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Abstract—This letter describes an algorithm development for
the production of a large-scale fully polarimetric synthetic aper-
ture radar (SAR) (PolSAR) mosaic using multitemporal Advanced
Land Observing Satellite Phased Array type L-band SAR acqui-
sitions. The PolSAR data were collected during the snow-melting
season in 2007 over Finnish Lapland, resulting in considerable ra-
diometric differences between mosaiced scenes originating at dif-
ferent dates. Several variants of polarimetric seam hiding between
the original PolSAR images were proposed and evaluated in order
to effectively eliminate stripes in the mosaic. The impact of such
seam-hiding procedure on PolSAR classification performance was
studied, along with the technical aspects of producing the PolSAR
mosaic. The obtained results indicate the advantages of the consid-
ered seam-hiding procedures for producing homogeneous mosaics
and obtaining consistent classification results in a single classifica-
tion step.

Index Terms—Classification, forestry, land cover, polarimetry,
synthetic aperture radar (SAR).

I. INTRODUCTION

THE modern generation of spaceborne synthetic aperture
radar (SAR) sensors offers possibilities for global environ-

mental monitoring and land-cover mapping at high-resolution
scale using multipolarization data. Obviously, the ability to
combine fully polarimetric SAR (PolSAR) scenes into homo-
geneous mosaics, analogically to single- and dual-polarization
SAR data [1]–[3], would boost the applicability and effective-
ness of PolSAR mapping techniques. It is of particular interest
in situations when it appears hard to find adequate reference
data for each individual PolSAR image. However, the current
availability of PolSAR data (e.g., time intervals between the
acquisitions of neighboring scenes), as well as its sensitivity
to environmental factors, puts some limitations on the produc-
tion and further use of such mosaics. Thus, it is important
to see how multitemporal PolSAR data acquisitions influence
mosaic classification accuracy and to identify techniques that
are suitable for the processing of such multipolarization data.
Other important issues include the identification of application
areas where such mosaics of multidate PolSAR images can be
effectively used, as well as pinpointing possible challenges and
drawbacks of such a combined PolSAR product.
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Land-cover classification challenges in the boreal region are
primarily connected with forest-mapping techniques. For forest
applications, longer wavelengths are more suitable, particularly
at P- and L-bands. In this letter, L-band PolSAR data were
used. They were acquired by the Advanced Land Observing
Satellite (ALOS) Phased Array type L-band SAR (PALSAR)
sensor [4], which provided multipolarization information, well
suitable for forest mapping, during its lifetime span of over five
years.

The objective of this letter is to evaluate the possibilities of
land-cover mapping using a PolSAR mosaic produced from
ALOS PALSAR images during the snow-melting season. In
particular, the goals include, we believe for the first time, per-
forming seam hiding of PolSAR image produced from space-
borne multitemporal acquisitions and quantitative evaluation of
the influence of such procedure on the classification perfor-
mance of several traditional PolSAR classification techniques.
This letter is organized as follows. First, the technical aspects
of producing the mosaic are given. Then, several seam-hiding
approaches preserving scattering-mechanism (SM) information
are proposed, with further evaluation of the impact on PolSAR
classification accuracy.

II. MATERIALS AND METHODS

A. Study Site, PolSAR, and In Situ Data

The study site was chosen at a high-enough latitude to
ensure overlap between PolSAR images from the neighboring
orbits of the ALOS satellite. The center coordinates of the
study site were 68◦30′ north, 27◦30′ east. The site represents a
typical Finnish taiga, with dense and sparse forest covering the
majority of the area, with some considerable proportion of open
bogs and other peat land. The study area covered the southern
part of Lake Inari in the north and the eastern end of the Lokka
reservoir in the south.

Polarimetric scenes from two adjacent orbits were used in the
mosaic production, with imagery acquired on April 2, 2007 (or-
bit 6327, the eastern part of the mosaic) and on April 19, 2007
(orbit 6575, the western part). For both acquisition days, the
temperature had fluctuated near 0 ◦C during the previous days,
with a clear sky before the image acquisition. The snow-cover
situation was characterized by processes of transition from dry
to wet state. All the scenes were fully polarimetric with an
incidence angle of 24◦. These polarimetric products have a pixel
spacing of about 3.5 m along track (azimuth) and 9.4 m cross
track (slant range). The image swath width was 29.3 km.

A digital elevation model (DEM) from the National Land
Survey of Finland was used for image orthorectification.
This DEM was produced using digitized contour lines of

1545-598X/$31.00 © 2012 IEEE



ANTROPOV et al.: POLSAR MOSAIC NORMALIZATION FOR IMPROVED LAND-COVER MAPPING 1075

Fig. 1. Reference land-cover/use map. (Blue) Water. (Brown) Peat land.
(Light green) Sparse forest. (Dark green) Dense forest. (Yellow) Other.
© SYKE.

topographic maps at 1:20 000, with a pixel spacing of 25 m.
The vertical accuracy is estimated [5] to be better than 2 m.

The CORINE Land Cover 2000 (CLC) [6] produced by the
Finnish Environment Institute (SYKE) was used as ground
reference data in the study. The spatial resolution of the land-
cover data was 25 m as well. The land-cover map is shown in
Fig. 1, with original 17 land-cover classes merged into five ma-
jor superclasses in this representation, namely, “sparse forest,”
“dense forest,” “peat land,” “water,” and “other.” The latest
class represents, in particular, urban and artificial structures,
pastures on highlands, and some other composite ecological
classes that are hard to describe using polarimetric observables
and was masked out before classification.

B. Orthorectification and Geometry Revision

The polarimetric PALSAR products (Level 1.1) included the
full scattering matrix. Extracted single-look complex data were
subsequently converted to the Stokes matrix format, averaged
over six pixels in the along-track direction, and transferred
to the coherency matrix format. This procedure resulted in a
set of images with a pixel spacing of 21 m in azimuth and
approximately 21 m in ground range.

Furthermore, all the data were resampled independently
using bilinear interpolation with in-house orthorectification
program [7]. A radiometric normalization was performed
to eliminate radiometric variation due to terrain elevation
variation. The power of each pixel was normalized with
respect to the projected area of the scattering element, anal-
ogously to description given, e.g., in [8]. The projection was
made to a plane perpendicular to the propagation direction of
the incoming radar pulse. This form of radiometric normaliza-
tion eliminates the topographic effects on received power in
terrain types whose radar cross section per unit of projected
area is independent of the incidence angle.

In order to avoid geometric errors and to supplement the
available ALOS image geometry information, manually mea-
sured ground control points (GCPs) and automatically mea-
sured tie points were used to revise image geometry. The GCPs
were measured in the down-averaged PALSAR scenes and map

data from the map service of the National Land Survey of
Finland. The tie-point and GCP observations were submitted
to a block adjustment procedure [1], where three geometry-
revision parameters were determined for each scene: trans-
lation in northing, translation in easting, and rotation. These
parameters were solved using least squares adjustment, which
minimizes approximation error over the whole set of observa-
tions. The initial geometry information in orthorectification was
based on the equations presented in [9].

C. Considerations on Polarimetric Seam Hiding

In the context of the herein described polarimetric mosaic
production, we can identify several possible methods for fur-
ther reduction of radiometric differences between the acquired
PolSAR scenes. Obviously, it is not possible to correct for the
change in SMs that actually took place because of the seasonal
changes (snow melting). However, eliminating the radiometric
difference between neighboring stripes (called “normalization”
further in this letter) has proved to be an important image-
processing step capable of improving further classification
results [2].

Such a normalization technique could be implemented, e.g.,
for each component of the polarimetric coherency (or covari-
ance) matrix. This would, however, result in an unpredictable
change of SMs after normalization, if the correction coeffi-
cients were different for different components of the coherency
matrix.

Another option is the use of the span of the covariance matrix
[or total backscattered power (TP)] in order to calculate the
corrective gain. Afterward, a pixel-by-pixel multiplication of
the whole covariance matrix Cij by the obtained corrective
gain can be performed, ensuring the preservation of SMs for
each processed pixel [11]. Technically, the approach follows the
method suggested for balancing the intensity between neigh-
boring strips of single-polarization SAR imagery [2] but uses
the values of TP instead. In this letter, only two neighboring
orbits were available, and scenes acquired on the right orbit are
corrected with respect to the left-orbit scenes. The correction
procedure simplifies to calculating normalization ratio Brl =
〈P l

total〉/〈P r
total〉, where P i

total is the respective TP for the
ith orbit and denotes spatial averaging over a certain area.
New covariance matrix values for the right-orbit scenes are
obtained as ĈR

ij = B ∗CR
ij . This approach preserves polarimet-

ric relations and modifies only the respective TP values. As
TP is an important feature characterizing a pixel [12], it is of
interest to see how the proposed seam-hiding procedure affects
classification for land-cover-mapping purposes.

Then, possible normalization methods, further evaluated in
this study, include the PolSAR mosaic correction using the
normalization ratio Brl calculated as follows: Method 1) at the
whole extent of the mosaiced scenes, Method 2) using only
pixels from the overlapping areas between the mosaiced scenes,
and Method 3) using only those pixels from the overlapping ar-
eas, where a dominating SM is preserved [13]. This ensures that
pixels that significantly changed their backscattering signature
are excluded from calculation. The corresponding powers of the
SMs can be provided by incoherent PolSAR decompositions,
considering the primarily natural-media composition of the
imaged area.
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D. PolSAR Analysis Methods and Software

Three-Component Decomposition: Under the reciprocity as-
sumption, Freeman and Durden [14] suggested a simple
three-component model for the decomposition of the covari-
ance matrix, implying complete decorrelation between the
copolarized and cross-polarized scattering terms. The model
provides information about scattering contributions from sev-
eral types of canonical targets, described by double-bounce,
surface, and volume SMs. One of the most well-known prob-
lems associated with this decomposition is the possibility of
obtaining negative power estimates of the surface or double-
bounce contribution. Therefore, some regularization is needed
to assure the physical consistency of the decomposition [15].
With this idea in mind, we have used several modified decom-
positions along with the traditional one, as presented in [16]–
[18], augmented by regularization [15] for those pixels, where
negative powers were still obtained.

Entropy–Alpha–Anisotropy Analysis: A popular unsuper-
vised target-classification method is based on the eigendecom-
position of the polarimetric coherence matrix [19], [20]. It uses
such polarimetric characteristics for the description of target
properties as entropy and the averaged alpha angle. Entropy H
covers a dynamic range from zero to one, being a measure of the
randomness of the scatterer, from deterministically polarized to
isotropically depolarized scatter, respectively. The alpha angle
α characterizes, through a unitary transformation, an SM (zero
is a sphere symmetry, 45 is a dipole, and 90 is a dihedral
or helix) independently from a rotation of the measurement
coordinates. The mentioned model was further augmented by
the anisotropy measure A ∈ [0; 1] to distinguish between differ-
ent classes with similar cluster centers, differentiating between
single- and multiple-target returns.

The categorized map of the alpha angle against entropy pro-
vides an initial classification of PolSAR imagery, after which
anisotropy can be used for further analysis. More advanced
semisupervised approaches [21], [22] use maximum-likelihood
(ML) classification, initially seeded by the H/A/α classes
and further iterated by the complex Wishart distribution of the
coherency matrix. The complex Wishart algorithm is generally
an ML estimator, assigning each sample coherency matrix to
one of the associated classes on the basis of the minimum
Wishart matrix distance. Further manual labeling of the ob-
tained segments is performed to produce a land-cover/use map.

Supervised Classification Using Wishart Classifier: In su-
pervised classification, training areas are defined manually for
each class from the Pauli color-coded presentation or reference
ground plot data. Then, the classifier calculates the Wishart
statistics of the training areas and assigns each pixel to the
closest class using the ML decision rule. The accuracy of the
classification is further evaluated against the CLC data. An
interface provided by the European Space Agency PolSARpro
software [9] was used for supervised Wishart classification.

III. EXPERIMENTAL DATA ANALYSIS

A total of 77 tie-point observations were measured using
automatic image correlation. A set of GCPs was measured in
all four scenes. After the elimination of gross errors, 13 GCPs
were used in block adjustment [1]. The residual rmses of the tie
points were 8.9 m in northing and 9.5 m in easting. The rmses

Fig. 2. Pauli color-coded representations of the PolSAR mosaic without seam
hiding. (a) Near-range data on top. (b) Far-range data on top. HH–VV is
depicted in red, HV is depicted in green, and HH+VV is depicted in blue.
© JAXA and METI 2007.

Fig. 3. Color-coded composite of the PolSAR mosaic. (Red) Double-bounce,
(green) volume, and (blue) surface scattering contributions to TP.

of the GCP observation were 13.6 m in northing and 19.8 m in
easting. The obtained polarimetric mosaic in Pauli color-coded
representation is shown in Fig. 2(a) and (b). Here, we used two
different ways to combine orthorectified images, favoring the
near- or far-range parts of the original PolSAR images. This
was done in order to additionally evaluate the influence of near-
to far-range choice on the classification accuracy performance
of the mosaic.

Dominating SMs were identified using the three-component
decomposition (Fig. 3) and a simple rule-based approach, with
some SM considered dominant if its power accounts for more
than 50% of the TP in an analyzed resolution cell. The mixed
category of pixels appeared to be relatively insignificant (0.71%
of the total amount of pixels) and was not used in computing
the normalization ratio. The implemented approaches allowed
obtaining visibly more homogeneous PolSAR data representa-
tions when compared to the initial noncorrected mosaic. One of
the examples is shown in Figs. 4 and 5, illustrating the differ-
ence between the original and normalized PolSAR mosaics.

It is interesting to note that the use of the different model-
based decompositions [16]–[18] had practically no influence
on the pixels’ assigned dominating SM (the observed deviation
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Fig. 4. Enlarged fragments of the mosaic, size 20 km × 17.5 km. (a) Original.
(b) Normalized. Color legend follows Fig. 2. © JAXA and METI 2007.

Fig. 5. Pauli color-coded representation of the PolSAR mosaic after the seam-
hiding procedure; the normalization strategy after Method 3 is used. (a) Near-
range data on top. (b) Far-range data on top. HH–VV is depicted in red, HV is
depicted in green, and HH+VV is depicted in blue. © JAXA and METI 2007.

was less than 2%). It can be explained by the simplicity of the
adopted decision rule and the composition of the land-cover
classes in the scene, mostly characterized by a mixture of
volume and surface scattering. Majority of the pixels in the
overlapping areas were found to preserve their dominant SM,
despite, e.g., the actual change in snow wetness. The use of TP
with the preservation of the dominating SM allowed excluding
pixels demonstrating a strong seasonal change (e.g., jammed
ice in the north of the mosaic transferring to open-water areas).
Some residual imbalance in the southeastern scene can be
explained by the influence of the relatively mountainous area
in the overlapping area between the left- and right-orbit scenes.

Classification results for both combinations of the polarimet-
ric mosaic along with corresponding normalized versions are
collected in Table I, both for multiclass and forest–nonforest
classifications. Three polarimetric seam-hiding approaches
were used to correct the mosaic (see Section II-C).

In supervised Wishart classification, a total of 24 training sets
covering the whole area of the mosaic were used, representing
about 14 000 out of more than 8 million available pixels. As
expected, the supervised Wishart classification has provided

TABLE I
POLSAR MOSAIC LAND-COVER CLASSIFICATION. THE OVERALL

ACCURACY ESTIMATES ARE GIVEN BOTH FOR MULTI CLASS AND

FOREST NONFOREST (IN BRACKETS) CLASSIFICATIONS

Fig. 6. Result of supervised classification from the PolSAR mosaic shown in
Fig. 5(b). Color legend follows Fig. 1.

better classification results, though the difference appeared to
be not very significant compared to the unsupervised approach
and generally heavily dependent on the choice of training data.
The obtained results emphasize an important role of the total
power in PolSAR data classification, often neglected when
using pure target model-based decompositions, as well as some
statistical classification approaches utilizing selected polari-
metric features. The application of the proposed polarimetric
seam hiding allowed increasing classification accuracy by some
2.8%–3.6%, with the best results obtained for the PolSAR mo-
saic normalization strategy employing Method 3, Section II-C.
While these results need further validation in different natural
or seminatural environments, they provide a good insight into
what can be expected from the suggested polarimetric seam-
hiding approaches.

As for the relatively low overall classification accuracy, it can
be considered the best one attainable under the given seasonal
conditions taking into account the multitemporal nature of
the mosaic, as well as the original nature of the reference
data. Moreover, it is generally difficult to associate available
ecological classes to the obtained radar target classifier [23].
For example, the difference in the definition of sparse and dense
forests is quite technical (the percentage of canopy cover and
tree height thresholds) and can be hard to capture adequately
by radar. The kappa coefficients of agreement [24] were from
fair to moderate in all the performed classifications. Some ad-
ditional gain in accuracy was achieved when a straightforward
water detection based on TP was utilized, as, e.g., in [25]. It
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particularly allowed circumventing the confusion between peat
land and watered areas observed in Figs. 1 and 6.

It is also interesting to note the difference in the classification
performance of the two versions of the mosaic. In overlap-
ping areas, mostly densely and sparsely forested areas were
dominating, and the far-range PolSAR data demonstrated a
slightly higher sensitivity to the presence of vegetation than the
near-range PolSAR data. For the near-range data, the observed
higher confusion between forested and open areas is explained
by the steeper incidence angle and generally high penetration
through canopy at L-band. It resulted in obtaining higher ac-
curacies for the given land-cover composition when far-range
areas were used in the mosaic compilation.

IV. CONCLUSION

A multidate PolSAR mosaic has been produced from Pol-
SAR imagery acquired from two adjacent orbits in such a way
that any polarimetric analysis or classification can be performed
on it in a single step. The classification accuracy of several
classification approaches has been evaluated using the produced
PolSAR mosaic, with both supervised and unsupervised ap-
proaches giving moderate results, with a better performance
when far-range SAR data were given preference in the pro-
duction of the mosaic. Suggestions on the improvement of the
classification performance have been made in order to hinder
the effects of the multitemporal nature of the PolSAR mosaic.
Several methods for polarimetric seam hiding (normalization)
have been proposed and implemented, resulting in the im-
provement of the overall classification accuracy performance.
These methods are based on eliminating differences in the total
backscattered power between the overall neighboring scenes or
their selected areas. They preserve the SMs due to the use of the
span of the polarimetric coherency (or covariance) matrix and
emphasize the importance of the total backscattered power in
land-cover/use classification employing PolSAR imagery. We
expect the demonstrated seam-hiding techniques to be most
applicable over forested terrain, with PolSAR data acquired
preferably during summer (or dry) season.
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