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Elimination of Overflow Oscillations in Fixed-Point
State-Space Digital Filters With Saturation

Arithmetic: An LMI Approach
Haranath Kar and Vimal Singh

Abstract—A novel, linear-matrix inequality (LMI) based, cri-
terion for the nonexistence of overflow oscillations in fixed-point
state-space digital filter employing saturation arithmetic is pre-
sented. The criterion is based on a unique characterization (as pre-
vailing in the filter under consideration) of the saturation nonlin-
earities, namely, an “effective” reduction of the sector.

Index Terms—Asymptotic stability, digital filters, finite-
wordlength effects, nonlinear systems.

I. INTRODUCTION

THIS PAPER deals with the problem of global asymptotic
stability of digital filters in state-space realization using

saturation arithmetic. Specifically, the system under considera-
tion is

(1a)

(1b)

where is an -vector state, is the coefficient
matrix, and denotes the transpose. The saturation nonlineari-
ties given by

(1c)

where , are under consideration. Throughout the
paper, it is understood that is stable, i.e.,

(1d)

where denotes the identity matrix.

Equation (1) may be used to describe a class of discrete-time
dynamical systems with symmetric state saturation, which in-
clude digital filters using saturation overflow arithmetic, digital
control systems with saturation nonlinearities, a class of neural
networks, and so on.

A few criteria have been proposed for the nonexistence of
overflow oscillations in system (1). In this context, [1] and [2]
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may be specially mentioned. According to [1], system (1) is
globally asymptotically stable if

(2a)

where and is an matrix charac-
terized by

(2b)

(2c)

and are real numbers such that

(2d)

(2e)

On the other hand, according to [2], system (1) is globally
asymptotically stable if

(3a)

(3b)

where .
It may be noted that neither (2) nor (3) is a linear matrix in-

equality (LMI) [3], [4]. In other words, both (2) and (3) are com-
putationally demanding. In this paper, we present an LMI based
criterion for the global asymptotic stability of system (1). The
presented criterion makes use of an unique characterization (as
prevailing in the system under consideration) of the saturation
nonlinearities, namely, an “effective” reduction of the sector.
The criterion may uncover some new [i.e., not covered by
(2) and (3)] for which (1) is globally asymptotically stable.

II. MAIN RESULTS

In view of (1), we have

(4)

Define

(5)

Now, we prove the following result.
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Theorem 1: The system described by (1) is globally asymp-
totically stable if

(6)

Proof: Condition (6) implies that

(7)

Therefore

(8)

where use has been made of (4) and (7). Thus, no overflow oc-
curs in (1) if (7) holds true. In other words, with the condition
expressed by (6), system under consideration reduces to a linear
stable system. This completes the Proof of Theorem 1.

The following lemma is needed in the proof of our next the-
orem.

Lemma 1: If

(9a)

(9b)

then the global asymptotic stability of (1) is equivalent to that
of (10), shown at the bottom of the page.

Proof: Using similar steps as in the Proof of Theorem 1,
it follows, from (9b), that

(11)

Thus

(12)

This completes the Proof of Lemma 1.

Next, we have the following result.
Theorem 2: The system described by (1) and (9) is globally

asymptotically stable if there exists an positive definite
matrix and an positive definite diagonal matrix

such that

(13a)
where

(13b)

(13c)

Proof: From Lemma 1, it follows that the global asymp-
totic stability of the system described by (1) and (9) is equivalent
to that of system (10). Define

(14)

Substituting from (14) in (10a) and noting (10b)
yields

(15)

where is defined in (13b). Now, consider a quadratic Lya-
punov function

(16)

Application of (16) to (15) yields

(17)

(10a)

...

(10b)

(10c)
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Now consider the quantity “ ” given by

(18)

For the nonlinearities given by (1c), is nonnegative.
Equation (17) can be rearranged as

... (19)

which satisfies

(20)

if (13) holds true. This completes the Proof of Theorem 2.
Theorem 3: If

(21a)

then system (1) is globally asymptotically stable provided there
exists an positive definite matrix and an

positive definite diagonal matrix )
such that

(21b)

where

(21c)

Proof of Theorem 3 is similar to that of Theorem 2 and is,
therefore, omitted.

Remark 1: The conditions expressed by (13) and (21) are
LMI [3], [4].

Remark 2: The presented criteria (Theorem 2 and Theorem
3) make use of the fact that, pertaining to the system under con-
sideration, the saturation nonlinearities can be viewed
as confined to the sector , rather than
being viewed [5] as confined to the sector .

III. COMPARATIVE EVALUATION

As shown in [6], pertaining to second-order digital filter, (2)
leads to

(22a)

if

(22b)

On the other hand, (3) yields [7]

(23)

Now consider a specific example of second-order digital filter
with

(24)

Both (22) and (23) are violated for this example.
In the example under consideration,

and, consequently, Theorem 2 can be applied to test the global
asymptotic stability. Choosing and

(25)

which is positive definite, it is found that the matrix in (13a)

(26)

is positive definite. Thus, according to Theorem 2, the filter
under consideration is globally asymptotically stable.

The above example, therefore, illustrates that, for some , the
new criterion may lead to results not covered by (2) and (3).

IV. CONCLUSION

A criterion for the nonexistence of overflow oscillations in
fixed-point state-space digital filters employing saturation arith-
metic is established. The criterion takes the form of LMI and,
hence, is computationally tractable.
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