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Software component placement can be a significant challenge for large-scale online services. Profile-driven tools 
can identify placements that achieve near-optimal overall throughput. 

Online services are most often deployed on clusters1,2 of commodity machines to achieve high availability, 
incremental scalability, and cost effectiveness in the face of rapid service evolution and increasing user demand. 
Their software architecture typically comprises many components. Some components reflect intentionally modular 
design; others were developed independently and subsequently assembled into a larger application for example, 
to handle data from independent sources. A typical service might contain components responsible for data 
management, business logic, and presentation of results in HTML or XML.

Placement of these components on cluster nodes is challenging for three main reasons. First, substantial 
heterogeneity can exist both in component resource needs and in available resources at different nodes. Second, 
maintaining reasonable quality of service (for example, response time) is imperative for interactive network clients. 
Third, the ideal placement might be a function of not only static application characteristics but also various runtime 
factors, including bursty user demand, machine failures, and system upgrades. Our goal is to develop the software 
infrastructure needed for efficient dynamic component placement in cluster-based online services.

Our basic approach (see Figure 1) is to build per-component resource consumption profiles (or componentprofiles, 
for short) as a function of input workload characteristics. The resources we currently consider are CPU, network 
bandwidth, and memory usage, each of which we characterize in terms of average and peak resource requirements. 
Our approach then determines component placement on the basis of the profiles, available system resources, and 
runtime workload characteristics. Our approach can make placement decisions either at a centralized executive 
server or in a fully distributed fashion. It can also make decisions dynamically for runtime component migration by 
monitoring the input workload characteristics. As far as we know, our approach is the only one that employs a 
parameterization based on input workload characteristics for cluster-based online services. (For other placement 
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approaches, see the "Research on Distributed-Component Placement" sidebar.) This enables inexpensive 
monitoring and accurate prediction based on the component profiles.

Figure 1. Profile-driven component placement. 

Design framework

Our component placement system has three main features. First, it offers offline measurement and modeling 
mechanisms for building the component profiles. Second, it offers profile-driven performance projection and an 
automatic component placement strategy optimized for high system throughput. Finally, as we mentioned before, it 
allows for runtime workload monitoring and dynamic component migration.

Building component profiles 

For the CPU and network bandwidth, an average rate r and a peak rate f captures each resource's consumption 
specification. We measure and accumulate resource consumption statistics at periodic intervals. The peak rate is the 
maximum or a high (for example, 90) percentile value of such statistics. The average and peak resource needs let us 
estimate upper and lower bounds on throughput.

Regarding memory usage, variability in available memory size often severely affects application performance. In 
particular, a memory deficit during one time interval can't be compensated simply by a memory surplus in the next 
time interval. So, we use only the maximum requirement fmem for specifying memory requirements in the 

component profile.
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To parameterize the input workload specifications in the profiles, we use an average request arrival rate lworkload 

and other workload characteristics (denoted by dworkload) such as the composition of different request types (or 

request mix). The request mix is relevant because different request types might not consume the same resources. 
For example, a workload consisting entirely of Web page retrievals and one consisting entirely of new-user 
registrations consume very different resources.

So, the profile for a distributed application component specifies the following mapping f():

f(lworkload, dworkload) ® (rcpu, fcpu, rnetwork, fnetwork, fmem)

Many functional relationships in f() will likely take simple, expressible forms. For instance, rcpu, fcpu, rnetwork, and 

fnetwork will likely be linear in lworkload.

Several techniques are available to measure system resource utilization by application components under various 
workloads. One such technique uses OS-provided interfaces to acquire resource consumption statistics. For 
instance, the SYSSTAT toolkit (see http://perso.wanadoo.fr/sebastien.godard) provides CPU, memory, and I/O 
resource consumption statistics through access to the Linux /proc interface. One drawback of such an approach is 
that the measurement accuracy is limited by the frequency of statistics reporting from the OS. Another technique, 
represented by the Linux Trace Toolkit,3 directly instruments the OS kernel to report resource consumption 
statistics. LTT can provide accurate system statistics but requires significant kernel changes.

For information on other profiling research, see the sidebar "Research on Application-Resource-Consumption 
Profiling." 

High-throughput component placement 

The key to our optimized placement is the ability to project system throughput under each placement strategy, using 
a three-step process.

First, by knowing the component profile and input workload characteristics, we can learn the mapping between the 
input request rate lworkload and component runtime resource demands (rcpu, fcpu, rnetwork, fnetwork, fmem).

Second, given a component placement strategy, we can derive the maximum input request rate that can saturate the 
CPU, network bandwidth, or memory resources at each server. For CPU and network bandwidth, we can use either 
the average or peak resource needs to derive the rate. Let tCPU average, tCPU peak, tnetwork average, tnetwork peak, and 

tmemory denote such saturation rates at a server. Components collocated on the same server must share the host CPU 

and memory resources, while the intraserver component communication can exploit high-bandwidth IPC 
(interprocess communication) mechanisms.

Third, we can estimate the system throughput as the lowest saturation rate for all resource types at all servers. Using 
the average resource needs, we can derive an optimistic throughput estimate:
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Using the peak resource needs, we can derive a pessimistic throughput estimate:

Because we can project system throughput under any placement strategy, we can discover a high-throughput 
component placement through exhaustive search. However, the search space for all possible placement strategies 
can be very large for applications with many components over many servers. When exhaustive search becomes 
computationally infeasible, low-complexity optimization algorithms become necessary. Previous studies have 
proposed such algorithms for certain constrained cases.4,5 

Business logic constraints might impact the placement policy. In this case, we simply remove invalid placement 
candidates from the search space, and select the high-throughput choice from the remaining candidates.

Runtime component migration 

To estimate runtime component resource needs, we need knowledge of runtime dynamic workload characteristics. 
Our system will feed this information into the component placement executive (see Figure 1) to assist dynamic 
placement decisions. Some component middleware systems can be instrumented to trace intercomponent 
messages.6,7 To provide less intrusive monitoring, we could employ network-level packet sniffing.

Marcos Aguilera and his colleagues propose performance debugging for multicomponent online applications based 
on message traces.8 They analyze intercomponent causal message paths and then derive the corresponding 
component response time. However, they use precollected message traces, and they don't explicitly address the 
acquisition of runtime workload characteristics. Odysseytrades application resource demands for service quality, or 
fidelity, using a history-based prediction of resource demands.9 In comparison, because we use component profiles, 
we need only to monitor the input workload characteristics at runtime, which is cheaper and more accurate than 
directly predicting runtime resource demands.

Besides performance optimization, runtime component migration must consider two issues.

First, to achieve high scalability and fault tolerance, the component placement executive can have a decentralized or 
even peer-to-peer architecture. For instance, servers can share components' runtime workload characteristics and 
profiles with their peers. Participating servers can then independently make component migration decisions that 
they consider beneficial.

Second, system stability is important, especially when migration decisions are decentralized. To achieve a certain 
level of stability, we can employ a component migration threshold such that the system performs only those 
migrations that produce an over-the-threshold benefit. A careful balance must be maintained between 
responsiveness and system stability.
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Preliminary results

To test the effectiveness of profile-driven component placement, weperformed experiments based on the RUBiS 
(Rice University Bidding System) benchmark.10 RUBiS is an auction site prototype modeled after eBay; it 
implements such a site's core functionality: selling, browsing, and bidding. It follows the three-tier Web service 
model, containing a front-end Web server, movable business logic components, and a back-end database. We used 
the Enterprise JavaBeans (EJB) version of RUBiS with bean-managed persistence. We provide results here only for 
static placement; we'll investigate dynamic component migration in the future.

We conducted profiling and experiments on a Linux cluster connected by a 100-Mbytes-per-second Ethernet 
switch. Each server had dual 1.26-GHz Pentium III processors and 2 Gbytes of memory. A JBoss 3.2.3 application 
server with an embedded Tomcat 5.0 servlet container hosted the RUBiS EJB components. The database server ran 
MySQL 4.0. The data set was approximately 1 Gbyte; we sized it according to database dumps published on the 
RUBiS Web site, http://rubis.objectweb.org.

Component profiling 

RUBiS contains 11 components: the Web server, the database, and nine EJB components implementing the auction 
service logic (Bid, BuyNow, Category, Comment, Item, Query, Region, User, and 
UserTransaction). During our profiling runs, each component ran on a dedicated server, and we measured the 
component resource consumption at request rates ranging from one to 11 requests per second. Our request mix was 
15 percent read-write requests and 85 percent read-only requests, which is similar to the mix that Emmanuel 
Cecchet, Julie Marguerite, and Willy Zwaenepoel use.10 We used a modified SYSSTAT toolkit in the 
measurement. For the peak CPU and network usage, we recorded the 90-percentile values for the measured rates at 
one-second intervals.

Once we had the resource consumption measurements, we derived general functional mappings using linear fitting. 
Figures 2 and 3 show such a derivation for the Bid component and the Web server. Table 1 lists the profiling 
results for all 11 components. We don't show the memory-profiling results because we can't precisely measure the 
component memory consumption using SYSSTAT . This didn't affect the component placement decisions for this 
experiment because the server memory wasn't the bottleneck resource under any placement.
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Figure 2. Linear fitting for the Bid component: (a) CPU average and peak usage; (b) network average and peak 
usage. 
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Figure 3. Linear fitting for the Web server: (a) CPU average and peak usage; (b) network average and peak usage. 
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Table 1. Component profiles for RUBiS (Rice University Bidding System), based on linear fitting of measured 

resource usage at 11 input request rates. workload is the average request arrival rate (in requests/second).

High-throughput component placement 

We examined the component placement problem on two servers. We placed the restriction that the Web server and 
the database are never collocated on one server. Because we could place each of the remaining nine components on 
either the Web server or the database server, this setup had 512 possible component configurations. We then 
projected the optimistic and pessimistic system throughput for each of the 512 configurations. We chose the 
placement with the best pessimistic performance (called profiler's choice). In this placement, Query, Region, and 
User are collocated with the Web server while the other EJB components are collocated with the database.

We compared this placement with three other strategies based on common heuristics. The first two strategies placed 
all EJB components with the Web server or with the database, respectively. The third strategy (called writers with 
Web) placed all read-write components (that is, Bid, BuyNow, Comment, Item, and 
UserTransaction) with the Web server and the read-only components with the database. The intuition behind 
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this strategy was that read-only components tend to interact more with the database.

Figure 4 shows the RUBiS throughput under different levels of input workload. In our experiments, we counted a 
request as successful only if it returned within eight seconds. We define a placement's throughput as the highest 
throughput achieved at any input request rate. The results show that profiler's choice outperformed all other 
placement strategies by over 30 percent. Performance degraded slightly after the system attained maximum 
throughput. This is because some requests exceeded the time-out limit of eight seconds despite being partially 
completed.

Figure 4. The performance of different component placement strategies for RUBiS (Rice University Bidding 
System). 

Figure 5 illustrates the accuracy of pessimistic and optimistic throughput estimations for the four placement 
strategies. On average, the pessimistic estimation is 39 percent smaller than the optimistic estimation. The 
measurement results almost always fall between the two estimations. Component profiles constructed using more 
fine-grain resource usage measurements (for example, LTT) should improve the accuracy of the throughput 
estimations. Taking other factors into consideration, such as component context switch and remote-invocation 
overhead, might also improve accuracy. We plan to investigate these issues.
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Figure 5. The accuracy of throughput estimations. 

Conclusion

Future work will proceed on two principal fronts. First, we'll study heuristic placement for heterogeneous systems 
with many components and nodes. As we mentioned before, we'll also investigate runtime workload monitoring 
and dynamic online component migration to handle changing input workload characteristics.
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Research on Distributed-Component Placement 

Our work is related to a number of prior studies on distributed-component placement. Coign examines the 
optimization problem of minimizing communication time for two-machine client-server applications.1 ABACUS 
focuses on the placement of I/O-specific functions for cluster-based data-intensive applications.2 Addistant3 and J-
Orchestra4 support partitioning and distributing execution of "legacy" Java applications through byte code 
rewriting. DVM (Distributed Virtual Machine) further adds security to such support.5 Except for Coign, these 
projects focus on mechanisms for transparent remote execution, leaving placement decisions largely to users.

Anca-Andreea Ivan and her colleagues examine the automatic deployment of component-based software over the 
Internet, subjected to throughput requirements.6 In their approach, application developers must specify each 
component's resource requirements. Bhuvan Urgaonkar and his colleagues study the benefit of letting applications 
overbook CPU and network resources in shared hosting platforms.7 Their work is limited to the placement of 
multiple single-component server applications that don't interact.

The Aura8 and Chroma9 projects propose exporting system-level mobility information to user-level agents, which 
can then make strategic decisions (including component placement) based on their model of user activity and intent. 
User-level involvement in placement systems seems particularly valuable for "intelligent" applications, in which 
user intent is central and closely tied to mobility. For online services, however, we emphasize transparent system-
level management.
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Research on Application-Resource-Consumption Profiling

Bhuvan Urgaonkar and his colleagues use application-resource-usage profiling to guide application placement in 
shared hosting platforms.1 Cristiana Amza and her colleagues provide bottleneck resource analysis for three 
dynamic online-service benchmarks.2 Xiaohui Gu and Klara Nahrstedt examine quality-of-service-aware 
multimedia service partitioning and placement based on service dependency graphs.3 Although their application-
profiling research is somewhat similar to our research, our component profiles provide a more detailed 
characterization of the mapping between input request rate and application resource consumption. Such information 
is critical to making high-throughput placement decisions when resource needs are workload dependent.

A recent study by Ron Doyle and his colleagues models the service response time reduction with increased memory 
cache size for Web servers.4 However, such modeling is only feasible with intimate knowledge about application-
memory-usage behavior. It doesn't share our goal of maintaining general applicability on a wide range of 
applications.
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