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Abstract—In this paper, by extending our previous work
on general linear-phase paraunitary filter banks even-channel
(LPPUFBs), we develop a new structure for LPPUFBs with the
pairwise mirror image (PMI) frequency responses, which is a
simplified version of the lattice proposed by Nguyen et al. Our
simplification is achieved through trivial matrix manipulations
and the cosine–sine (C–S) decomposition of a general orthogonal
matrix. The resulting new structure covers the same class of
PMI-LPPUFBs as the original lattice, while substantially re-
ducing the number of free parameters involved in the nonlinear
optimization. A design example is presented to demonstrate the
effectiveness of the new structure.

Index Terms—Cosine–sine (C–S) decomposition, linear-phase,
pairwise mirror image (PMI) frequency responses, parameteriza-
tion, paraunitary.

I. INTRODUCTION

L INEAR-PHASE paraunitary filter banks (LPPUFBs) have
been extensively used in the application of image pro-

cessing. Over the past decade, many works have exploited the
design of -channel LPPUFBs through the lattice factoriza-
tion [1]–[10]. In [3], Soman et al. first developed a complete
and minimal factorization for even-channel LPPUFBs. An alter-
native, but equivalent form of this structure with slightly fewer
parameters was presented in [5]. Later, extension to perfect re-
construction systems was provided in [6]. Simplified structures
of [3], [5], and [6] were recently reported in [7] and [8], which
results in a considerable reduction on the number of free param-
eters, while retaining the generality of the factorizations in [3]
and [5]. This facilitates both the design and the implementation
of LPPUFBs.

Even after the simplification, the number of free parameters
can be still quite large with the increase of the number of chan-
nels and the filter length. In this paper, we aim to further re-
duce the design complexity by adding the pairwise mirror image
(PMI) property to LPPUFBs, in which the frequency responses
of each pair of filters are symmetric with respect to . Several
works on this topic have been reported by other researchers in
the past. A factorizaton for even-channel system was presented
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in [2]–[4], while odd-channel factorizations can be found in [9]
and [10]. However, in these factorizations, the number of free
parameters is nearly equal to that of simplified factorizations
for general LPPUFBs in [7] and [8]. Intuitively, by imposing the
PMI property, fewer parameters are required than those of the
general LPPUFBs. Therefore, the method introduced in [8] is
extended in this paper to simplify the factorization of PMI-LP-
PUFBs. For simplicity, we only consider even-channel systems
and the simplification is based on the structure in [2]. After our
simplification, the degrees of design freedom are reduced by a
large margin, while the design space is not affected at all. This
can significantly simplify the design complexity.

Notations: For a real number , and represent the
ceiling and the floor of , respectively. Vectors and matrices are
indicated in bold-faced letters. Subscripts will be provided only
if their sizes are not clear from the context. Superscript T stands
for transposition. Special matrices used extensively throughout
this paper are: the identity matrix , the reversal matrix , and
the null matrix . Besides, and are butterfly
matrices as follows:

and

Moreover, is an diagonal matrix with the form
of .

II. REVIEW OF EXISTING FACTORIZATIONS

A. General LPPUFBs

Consider an -channel LPPUFB with
all filters of the same length each. Let be the
corresponding polyphase matrix. It was first proved in [3] and
[5] that can be always factorized into

(1)

where each propagation matrix (for )
and the initial matrix can be expressed as

(2)

(3)

in which and (for ) are general
orthogonal matrices.
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In (1), each propagation matrix contains two
arbitrary orthogonal matrices and . According to
[8], the above structure can be simplified through the fol-
lowing trivial matrix manipulations. Note that the product

can be rewritten as

(4)

That is, the component can be moved
across the delay chain and butterfly matrices to combine
with in . As ,
and are free orthogonal matrices, and

are also free orthogonal matrices. Thus,
can be set to without loss of generality. By iteratively
applying the above manipulations to (for

), all (except ) can be removed, and
consequently, can be replaced by as follows:

(5)

After such a modification, the design space remains the same,
while the complexity for both design and implementation can
be reduced by nearly 50%.

B. PMI-LPPUFBs

In this paper, we aim to extend the above simplification to LP-
PUFBs with the PMI property, where the analysis filters
(for ) satisfy [2]

(6)

It was proved in [2] that this property can be obtained by re-
stricting in (2) to be

(7)

in which is a diagonal matrix whose diagonal entries are
, for . With this restriction,

each propagation matrix contains one arbitrary orthog-
onal matrix . As we have said, only one free matrix is needed
for each propagation building block in general LPPUFBs. By
adding the PMI constraint, fewer parameters should be needed,
which implies that the structure for PMI-LPPUFBs in (1) can
be further simplified.

III. SIMPLIFIED STRUCTURE FOR PMI-LPPUFBs

In this section, by slightly modifying the simplification for
general LPPUFBs, we first arrive at a new representation of
(1), where each order-one building block contains one special
orthogonal matrix. The cosine–sine (C–S) decomposition [11]
is then exploited to parameterize the special orthogonal matrix,
which leads to significant parameter reduction.

A. New and Equivalent Factorization

In PMI systems, due to the relation of and , we can not
simply discard as in general LPPUFBs. Thus, we need to
slightly modify the manipulation in (4). Note that since
is an orthogonal matrix, we have

(8)

Substituting (8) into (4), we can thus reformulate
into

(9)

Namely, the component , instead of
, is merged with .

Since and , one can
derive that

(10)
This implies that the relation of and is preserved
in and . Likewise, the component

can be combined with
. Repeating this process for times,

we can get a new and equivalent structure of (1) as follows:

(11)

(12)

(13)

where each (for ) in is expressed
as

(14)
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Fig. 1. Implementation of two equivalent structure for PMI-LPPUFBs. (a) Structure of (1). (b) Simplified structure in (11).

in which

(15)
Besides, in , and are

(16)

The implementations of (1) and (11) are shown in Fig. 1(a)
and (b), respectively. It is clear that these two structures have
the same implementation complexity. However, unlike in

in is not an arbitrary orthogonal matrix. The
relation between and in (7) imposes certain constraints
on . Note that following the same approach as that in (10),
we have

(17)

Then, substituting (17) into (14) yields

(18)

in which

(19)

One can verify that in is a special symmetric orthogonal
matrix, i.e., . Obviously, should contain fewer
degrees of design freedom than the general orthogonal matrix

. Section III-B will discuss the parameterization of .

B. Matrix Parameterization

Let and . As has 1’s
and ’s, there exists a permutation matrix such that

. Define a new orthogonal matrix

, i.e., . From (18), can be written
into

(20)

With this new form of , the parameterization can be obtained
by using the C-S decomposition of [11]. Recall that in the
C-S decomposition [11], can be completely characterized as

(21)

where and are general orthogonal matrices,
while and are general orthogonal matrices
and is an special orthogonal matrix defined as

(22)

in which and are diagonal matrices with di-
agonal entries and (for

and ). Substituting (21) into
(20) produces

(23)

Then, taking advantage of the fact that

(24)

we can further reduce to

(25)
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TABLE I
NUMBER OF FREE PARAMETERS IN ANM -CHANNEL (M = 2m) PMI-LPPUFB WITH FILTER LENGTH OF L = KM

where is given by

even

odd
(26)

in which and are two diagonal matrices whose entries
are and , respectively,
with . As a result, we arrive at the
following Theorem.

Theorem 1: Any in (1) can be always written as in (11),
where each order-one building block and the initial ma-
trix are shown in (12) and (13), respectively. In , each

orthogonal matrix can be represented as in (25).
While in is an arbitrary orthogonal matrix, and

can be expressed as .
Now, let us compare the degrees of design freedom of (1) and

(11). It can be readily seen that and hold the same design
freedom since they have one free orthogonal matrix and ,
respectively. The difference lies in and . In

of (1), each requires rotation

angles and sign parameters for a complete parameterization.
On the other hand, in , (25) implies that can be fully
characterized by two general orthogonal matrices

and one special orthogonal matrix . As , and

contain , and rotation angles, respectively,

the total number of free rotation angles in is

. One can calculate that for even and

for odd . Besides, in (25), if each is
allowed to take arbitrary values in parameterization, the sign
parameters in can be discarded. Based on the
above analysis, the number of free parameters in each structure
is listed in Table I.

From Table I, one can get the following conclusions.

• When , same number of parameters is required in
each structure.

• When and , both structures have the same
number of rotation angles, but our structure contains fewer
sign parameters than the original structure.

• When and , our structure gains a reduction
in both rotation angles and sign parameters. For a fixed
(thus, fixed ), the differences in both rotation angles and
sign parameters are linear to . For a fixed , the

difference in rotation angles is a quadratic function of ,
while that of sign parameters is linear to .

Summarizing, in our new structure of (11), the design com-
plexity is much less than that in (1), especially for large number
of channels and long filters.

IV. DESIGN EXAMPLE

This section presents a design example of PMI-LPPUFB with
and . The chosen criterion is a weighted com-

bination of the coding gain, the dc leakage and the stopband
attenuation as follows:

(27)

To be more specific, represents the coding gain,
which is given by [12]

(28)

where and are the variances of the input signal and the
-th subband signal, respectively. Following the convention, the

signal in use is an AR(1) process with a correlation coefficient
. The dc leakage is defined as

(29)

Since are antisymmetric, their frequency responses
are equal to zeros at . Thus, only even-numbered filters
are considered in (29). is the sum of stopband energy of

(for ) as follows:

(30)

where denotes ’s stopband, with
and given by and

, respectively. Note that due to
the PMI property, only the first half filters are included in (30).

The design was carried out for both (1) and (11) through
the Matlab function fminunc in the optimization toolbox. From
Table I, it can be calculated that the number of free rotation an-
gles in (1) and (11) are 30 and 22, respectively. For simplicity,
all the sign parameters are set to be ones. To have a fair compar-
ison of both structures, the initial values are chosen so that the
optimizations start from , in which
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(a)

(b)

Fig. 2. Optimized PMI-LPPUFBs with M = 8 and K = 5. (a) Results of
(1). (b) Results of (11).

denotes the 8 8 Walsh–Hadamard transform. To be more spe-
cific, both and are chosen as .
For the order-one propagation matrix, the free matrix in

(for ) are set to be . While in
. These can be obtained by setting

, and .
On a Pentium IV, 1.9-GHz computer, it turns out that the

optimization time for (1) and (11) are 23 and 16 s, respec-
tively. Fig. 2(a) and (b) show the frequency responses of the
optimized PMI-LPPUFBs based on (1) and (11), respectively.
Table II documents the numerical results. One can see that the
PMI-LPPUFB based on our structure outperforms that of the
original lattice in all accounts. Thus, by discarding redundant
parameters, our lattice structure can not only speed up the op-
timization, but also more effectively avoid being trapped in a
local minimum.

TABLE II
COMPARISON OF TWO OPTIMIZED PMI LPPPUFBs

V. CONCLUSION

This paper proposes a new structure for PMI-LPPUFBs with
even-channel, which is a simplified version of the lattice in [2].
The new structure spans the same class of PMI-LPPUFBs as
the original lattice, while the number of free parameters is sig-
nificantly reduced. Through this way, better results with faster
convergence in the optimization can be achieved. A design ex-
ample is presented to demonstrate the efficiency of the proposed
lattice structure.
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