents are extremely simple but the overall system manages itself
adaptively is tempting from the computer science perspective. However, engineering such
a system is extremely difficult24 because we don't fully understand the mechanisms
responsible for the complex behavior of swarms. Such systems' high-level properties
(such as foraging and nest building) are called emergent because they're not a direct
consequence of the individuals' properties. So, specifying a desirable high-level behavior
and mapping it to the lower-level components' behavior isn't straightforward.25

One of the many mechanisms at work in natural swarms is the use of pheromone trails to
select the shortest path between two locations. Ant colonies apply this principle, which
has inspired a new research direction called ant colony optimization.26 Network routing27
and fault management28 apply ACO.

IEEE Distributed Systems Online --January 2005
12

ACO and similar SI principles could become a vital ingredient in self-management, but
first we need to solve the basic problem of purposefully engineering SI systems. The
following sections present some encouraging steps toward this goal.

Self-structuring

Redhika Nagpal, Attila Kondacs, and Catherine Chang show how numerous low-level
actors can form 2D shapes29 on the basis of a high-level description and without any
central control. This shows that we can describe the collective, complex behavior of
numerous interacting entities on a high level. The system can then map the description to
low-level instructions for the interacting entities. Although this is a rather theoretical
result, it represents an important step toward appropriate mechanisms for describing the
collective behavior of the subcomponents in a SI-based distributed computing system.
Following that same path might eventually lead to high-level design mechanisms that
make the interwoven structures described earlier manageable for the designers of self-
managing systems.

Cell-based programming models

Selvin George, David Evans, and Lance Davidson present a basic approach to designing
self-healing structures.30 They create structures from artificial cells that follow simple
programs. These structures can heal externally imposed defects by "killing" individual
cells. The authors achieve this using a mechanism that's based on the diffusion of artificial
chemicals: Cells emit these chemicals and detect their concentration to react upon it. Cells
are only loosely coupled, and the interactions are local and indirect. This approach
presents one possible biologically inspired structure of self-healing, distributed computing
systems.

Learning from the immune system

Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji describe a new approach for
developing security systems31 based on principles resembling those found in biological
immune systems. They use the body's ability to distinguish its own substances from
external and potentially threatening substances as an inspiration for their system. Their
computer immune system identifies malicious sequences of system calls. Using a database
with known friendly and hostile sequences of system calls, the security system can
identify similar patterns, categorize them, and eventually permit or prohibit them. The
security system inaccurately categorizes between 1 and 20 percent of the calls. Owing to
this wide range in accuracy, the system isn't ready to be applied in practice. However, it

IEEE Distributed Systems Online --January 2005
13

demonstrates one possible realization of a self-protecting system.

Conclusion

Despite growing efforts related to self-management and the availability of well-known
theories in related fields, we've only scratched the surface of autonomic systems. The
concepts we've discussed lay out a possible agenda:

When developing new services and applications subject to management, we need to tailor
them for self-management. Inherently designing systems as control processes might offer
a useful abstraction to achieve this. Rendering the applications homeostatic and soft
enables them to tolerate a much wider range of operating conditions. Researchers might
take this initial step in the near future, because some of the necessary concepts are already
present.

The next evolutionary step might occur as SI mechanisms and biologically inspired
technologies mature. If we gain a better understanding of the principles applied by nature,
computing systems will become increasingly bionic. However, the paradigm shift in this
step will be drastic because natural systems have a completely different structure from
contemporary computing systems. They rely on massively redundant subcomponents and
probabilistic behavior (for example, ACO).

Clearly, this agenda for the evolution of self-managing systems requires an
interdisciplinary effort. We expect scientific disciplines such as biology, complex systems
research, physics, and sociology to contribute vital concepts that will enable computer
science to overcome the inherent problems of self-management.

References

1. D.L. Tennenhouse, "Proactive Computing,"Comm. ACM, vol. 43, no. 5, 2000, pp.
43-50.

2. A.G. Ganek and T.A. Corbi, "The Dawning of the Autonomic Computing Era,"
IBM Systems J., vol. 42, no. 1, 2003, pp. 5-18.

3. M. Debusmann and K. Geihs, "Efficient and Transparent Instrumentation of
Application Components Using an Aspect-oriented Approach," Proc. 14th

IEEE Distributed Systems Online --January 2005
14

IFIP/IEEE Workshop Distributed Systems: Operations and Management (DSOM
03), LNCS 2867, Springer-Verlag, 2003, pp. 209-220.

4. K. Herrmann and K. Geihs, "Integrating Mobile Agents and Neural Networks for
Proactive Management," Proc. IFIP Int'l Working Conf. Distributed Applications
and Interoperable Systems (DAIS 01), Chapman-Hall, 2001, pp. 203-216.

5. A. Avizienis, J.-C. Laprie, and B. Randell, Fundamental Concepts of
Dependability, research report N01145, Laboratory for Analysis and Architecture
of System of the Nat'l Center for Scientific Research (LAAS-CNRS), 2001.

6. M. Schneider, "Self-Stabilization," ACM Computing Surveys (CSUR), vol. 25, no.
1, 1993, pp. 45-67.

7. P. Oriezy, et al., "An Architecture-Based Approach to Self-Adaptive Software,"
IEEE Intelligent Systems, vol. 14, no. 3, 1999,pp. 54-62.

8. I. Georgiadis, J. Magee, and J. Kramer, "Self-Organising Software Architectures
for Distributed Systems," Proc. 1st ACM SIGSOFT Workshop Self-Healing
Systems (WOSS 02), ACM Press, 2002, pp. 33-38.

9. D. Garlan, S. Cheng, and B. Schmerl, "Increasing System Dependability through
Architecture-Based Self-Repair," Architecting Dependable Systems, R. de Lemos,
C. Gacek, and A. Romanovsky, eds., LNCS 2677, Springer-Verlag, 2003, pp. 33-
38.

10. Microsoft Dynamic Systems Initiative, white paper, Microsoft, 2003.
11. Open Group Technical Standard CO14, Application Response Measurement Issue

3.0 Java Binding, The Open Group, 2001.
12. Common Information Model (CIM) Specification Version 2.2., Distributed

Management Task Force, 1999.
13. Y. Diao, et al., "Generic Online Optimization of Multiple Configuration

Parameters with Application to a Database Server," Proc. 14th IFIP/IEEE
Workshop Distributed Systems: Operations and Management (DSOM 03), LNCS
2867, Springer-Verlag, 2003, pp. 3-15.

14. An Architectural Blueprint for Autonomic Computing, white paper, IBM, 2003.
15. S. Uttamchandani, C. Talcott, and D. Pease, "Eos: An Approach of Using

Behavior Implications for Policy-Based Self-Management," Proc. 14th IFIP/IEEE
Workshop Distributed Systems: Operations and Management (DSOM 03), LNCS
2867, Springer-Verlag, 2003, pp. 16-27.

16. B.R. Haverkort, "Model-Based Self-Configuration for Quality of Service," Proc.
SELF-STAR: Int'l Workshop Self-* Properties in Complex Information Systems,
2004, www.cs.unibo.it/self-star.

17. M. Malek, F. Salfner, and G.A. Hoffmann, "Self Rejuvenation: An Effective Way
to High Availability," Proc. SELF-STAR: Int'l Workshop Self-* Properties in
Complex Information Systems,2004, www.cs.unibo.it/self-star.

18. M. Shaw, "Beyond Objects: A Software Design Paradigm Based on Process
Control," ACM Software Eng. Notes, vol. 20, no. 11, 1995, pp. 27-38.

IEEE Distributed Systems Online --January 2005
15

19. E.W. Dijkstra, "Self-Stabilizing Systems in Spite of Distributed Control," Comm.
ACM, vol. 17, no. 11, 1974, pp. 643-644.

20. S. Dolev, Self-Stabilization, MIT Press, 2000.
21. W. Leal and A. Arora, "Scalable Self-Stabilization via Composition," Proc. 24th

Int'l Conf. Distributed Computing Systems, IEEE CS Press, 2004, pp. 12-21.
22. M. Shaw," 'Self-Healing': Softening Precision to Avoid Brittleness," Proc. 1st

ACM SIGSOFT Workshop Self-Healing Systems (WOSS 02), ACM Press, 2002,
pp. 111-113.

23. S. Camazine, et al., Self-Organization in Biological Systems, Princeton Univ.
Press, 2001.

24. J.M. Ottino, "Engineering Complex Systems,"Nature, vol. 427, Jan. 2004, p. 399.
25. A. Deutsch, "Self-Organization in Interacting Cell Networks: From Microscopic

Rules to Emergent Behavior," Proc. SELF-STAR: Int'l Workshop Self-* Properties
in Complex Information Systems,2004, www.cs.unibo.it/self-star.

26. V. Maniezzo, L.M. Gambardella, and F. De Luigi, "Ant Colony Optimization,"
New Optimization Techniques in Engineering, G.C. Onwubolu and B.V. Babu,
eds., Springer-Verlag, 2004, pp. 101-117.

27. G.D. Caro and M. Dorigo, "Ant Colonies for Adaptive Routing in Packet-
Switched Communications Networks," Proc. Parallel Problem Solving from
Nature, LNCS 1498, Springer-Verlag, 1998, pp. 27-30.

28. T. White and B. Pagurek, "Distributed Fault Location in Networks Using Learning
Mobile Agents," Proc. Approaches to Intelligent Agents: 2nd Pacific Rim Int'l
Workshop Multi-Agents (PRIMA 99), LNCS 1733, Springer-Verlag, 1999, pp. 182-
196.

29. R. Nagpal, A. Kondacs, and C. Chang, "Programming Methodology for
Biologically-Inspired Self-Assembling Systems," Computational Synthesis: From
Basic Building Blocks to High-Level Functionality: Papers from the AAAI Spring
Symp., AAAI Press, 2003, pp. 173-180.

30. S. George, D. Evans, and L. Davidson, "A Biologically Inspired Programming
Model for Self-Healing Systems," Proc. 1st ACM SIGSOFT Workshop Self-
Healing Systems (WOSS 02), ACM Press, 2002, pp. 102-104.

31. S. Forrest, S.A. Hofmeyr, and A. Somayaji, "Computer Immunology," Comm.
ACM, vol. 40, no. 10, 1997, pp. 88-96.

Klaus Herrmann is a PhD student at the Berlin University of Technology. His
research interests include self-organization principles in mobile networks, event-based
middleware systems, and mobile agents. He received his MS (Diplom-Informatiker) in
computer science from the Goethe University of Frankfurt. Contact him at Sekretariat
EN6, Einsteinufer 17, 10587 Berlin, Germany;klaus.herrmann@acm.org.

IEEE Distributed Systems Online --January 2005
16

Gero Mühl is a postdoctoral researcher at the Berlin University of Technology. His
research interests are middleware, event-based systems, self-organization, and mobile
computing. He received his PhD in computer science from the Darmstadt University of
Technology. He is a member of the ACM. Contact him at Sekretariat EN6, Einsteinufer
17, 10587, Germany g_muehl@acm.org.

Kurt Geihs is a professor of distributed systems at the Berlin University of
Technology. His research interests include distributed systems, operating systems,
networks, and software technology. His current projects focus on quality-of-service
management, component-based software, and middleware for mobile and ad hoc
networking. He received his PhD in computer science from the Aachen University of
Technology. Contact him at Sekretariat EN6, Einsteinufer 17, 10587 Berlin, Germany;
geihs@ivs.tu-berlin.de.

The Autonomic Computing Initiative

Concepts for building dependable systems that tolerate errors and ensure robust and stable
systems have existed for almost 40 years.1 The IEEE and IFIP initiated corresponding
task forces in 1970 and in 1980, respectively. Recent efforts, however, define far more
ambitious goals by propagating self-management as their ultimate objective.

IBM started the Autonomic Computing Initiative2 in 2001 and leads the trend toward self-
managing systems. The ACI sketches a far-reaching vision with the ultimate goal of
rendering IT systems completely self-managing. The basic concepts of the ACI aren't
new, but they represent a good basis for comparing and categorizing different approaches.
We thus use it as a reference model for discussing open issues in self-management.

References

1. A. Avizienis , J.-C. Laprie, and B. Randell, , Fundamental Concepts of
Dependability, research report N01145, Laboratory for Analysis and Architecture of
System of the Nat'l Center for Scientific Research (LAAS-CNRS), 2001.

2. A.G. Ganek and T.A. Corbi, , "The Dawning of the Autonomic Computing Era,"
IBM Systems J., vol. 42, no. 1, 2003, pp. 5-18.

Cite this article: Klaus Herrmann, Gero Mühl, and Kurt Geihs, "Self-Management: The
Solution to Complexity or Just Another Problem?" IEEE Distributed Systems Online, vol.
6, no. 1, 2005.

IEEE Distributed Systems Online --January 2005
17

